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Abstract—Cognitive radio ad hoc network (CRAHN) is consid-
ered as a key technology to enhance the spectrum efficiency for
diverse applications. However, due to the opportunistic links, the
intrinsic randomness of the CRAHN makes the traditional precise
control of the end-to-end transmission unscalable and generally
infeasible. The recently-proposed virtual multiple-input multiple-
output (MIMO) framework exploits the multipath routing to
create the diversity at the network layer. With only local
information and no feedback control channel, the path–time code
(PTC) of the virtual MIMO system is able to efficiently provide
the error resilient end-to-end transmission. In particular, while
the transmission latency should be minimized, more attempts
for accessing the opportunistic links can be made if a larger
latency is allowed, which improves the error rate performance
of the end-to-end transmission. By theoretically analyzing the
error rate performance and erasure statistics, we propose a
design guideline to determine the waiting period as the limit
of the transmission latency. This designed waiting period not
only preserves the diversity gained by the PTC but also provides
a low transmission latency, resulting in a good balance of the
reliability-latency trade-off of the end-to-end PTC transmission
in CRAHNs.

Index Terms— Cognitive radio ad hoc networks (CRAHNs), virtual
multiple-input and multiple-output (MIMO), space–time code (STC),
path–time code (PTC), PEP analysis, erasure channel.

I. INTRODUCTION

The cognitive radio (CR) enhances the spectrum utiliza-
tion [1], [2] by permitting the CR users to dynamically access
the spectrum without interfering with the primary users. Al-
though the cognitive radio ad hoc network (CRAHN), formed
by primary and CR users, greatly enhances the spectrum
efficiency, it faces the challenges such as the opportunistic
CR links. Specifically, each relay node has to buffer the
packet until the link to its neighboring node is available, i.e.,
no primary users or other CR users currently occupy this
link. Therefore, a packet may experience long transmission
delay before arriving at the destination node, especially when
the spectrum is heavily loaded. To avoid infinite delay and
overflow problems, the destination node sets a waiting period
as the limit of the end-to-end transmission latency. The packets
experiencing a transmission latency beyond the waiting period
are discarded before arriving at the destination node [3],
leading to the transmission outages. The outage transmission

not only deteriorates the error rate performance of the end-to-
end transmission, but also makes the links unidirectional [4],
[5].

Conventionally, many routing algorithms are designed for
the precise control of the end-to-end transmission with the
assumption of complete end-to-end information [6], [7]. How-
ever, since the opportunistic links are unidirectional and un-
reliable, the exchange of the end-to-end information requires
large control overhead [3], [8]. Such huge control overhead
makes these algorithms inefficient and unscalable. Recently,
the path–time code (PTC) is applied to the multihop mul-
tipath cognitive radio network through the virtual multiple-
input multiple-output (MIMO) formulation [4], [5]. By using
multipath routing and local information [9], [10], the reliable
end-to-end PTC transmission is realized efficiently. However,
despite the extensive system performance analysis provided
in [5], the trade-off among the performance metrics, e.g.,
the transmission reliability and transmission latency, remains
open.

In this work, we focus on the analysis of the waiting period
which can be used to trade the transmission reliability with
the transmission latency. While a longer waiting period results
in lower error rate and longer latency, the shorter waiting
period allows shorter transmission latency at the expense of the
error rate performance degradation. By deriving the pairwise
error probability (PEP), we first analyze the diversity loss
caused by the transmission outage. It should be emphasized
that the diversity indicates the error rate enhancement with
respect to the signal-to-noise ratio (SNR) and thus is an
essential metric for the transmission reliability [11]. Then, the
relationship between the transmission outage and the waiting
period is established and approximated by the Chernoff bound.
Based on these two results, the transmission latency, which
is proportional to the waiting period, and the reliability,
which is reflected by the diversity, are linked, and a design
guideline is proposed to strike a good balance between the
transmission reliability and latency. Simulation results show
that by using our design guideline, the transmission latency
can be minimized under the condition of negligible diversity
loss.

The paper is organized as follows. We revisit the virtual
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MIMO framework with PTC for CRAHNs in Sec. II. In Sec.
III, we derive the relationship between the waiting period and
the diversity loss. A design guideline is proposed to minimize
the waiting period under the condition of negligible diversity
loss. We verify the proposed design guideline by means of
Monte Carlo numerical simulations in Sec. IV and draw the
conclusions in Sec. V.

II. SYSTEM MODEL

Let the link denote the connection between two nodes,
and path the end-to-end connection route between a pair
of source and destination nodes. In this work, we consider
multihop networking with R link-disjoint paths [4], [5], [12],
[13], each including Nr − 1 relay nodes, r ∈ {1, . . . , R} as
illustrated by an equivalent directed-graph model in Fig. 1.
Such multihop/multipath routing can be established using the
algorithms proposed in [14], [15].

Source
Destination

: Relay nodes

R relay paths

N1 opportunistic links in the 1st relay path

Nr opportunistic links in the rth  relay path

NR opportunistic links in the Rth relay path

: Source/Destination node

Fig. 1. The equivalent directed graph model of the multihop multipath end-
to-end transmission in CRAHNs.

At the source node of the CRAHN, B coded packets sb =
[sb,1, . . . , sb,R]

⊤ ∈ CR×1, where (·)⊤ as the transposition, are
transmitted through R relay paths at the bth time instant. These
B coded packets are used to encode the same data packet
x = [x1, . . . , xB ]

⊤ by the coding matrix Cb ∈ CR×B as
follows

sb = Cbx, b = 1, . . . , B. (1)

Different designs of the coding matrix Cb are addressed in [4],
[5] for various channels and performance requirements. In
this work, we adopt the discrete Fourier transform (DFT)-
based PTC, which delivers the best error rate performance
of the end-to-end transmission under the fast-fading channels.
Letting C =

[
C⊤

1 , . . . ,C
⊤
B

]⊤ ∈ CRB×B , the (k, b)th entry of
C of the DFT-based PTC is given by

Ck,b =
1√
R
e

−j2πkb
RB , k = 1, . . . , RB, b = 1, . . . , B. (2)

The coded packets then propagate through the R relay paths,
i.e., sb,r for the rth relay path at the bth time instant.

We specify the waiting period as the limit of the end-to-
end transmission latency that the destination node can tolerate.
Assuming that the relay nodes periodically sense the avail-
ability of the opportunistic link at every predefined sensing
interval. If a link is available, the coded packet is forwarded to
the next relay node, assuming negligible propagation latency
compared with the sensing interval. If the link is currently

unavailable, the coded packet is buffered until the beginning
of the next sensing interval. We define T as the waiting period
which is the time interval normalized with respect to the
sensing interval. This implies that each sb,r is allowed to have
T attempts to be transported through Nr opportunistic links
along the rth relay path. Once the end-to-end transmission
latency exceeds the waiting period, the coded packet sb,r is
discarded, resulting in a transmission outage. We define era-
sure vector vb = [vb,1, . . . , vb,R]

⊤ ∈ {0, 1}R to describe such
transmission outage at the bth time instant, for b = 1, . . . , B.
This erasure vector comprises R Bernoulli random variables
vb,r ∈ {0, 1}, each indicating whether sb,r successfully arrives
at the destination node or not. We define the path fading gain
vector hb = [hb,1, . . . , hb,R]

⊤ ∈ CR at the bth time instant, in
which each entry is the product of Nr link gains. We then can
use the Schur product vb ◦ hb = [vb,1hb,1, . . . , vb,Rhb,R]

⊤ to
express the effective path fading gain. With these definitions,
the end-to-end PTC transmission at the bth time instant can
be formulated as

yb = (vb ◦ hb)
⊤Cbx+

R∑
r=1

η̃b,r (3)

= h⊤
b diag (vb)Cbx+ ηb = h⊤

b (vb ◦ sb) + ηb, (4)

where yb is the received coded packet, diag(vb) is a diagonal
matrix whose diagonal entries are vb, and η̃b,r is the additive
white Gaussian noise (AWGN) aggregated from all links in
the rth path. Due to different AWGN noises η̃b,r for every
b and r, the noise ηb has time-varying noise power spectrum
density N0,b.

Now, by stacking the received coded packets y =
[y1, . . . , yB ]

T ∈ CB from b = 1 to b = B, the end-to-end
PTC transmission in (4) can be reformulated as

y =

 h⊤
1 . . . 0⊤

...
. . .

...
0⊤ . . . h⊤

B


︸ ︷︷ ︸

H

 (v1 ◦ s1)
...

(vB ◦ sB)

+

 η1
...
ηB

 (5)

= H · (v ◦ s) + η, (6)

where H ∈ CB×RB , v =
[
v⊤
1 , . . . ,v

⊤
B

]⊤ ∈ {0, 1}RB ,
s = [s⊤1 , . . . , s

⊤
b ]

⊤ ∈ CRB , and η = [η1, . . . , ηB ]
⊤ ∈ CB

are the matrix/vector representation of variables for all time
instants. From (6), the end-to-end PTC transmission in the
CRAHN is described by the same mathematical expression as
a MIMO system, where multiple nodes are coordinated to form
multihop/multipath routes between a source and destination
node pair, where the source node encodes the data along time
and path coordinates to gain the diversity [4], [5].

At the destination node, multiple PTC-coded packets ar-
riving at the destination node from various time instants and
relay paths are collected. The maximum a posteriori (MAP)
criterion is used to jointly detect the data packet x and the
erasure vector vb, b = 1, . . . , B [5]. From (6), we can see
that once more erasures occur, fewer coded packets can be
received by the destination node, thereby degrading the error
rate performance. Although enlarging the waiting period can
reduce the erasure probability P (vb,r = 0), for b = 1, . . . , B
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Fig. 2. The relationships among transmission reliability (diversity), erasure
statistics, and transmission latency (waiting period).

and r = 1, . . . , R due to allowing more chances of access-
ing the opportunistic link, the transmission latency is also
increased. Consequently, the design of the waiting period is
essential to the trade-off between the transmission latency and
reliability.

III. DESIGN GUIDELINE OF THE WAITING PERIOD

In this section, the PEP is first derived so that we can
analyze the diversity loss caused by erasures. Then, the
relationship between the erasure statistics and the waiting
period is established and approximated by the Chernoff bound.
By using these results, the diversity loss and the waiting
period which respectively reflect the transmission reliability
and the transmission latency, can be connected and utilized
to guide the design of the waiting period. The relationships
among transmission reliability (diversity), erasure statistics,
and transmission latency (waiting period) are illustrated in Fig.
2.

A. Error Performance and Diversity

Denoting the transmit coded packet and the erroneously-
detected packet with erasure vector by s and ŝ, respectively,
the PEP f(s → ŝ) is defined as

f(s → ŝ) = P (Λ(s, ŝ) < 0) , (7)

where Λ denotes the log-likelihood ratio (LLR) of P (y|s) and
P (y|ŝ) i.e.,

Λ = logP (y|s)− logP (y|ŝ) , (8)

and

P (y|s) = 1

πB
∏B

b=1 N0,b

e−∥diag(ρ)[y−H·(v◦s)]∥2

; (9)

diag(ρ) is a diagonal matrix whose diagonal entries are ρ =
[1/
√
N0,1, . . . , 1/

√
N0,B ]

⊤ [16] . Inserting (9) into (10), we
obtain

Λ(s, ŝ)

= ∥diag(ρ) [y −H· (v ◦ ŝ)] ∥2 − ∥diag(ρ) [y −H· (v ◦ s)] ∥2

= ∥diag(ρ) [H· (v ◦ (s− ŝ))] ∥2

+ 2Re
{

diag(ρ)
[
H·
(
v ◦ (s− ŝ)H

)
η
]}

. (10)

where (·)H denotes Hermitian operation, and Re{·} extracts
the real part. From (10) we know that given H, Λ is a
conditional Gaussian random variable with mean

µΛ = ∥diag(ρ) [H· (v ◦ (s− ŝ))] ∥2 (11)

and variance
σ2
Λ = 2µΛ. (12)

The conditional moment-generating function (MGF) of this
Gaussian random variable Λ is given by

MΛ(t|H) = e(t+t2)µΛ . (13)

Now, to expand (13), we rewrite µΛ in (11) as

µΛ =
B∑

b=1

1

N0,b
h⊤
b

(
vb ◦ (sb − ŝb)(sb − ŝb)

H ◦ vH
b

)
h∗
b

(a)
=

B∑
b=1

1

N0,b
h⊤
b UbDbU

H
b h∗

b

(b)
=

B∑
b=1

1

N0,b
|wb|2∥vb ◦ (sb − ŝb)∥2, (14)

where (·)∗ is the conjugate operation, Ub is a unitary matrix,
and Db is the diagonal matrix with eigenvalues being the diag-
onal terms. In (14), (a) is due to the eigenvalue decomposition
of the Hermitian matrix vb ◦ (sb − ŝb)(sb − ŝb)

H ◦ vH
b [17],

and (b) follows from the fact that due to the rank-1 property
of vb ◦ (sb − ŝb)(sb − ŝb)

H ◦ vH
b , Db has only one nonzero

entry with value ∥v ◦ (sb − ŝb)∥2. wb is defined as

wb = h⊤
b ub, (15)

where ∥ub∥2 = 1 is the eigenvector associated with that
nonzero eigenvalue in D. By using (14), MΛ(t|H) becomes

MΛ(t|H) =
B∏

b=1

e
(t+t2) 1

N0,b
|wb|2∥vb◦(sb−ŝb)∥2

. (16)

We then approximate the PEP using Chernoff bound with t =
−1/2 [18], which yields

f(s → ŝ) ≃ fCB(s → ŝ) =

B∏
b=1

e
−γb

∥vb◦(sb−ŝb)∥
2

4σ2
x . (17)

In (17), the effective SNR γb is defined as

γb ,
|wb|2σ2

x

N0,b
, (18)

where σ2
x denotes the variance of x. Now, we define ∆b as

∆b =

{
1, if otherwise,
0, if vb ◦ (sb − ŝb) = 0.

(19)

Then, according to (14), (17), and assuming γb is the same for
all the time instants such that the subscript b can be omitted
for simplicity, the diversity d can be represented as follows:

d = − lim
γ→∞

log [f(s → ŝ)]

log [γ]
=

B∑
b=1

∆b. (20)

From (20), we see that once T approaches infinity, we have
vb = 1, and thus the PTC system achieves full diversity
if (sb − ŝb) ̸= 0, for b = 1, . . . , B. However, since infinitely
large T is practically impossible, we need to investigate the
appropriate value of T to preserve the diversity.

For a good design of the PTC, the data packet is dispersed
into all time instants and relay paths so that we have the
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column vector (sb − ŝb) with all entries nonzero. In this case,
∆b = 0 happens when vb = 0. The probability of having
vb = 0 is given by,

P (vb = 0) = P (vb,r = 0; r = 1, . . . , R) , (21)

which is also the probability of the bth coded packet being
erased. This probability is calculated in the next subsection.

B. Erasure Statistics

We first construct the relationship between the availability
of an opportunistic link and a relay path. Then, the erasure
probability P (vb,r = 0) as a function of the waiting period T ,
number of opportunistic links Nr, and link availability p is
derived. As mentioned previously, each node simply performs
sensing at the beginning of every sensing interval. Once the
end-to-end delay exceeds the waiting period, the coded packet
is discarded. Sequential sensing of the Nr opportunistic links
can be modeled as a Bernoulli trial, characterized by the
geometrically distributed random, variable G(1 − p). Herein,
we assume that the statistics of each opportunistic links is
the same. Since the end-to-end delay is the summation of Nr

geometric random variables, it follows a negative binomial
distribution NB(N, p) with probability mass function (PMF)

PNB(x;Nr, 1− p) =

(
x+Nr − 1
Nr − 1

)
pNr (1− p)x. (22)

When the end-to-end delay τ is shorter than T , the relay path
is considered as available with probability given by [15]

P (vb,r = 1) = P (τ ≤ T ) =
T∑

τ=Nr

PNB(τ −Nr;Nr, 1− p)

=
T∑

τ=Nr

(
τ − 1
Nr − 1

)
pNr (1− p)τ−Nr . (23)

C. Design Guideline of Waiting Period

Although the exact erasure statistics can be derived by
using the negative binomial distributions, as can be seen from
(23), that expression fails to show clear relationship among
the system parameters, e.g., the waiting periods T , the link
availability p, and the resulting erasure statistics P (vr,b = 0).
Therefore, an simpler approximation is resorted. We define
the Bernoulli random variable ub,r,t ∈ {0, 1} as the indicator
which represents the sensing result of tth attempt of the bth
coded packet in the rth relay path. ub,r,t = 1 and ub,r,t = 0
respectively imply that the rth coded packet is forwarded or
buffered. Note that if the coded packet arrives at the destination
node at the t′th attempt, we have ub,r,t = 0 for t′ < t ≤ T .
The erasure probability can thus be given by

P (vb,r = 0) = P

(
T∑

t=1

ub,r,t ≤ Nr − 1

)

= P

(
T∑

t=1

ub,r,t ≤
(
1− pT −Nr + 1

pT

)
pT

)
(a)

≤ e

(
− 1

2
(pT−Nr+1)2

pT

)
, (24)

where (a) is due to the Chernoff bound. In particular, for
random variable

∑T
t=1 ub,r,t, the Chernoff bound states that

P

[
T∑

t=1

ub,r,t ≤ (1− α)µ

]
≤ e

(
−α2µ

2

)
, (25)

where µ = E
[∑T

t=1 ub,r,t

]
= pT due to the independent

and identical distribution of ub,r,t, and |α| ≤ 1. By letting
α = pT−Nr+1

pT , we have (24).
With the aid of (24), the upper bound of the probability of

the diversity loss defined in (21) can be given by

P (vb = 0) = P (vb,1 = 0) · · ·P (vb,R = 0)

≤
R∏

r=1

exp

(
−1

2

(pT −Nr + 1)2

pT

)
≤ exp

(
−1

2

(pT −Nr⋆ + 1)2

pT

)
, (26)

where the r⋆th path is the path with largest number of relay
nodes:

r⋆ = max
r=1,...,R

Nr. (27)

This upper bound of the probability of diversity loss is smaller
than unity only if the exponent in (26) is negative. Since the
necessary condition of the negative exponent is

T >
1

p
(Nr⋆ − 1), (28)

which implies that the probability of diversity loss is bounded
by a value smaller than unity, we thus propose the design
guideline as

T ⋆ =

⌈
1

p
(Nr⋆ − 1)

⌉
+ 1, (29)

where the second term in the right hand side, i.e., ‘+1’, is
added to guarantee a positive waiting period even for the case
of N⋆

r = 1. As will be demonstrated in the next section,
the design guideline (29) can simultaneously preserve the
diversity of the end-to-end PTC transmissions and minimizes
the transmission latency.

IV. SIMULATION RESULTS

In this section, the design guideline (29) is demonstrated by
means of Monte Carlo simulations. We use QPSK modulation
and DFT-based PTC. For simplicity, the destination node has
perfect knowledge of the erasures vb,r and the path fading
gains hb,r. In practice, the erasures are jointly identified with
the data decoding by using the joint sphere decoding algo-
rithm [5] which only results in few dB SNR degradation. Both
the number of relay paths and time instants are set to be three,
i.e., R = B = 3. We set the number of opportunistic links in
the third path N3 = 4 and (N1, N2) are uniformly distributed
with support [1, 4]. We simulate the link availability p = 0.85
based on the 15% spectrum utilization reported by FCC [19].
The double and triple spectrum utilizations, i.e., p = 0.7
and p = 0.55, are also simulated to model the scenarios where
the CR technology greatly enhances the spectrum utilizations.
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Fig. 3. Error rate performance of the end-to-end PTC transmission with
various waiting periods. R = 3 and B = 3 are used. N3 is assumed to be 4
and (N1, N2) are uniformly-distributed with support [1, 4]. Thus, for p =
0.85, 0.7, and 0.55, we respectively have T ⋆ = 5, 6, and 7.

In this case, the design guideline in (29) provides T ⋆ = 5, 6,
and 7, respectively for p = 0.85, 0.7 and 0.55.

Fig. 3 demonstrates the effectiveness of the design guideline
(29) by showing the packet error rate (PER) performance. The
solid, dashed, and dotted lines with markers are respectively
used for p = 0.85, p = 0.7 and p = 0.55. The solid line
without marker indicates the case of infinity waiting period,
i.e., T → ∞, which serves as the lower bounds of all
the settings. We can see that by using the proposed waiting
period T ⋆ defined in (29), the slopes of the curves are similar
to the case of T → ∞. We add or subtract the waiting
periods by a value of 2 to show the change of the performance
with longer or shorter waiting period. Although the error rate
performance is slightly improved when we increase the waiting
period, the diversity remains the same. Meanwhile, if the
waiting period is less than T ⋆, the diversity loss occurs, and
the error rate increases drastically.

The trade-off between the transmission reliability and the
latency is illustrated in Fig. (4). Without diversity loss, the
diversity of the end-to-end PTC transmission with three relay
paths is slightly less than 3, due to the cascaded fading. We
can see that the diversity gain from T ⋆ to T ⋆ + 1 is smaller
than the diversity gain from T ⋆ − 1 to T ⋆, which shows the
effectiveness of the proposed waiting period. Although the
diversity loss still remains when T ⋆ is selected, such loss is
small compared with the case of no diversity loss. Thus, the
design guideline T ⋆, derived in (29), strikes a good balance
between the transmission latency and reliability under the
condition of negligible diversity loss.

V. CONCLUSION

In this paper, we investigate the reliability and latency
trade-off of the end-to-end PTC transmission in the CRAHNs.
The PEP is derived to obtain diversity loss as a function of
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Fig. 4. Diversity vs. waiting period of the end-to-end transmissions with
various link availabilities p. R = 3 and B = 3 are used. N3 is assumed
to be 4 and (N1, N2) are uniformly-distributed with support [1, 4]. Thus,
for p = 0.85, 0.7, and 0.55, we respectively have T ⋆ = 5, 6, and 7.

erasure statistics. The erasure statistics is approximated by the
Chernoff bound, which yields a simple and clear expression
to allow us to propose a design criterion of the waiting
period, i.e., the limit of the transmission latency. Numerical
demonstrations show that the propose design criterion (29)
strikes a good balance between the transmission latency and
reliability.
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