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Abstract—Centralized radio access network architectures con- Virtual BS pool
solidate the baseband operation towards a cloud-based pFkarm, Central laver
thereby allowing for efficient utilization of computing assets, ef- yer [vm1][vm2][vm3]|[VM N

fective inter-cell coordination, and exploitation of glokal channel
state information. This paper considers the interplay betveen

computational efficiency and data throughput that is fundamental "
to centralized RAN. It introduces the concept of computatimal Transport Networ
outage in mobile networks, and applies it to the analysis of

complexity constrained dense centralized RAN networks. Té
framework is applied to single-cell and multi-cell scenards using

parameters drawn from the LTE standard. It is found that /
in computationally limited networks, the effective throughput

can be improved by using a computationally aware policy for Remote layer

selecting the modulation and coding scheme, which sacrifise

spectral efficiency in order to reduce the computational ouage

probability. When signals of multiple base stations are praessed Fig. 1. Typical cloud RAN architecture
centrally, a computational diversity benefit emerges, and he

benefit grows with increasing user density.

Back-/Fronthaul

Index Terms—Computational complexity, computational out- The current trend is towards the densification of mobile

age, turbo-decoding, mobile networks, 3GPP LTE networks, where smaller cells are deployed. Compared to
traditional macro-cellular base stations, small-celdmstations

l. INTRODUCTION will be characterized by fewer antennas, different antenna

In an information society as we have it today, mobil@nd wave propagation patterns, lower transmission power,
voice and data communication is a commodity service thatagd limited computational resources. The latter charatier
supposed to be available everywhere at any time. Accorglings @ consequence of economic constraints and the need for
novel technologies to improve system capacity and qual@pmpact radio access points. Limiting the amount of computa
of service are proposed and discussed in the context of négnal resources may lead tomputational outage rather than
generation mobile networks. However, the focus of thisutisc channel outage. Such computational outages occur whenever
sion has to date focused primarily on the system performandedecoding failure occurs due to the violation of a timing
while the increased demand for computational resources I§@gstraint rather than due to insufficient channel conaigtio

received relatively little attention. Computational outage leads to a waste of spectral resources
. . _ _ and loss of throughput, in much the same way as a channel
A. Computational requirements in mobile networks outage. It is feasible that for some deployments, comprtati

Mobile networks are hard real-time systems with tight timoutage could be the dominant form of outage, and as such, will
ing and protocol constraints. These constraints are destri influence the design of the scheduler and certain aspects of
by mobile communications standards such as 3GPP LTE fiig network architecture. The use otemputationally aware
and must not be violated. In order to fulfill these constmintscheduler could yield great benefits when used in a network
a pre-defined amount of computational resources must Wih computational constraints. Furthermore, the poolaig
provided such that downlink and uplink processing can K@mputational assets in @oud could yield acomputational
performed within a given time interval. For instance, thénlp diversity benefit, whereby centralized processing elastically
modulation and coding scheme (MCS) determines the numfi@guses resources on those cells that have high momentary
of information bits that must be processed per subframe. COmputing requirements.

The research leading to these results has received panlyinfy from B. Related work
the European Union Seventh Fran_wevy_oyk Programme (FP7/2003) ur_]der The deployment of very dense networks requires novel
grant agreement®n317941 (www.ict-ijoin.eu). The authors would like to hnologi I for i di f di
acknowledge the contributions of their colleagues in iJGilthough the views technologies to allow for improved interference coordmrat

expressed are those of the authors and do not necessariégeapthe project. and to improve the utilization of networks. Already todagt-n
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works are underutilized at less than 40 % maximum load. Oneln this paper, we analyze the likelihood of computational
technology to improve interference coordination and netwooutage in a mobile communication network. More specifigally
utilization is centralized radio access network (RAN) [2}- we first derive a model for computational outage and show
Centralized RAN achieves this improvement by centralizinigow it relates to channel outage. In order to evaluate theahct
all baseband processing to a central entity. Currentlyayeydd  impact on the throughput performance, this model is applied
centralized RAN solutions exploit utilization improventeen to a block Rayleigh fading channel and a network with co-
a base station level; i. e., each baseband unit in a pool ¢ urdhannel interference. Local processing of the uplink digna
may be statically assigned to a particular remote radio headcompared with central processing, and the computational
(RRH). diversity benefit of central processing is noted. We further
Using cloud computing as a platform for centralized RANntroduce a computationally aware MCS selection policyt tha
allows for the use of virtualization technologies that offereduces the computational complexity requirements atdise ¢
flexible provisioning of computational resources. Consfkelg. of slightly decreased spectral efficiency. However, in com-
[, where the RAN is divided into a remote and central layeplexity constrained deployments, the selection policyjutes
Depending on the backhaul quality, parts of the radio prtochigher effective throughput.
stack are centralized and executed within a virtual bagsta The paper is structured as follows: Sectioh Il introduces
(BS) pool [4]. Each virtual machine (VM) within this virtual the notion of computational outage and relates it to channel
BS pool may represent a radio access point (RAP) or clusteraftage, Sectiof Il analyzes the outage behavior in the case
RAPs, where each RAP may be a fully centralized base statioha single cell, Sectioi IV extends the analysis to a multi-
(RRH) or just a partially centralized base station. Basethen cell environment where co-channel interference has to be
actual traffic and resulting computational demand, each V&bnsidered. The paper is concluded in Sedfion V.
is provisioned with resources that can be elastically adgus
One such split between remote and central layer could be to
perform operations common to all users of a BS (e.g. FFT) Consider acloud group containing Ny..q base stations or
at the RAP and to perform user-specific operations such R&Ps whose signals are jointly processed in a virtual BS pool.
forward error correction (FEC) at the central layer [4],.[5]LetY; indicate theit” RAP and its location within the network.
FEC consumes a major part of the computational resourcéghen a mobile in the cell served iy transmits, a transport
particularly in the uplink[[6]. Hence, centralizing FEC ¢(ball block (TB) is received at; with a signal-to-interference-and-
functionality above) allows for centralizing a large paftloe noise ratio (SINR) equal ta;. The SINR is assumed to be
base station complexity and provides opportunities to @kplfixed for the duration of the subframe, which is true if the
the multi-user computational diversity. desired and all the interfering signals are subject to block
However, in order to exploit such a cloud-computing plaifadingﬂ, and hence the channel is AWGN with SNR
form efficiently, new technologies are needed to predict, When a TB is received with SINR, there is some prob-
monitor, and control the computational requirements. Thiility that it will not be correctly decoded. Ideally, it Wi
requires the joint operation and optimization of the mobilelways be correctly decoded-fis above some threshold and
network’s communication and computation systems. Regentvill be incorrectly decoded if it is below that threshold (a
the computational complexity of mobile communication ha%rick wall” error-rate curve). However, this behavior récgs
received increasing attention, in particular for shodtaince infinitely long codes. In practice, a finite-length code,tsias
communication where power consumption due to transmitt@rturbo code, must be used, and its error-rate curve will not
and receiver processing may be on the order of the tramsstantaneously drop to zero. To model this effect, we define
mission power. In[[7], Groveet al. showed that decoding a random error-indicator functionE(y) which returns a 1 if
complexity would scale at moderate to high signal-to-noiseparticular TB received with SINR fails to be successfully
ratio (SNR) withO(log(z)~!) in the ratio of necessary SNR todecoded and a O if it is correctly decoded.channel outage
achieve capacity and necessary SNR to achieve the chosen dacurs wheneveE () = 1. It follows that the channel outage
rate. Hence, to get closer to capacity, the required cortplexprobability is

increases super-linearly. e = PIE() = 1] = E[E(7)] )

C. Contribution and Outline As the TB format and the number of turbo decoder iterations

will vary from one transmission to the next, we furthermore

When small ce-lls are provided with Iimitgd computationaaefine a random functiod(~y) to be thecomputational effort
resources or multiple small cells share the (virtualizexdthpu- required to process a particular TB received with SINR

tational resources, computational outage becomes iroghas Unless the link layer decides to drop a TB to prevent a

important. However, determining computational outagesiyv computational overflow, every received TB must be processed

difficult as it requires a detailed co_mpIeX|ty model (S'm'laThus, even if a channel outage occuféy) will generally
to channel outage), and computational outage depends on

multiple _parameters such as SNR_’ bIock-Iengt-h, modulation 1y, e present paper, we use block fading as it eases theitaposast
and-coding-scheme, and decoder implementation. correlated fading is for future study.

II. CHANNEL AND COMPUTATIONAL OUTAGE



be nonzero. However, using an early-stopping criteria & th
decoder may allowg(v) to be less than its maximum value 10 TSN

when a channel outage occurs. Sy v N\ | T 2lteratony
The virtual BS pool will be provisioned with a limited 3 g“ ‘\/g v o g:g:ﬂg:zf
amount of computational resourc€s.. per RAP. The units \ \ \ —
of these resources are the same as those associated with th'é)’l E——— ",_ A ==
computational effor€(v). If the total required computational 3 e
effort exceedsNoud - Cmax before a decoding deadline is o : P “ ‘\ . ‘\MCS 11
reached, acomputational outage will occur. It follows that IS : | \ \ \:
the computational outage probability for the cloud group is ©10~2 = MCS 10+— b = \ -.‘i ‘
Neioud “‘ . \\‘ “ ‘:\\
€comp = P Z C('Yz) > Neloud * Cmax | - (2) Los\ ‘|| \
i=1 10-3 { L \ 1‘ \ L | \
When a computational outage occurs, not all of the TBs

in the cloud group are necessarily lost. If the processing is
suitably scheduled, it is possible for some of the TBs to be

correctly decoded, though there will not be enough reseurced 2. Code block error rate as a function of SNR for MCS 10 M@S

] after 2, 3, and 8 decoder iterations. The arrow shows wiherecCBLER
to correctly decode all of the TBs in the group. The actual Mcs 10 after 2 iterations is the same as that of MCS 11 afiesrations.

set of TBs that are lost depends highly on the deployed task
scheduling algorithm. Thus, a TB can be lost due to a channel )
outage or a computational outage. Since even those TBs tFft€ blocks (CBs). Each CB is separately turbo encoded, and
are in a channel outage must be processed, these two kind&lbf® CBs in the TB must be correctly decoded for the TB
outages are not mutually exclusive. Indeed, it is possitaf © Pe correct. Letq, be the probability that a CB is in a
TB in a channel outage to trigger a computational outagees fijlannel outage. It follows thathaner = 1 — (1 — €c) is the
baseband processor attempts to decode it. dheeall outage Probability that the TB is in a channel outage.
probability ¢, or simply outage probability, is the probability ~ 1urbo decoding is a computationally demanding task. How-
that a TB is lost due to either kind of outage. ever, because decoding is iterative and stops when a CRC

Due to fluctuations in channel quality and traffic |Oa09heck is satisfi_ed, _the_amount_of computational e_ffort dedyot
the SINRs at the different RAPs in the cloud group wilf® turbo decoding is highly variable. To handle this chajien
generally be quite different, and as a consequence theedffef centralized RAN.deponrnent could V|rtu.aI|ze its procegsi
computational load€(v;),i € {1, ..., Nuoua}, Will vary from resources and flexibly assign turbo _depodmg tasks to dnkan_a
RAP to RAP. Centralizing the processing exploits this diitgr COMputing resources. Ultimately, it is the turbo decoding
of computational load, as computational assets can beteliyerth@t dominates the computational outage behavior because i
from RAPs with a currently low computational load to thos§°Nsumes a major part of baseband processing resouices [6]
with a high computational load. Thiemputational diversityis and & TB will be lost if the turbo-decoding processes require
a key benefit of cloud-based centralized radio access nkswofmore than the available computational resources.

The computational effort required to decode a turbo code
[1l. OUTAGE IN AN ISOLATED CELL

is linear in the number of iterations and in the number of
Consider a network with just one cell containing a singlénformation) bits. Thus a reasonable metric for compotel

active user served by a single RAP. There is no interferengort is the bit-iteration, defined as follows. Let/, and
from other cells, and the signal received by the RAP &, be the number of executed iterations and the number
processed all by itself; henc&/.o.s = 1. The statistics of of information bits associated with theé" CB of the TB,
E(y) and C() are found through simulation. To providerespectively. In units of bit-iterations, the computatibaffort
meaningful results, the simulations used to determineethegssociated with the TB is

statistics are executed using parameters from the LTE ateind

C
ct) = YK (3)
A. Complexity-Throughput Tradeoffs in LTE r=1

LTE features adaptive modulation and coding using turbwhere the dependence &f. and I, on v is implicit.
codes and hybrid ARQ. The RAP (called eNodeB) com- The iterative nature of turbo decoding allows complexity
mands the mobile (called EE) to transmit using one of 27 to be traded off for transmission rate. This is illustrated i
distinct MCSs. Each MCS is identified by an MCS indexrig. 2, which shows the code block error rate (CBLER)
Imes = {0,...,26}, and is characterized by a different combias a function of SNR (expressed as the ratio of the energy-
nation of code rate and modulation format [8], [9]. Threeddn per-symbol to noise powef,/Ny) after 2, 3, and 8 iterations
of modulation are used: QPSK (K Imes < 10), 16-QAM  for two MCSs: I,s = 10 and 11. The results in Figl]2 and
(11 < Ines < 20), and 64-QAM @1 < I < 26). When the remaining examples in this paper assume that the UE is
a TB is larger than 6144 bits, it is segmented into multiplellocated 45 resource blocks (RBs), which is the maximum
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Fig. 4. Outage probability as a function of average SNR inptesence of
Rayleigh fading, both with and without a complexity constta

not a concernki;(y) with a large value ofi could be used,
e.g.7 = 8. In a complexity constrained deployment, using
R;(y) with a smaller value of could be used, where a sensible
value might bei = 2. In the following, we refer to thenax-
rate selection (MRS) policy as the one that selects the MCS
that achievesRs(y), while we refer to thecomputationally
aware selection (CAS) policy as the one that selects the MCS
that achievesR,(y). The minimum value ofAv for which
Ro(v + Av) = Rs(vy) is an SNR margin required when CAS
_ . . is used instead of MRS.
oty e sty ang e rate-complexity radeofts ilustrated n F13. 3. )
max-rate selection (MRS). shows the raw throughput of the MRS and CAS schemes as
a function of the SNRI. For reference, the Shannon capacity
limit is also shown. The reduction in rate when using CAS

allocation in a 10 MHz deployment when between three aig evident from the figure. The average computational effort

five RBs are reserved for the physical uplink control channggduired to decode a TB as a function of SNR for the two
[@8l, [9]. At e, = 2.5 x 10, the performance of MCS 10 MCS selection policies is shown in Figl. 3(b). As anticipated

with 2 iterations is the same as the performance of MCS ¥ing the complexity aware scheme reduces the averagé effor
with 8 iterations. Thus, by backing off from MCS 11 to 10] he stairstep appearance of Fig. 3(a) and peaky behavior and

the number of required iterations is cut by a factor of 4, onid-[3(b) are due to the use of a finite number of MCSs.

average. The number of information bits in the TB that mu@t Impact of Rayleigh Fading
be decoded is also reduced, in this case from 9216 to 8064, so
the required number of bit-iterations is even further rebc ~ Now consider the complexity-throughput tradeoff in a fad-
However, this reduction in complexity comes at a cost, as thtg channel. When the fading is Rayleigh, the instantaneous
spectral efficiency of MCS 10 is lower than that of MCS 11SNR v is an exponential random variable with meBn=

The MCS is selected to satisfy a channel outage constrairi)- The complexity-outage tradeoff is obtained through
é. In this paper, we usé = 0.1, which is a typical value & simulation that works as follows. During each ftrial, the

for an LTE network. When complexity is not a concern, theNR v is drawn from an exponential distribution. The MCS

selected MCS is the highest one that satisfigSme < ¢ scheme for the givery is determined according to the MCS

after a large number of decoder iterations. However, whéf€ction policy. Each of thé’ CBs in the TB is marked as
complexity is a concern, the MCS should be selected suffing in @ channel outage with probability,, which can be
that the outage constraint is met after a specific number RfgcOmputed. If any of the CB are in outage, then the entire
decoder iterations. Defin&;(y) to be the maximum rate for 1B IS declared to be in an outage. If the" CB is in an
which echannel < € after theit® decoder iteration, where the ) o )

The raw throughputTr.w is simply the selected rat&; () expressed in

maX|m|?at'on is over the Se_t of MCSs. The funCt|m(7)_ units of bits/second. This is in contrast with taffective throughput, which
determines the MCS-selection scheme. When complexityisshe rate ofcorrect transmission; i.eTe = (1 — €)Traw.

50

Complexity [Mbit-iterations/s]
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1

(b) Computational effort
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Fig. 5. Effective throughput as a function of average SNRhim presence of Fig. 6. Average complexity required in Rayleigh fading fosaccessfully
Rayleigh fading, both with and without a complexity constta decoded codeword as function of average SNR.

outage, thenl, = Imax, Which is the maximum number of throughput due to the complexity constraint is evident in

attempted iterations (typically 8). Otherwisk, is determined the figure, but much of this loss can be recovered by using
by drawing a random variable distributed according to thie pgoMPplexity aware MCS selection; i.e., the throughput curve

of I,, which can be precomputed by tracking the error-rate ¥ CAS is up to 9 dB higher than the curve for MRS.
a function of the number of iterations. The average complexity required for successful decoding in

Fig.[4 shows the outage probability of both MCS—seIectio'??"]‘yleig_h fading is sh(_)wn in Figl 6. The MRS scheme alwa_ys
a higher complexity load than the CAS scheme. Imposing

schemes in the presence of Rayleigh fading when there is lexi . h lexity f
complexity constraint@.x = oo) and when there is a com-2 compfe>|<|t()j/ cogg.tramt causes t (ej averagﬁ complexity orf
plexity constraint 0fCins = 50 Mbit-iterations per secofid SUccessful decoding to increase, due to the occurrence o

As can be seen, using the more conservative CAS Scheﬁqénputational out_age_s, which_results in wasted c_ompmtatio
greatly reduces the outage probability when complexity %nd a cc_)rr_espondlng Increase in average compl_exr[_y. ngeve
constrained. A non-monotonic behavior is observed in t lle Fh's increase in complexny for_ the MRS IS significant,
complexity constrained outage curves. At low SNR, chann%?pec'a"y at high S,NR' the Increase 1 barely notlceatnlthf!_)
outage dominates, as the conservative MCSs that must S scheme. While there is still a chance of computational
selected do not have particularly high computational negui o;thagehwnh the CAS scheme, tlhe prc>|bap|llty is too low to
ments due to having few information bits per TB. Howevef* ect the average computational complexity.

as the average SNR increases, higher MCSs are selected more IV. OUTAGE IN A NETWORK

frequently and computational outage begins to dominate duéyq,y consider a network withVs,., base stations or RAPs,
to the additional computational burdep associated withir th‘\nwhereNtom could be arbitrarily large. Unlike the single-cell
larger payloads. However, at very high average SNR, W@enario; there is co-channel interference on the uplink du
instantaneous SNR is often much higher than the selectign,qtive mobiles in adjacent cells. For illustrative pises,
threshold for the highest MCS, and the CBs for that MCS Wil|,o ~onsider the network WithNVegeat = 129 shown in Fig.
usually be successfully decoded after just one or two itarat [7, which is a segment of an actual deployment by a major
which is not enough load to trigger a computational outag€yrqyider in the UK atl800 MHz. We consider the processing
In a c_ompIeX|ty constramed. sys_tem, the aglvan.tage OfOcheNdoud = 8 cells highlighted in yellow. Two options are
complexity aware MCS selection is a reduction in outag&nsideredgloud processing (CP), where the signals from all
probability, but its disadvantage is a loss in the raw thigud. Nuoua cells are processed in the cloud, aiedal processing
However, if the outage probability is sufficiently lowereth | p) \vhere the signals at each RAP are locally processed.
effective throughput may be higher despite the reduced rawmye assume that the UEs are distributed according a Poisson
throughput. This can be seen in Fig. 5, which shows ﬂ}!ﬁ)int process (PPP) with intensity users perkm?. The
effective throughput as a function of average SNR for thenalysis of the cellular uplink with randomly distributesietss
same cases that were shown in Fi. 4. The loss in effectiygs heen recently considered(in][11].][12]. Whilel[11] asssim
randomly placed base stations, the analysis in [12] allaws f
1030T21$1 dcig‘géeﬁligatggz (%F;icgr')esrggwmfgepé‘:f‘;gcgﬁgo?g[(;g%‘gﬂi?t” arbitrarily placed base stations, such as those shown ifiZFig
RAP Y; serves a cell with aread;. The number of UEs

iteration, depending on the actual implementationl [10]r Eomparison, ) ’ ] L .
modern general-purpose processors support up to 50-28thHLOPS. in Y;’s cell is a Poisson variable with mean4;. While the
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SC-FDMA uplink channel is partitioned into a plurality ofwhenNceuq = 8, with local processing (LP) and with cloud processing (CP).
RBs that could be allocated to different users, we assu S'\)/'gfésﬂgif'gt‘esggfengﬂe;na{agg;.s'dered: computatjoralére selection
that all of the available resources of a particular subframe
are allocated to a single UE. Computationally, this is a wors
case scenario as there is no computational diversity wahinvhere I is the noise power[' = P,/W is the SNR at
given cell. Continuing the example from the previous sextiounit distance, and the summation is over all the co-channel
we assume a 10 MHz system with 45 RBs allocated to eagherferers.
uplink user. When there is more than one usefjig cell,  As in the single-cell case described in Sectlod Ill, the
then one of the users is selected at random to transmit on theoughput is determined with the assistance of a Monte
uplink. The likelihood of a transmitting user ¥j’s cell is the Carlo simulation. During each trial, which corresponds to a
complement of the void probability. Thus, there will be a Usubframe, a mobile is placed at random in tie cell with
transmitting toY; with probabilility 1 —exp(—AA;), and when probability 1 — exp(—A.A;). Once the mobiles are placed,
there is a transmission, the location of the user is uniforthe fading coefficienty; ; are drawn from an exponential
within the cell. The location of the UE transmitting 3 is  distribution and the SINR at each RAP in the cloud group
denoted byX;. is computed according t¢1(5). The TBs that are in a channel
The path loss from a mobiléd to a base statiorY” is outage are identified and the computational efiorty;) for
Y — X|~%, wherea is the path-loss exponent. X; transmits each TB is determined as before.
its uplink signal with powerP;. The value ofP; is selected Both LP and CP are considered. In the LP casé€;(if;) >
according to the fractional power-control policy: Cmax for a given TB, then it is considered to be in an outage.
P = PYi— X, 4) For the CP case, if{2) is violated, thgn an outage occurs in at
! ! ! least one of the uplink TBs. Scheduling in the virtual BS pool
where P, is a reference power (typically taken to be thés assumed to process the signals with low SINR first. This
power received at unit distance from the transmitter) aradlows those TBs that are sent at a low MCS, and hence have
5,0 < s <1, is the compensation factor for fractional power a lower complexity requirement, to be first decoded, and the
control. We assume = 0.1, which is the value reported in TBs that fail are the ones that were sent at the highest MCSs.
[13] that maximizes the sum throughput. Higher valuess of Fig.[8 shows the sum throughput, which is the sum of the
would improve fairness at the cost of throughput. effective throughputs in each cell of the cloud group, as a
The fading power gain fromX; to Y; is g; ;, which is function of the per-RAP complexity constrai@t,,, with the
normalized to have unit mean. We again assume ghatis two MCS-selection policies. The plot was generated assgmin
exponential (Rayleigh fading) and that the fading powengaia UE density ofA = 0.1, path-loss exponent = 3.7, and
remain fixed for the subframe, but vary from one subframe tiverage SNR™ = 20 dB. As can be seen, CP is much more

the next (block fading). The SINR &f; is computationally efficient than LP. For the same complexity
Pig; Y, — X;|-° constraint, the throughput of CP is significantly highemtlia
v = I730 00 J is with LP. The computational diversity advantage of CP is
W+ PgilY; — Xi| ™ evident from its steeper curve. Alternatively, the comijiiex
i#j constraint required to achieve a desired throughput is much
95,41V — X[t lower for CP than it is for LP. These behaviors confirm the

= (6)
P14 gl — Xa 7Y = X

i#]

computational diversity benefits of cloud processing. et
more, there is a benefit to using the more conservative CAS



= gmax =00, 2:"585 achieved by cloud processing, and the corresponding isesea
— — . .
100 max T e in effective throughput.
-0=  Cmax = 30Mbit-iter/s, MRS . . . . .
) ~+~  Chax = 30Mbit-iter/s, CAS A This paper d|s_cussed a single-cell anq a multll-cell scenari
2 ’T_ T where inter-cell interference has a considerable impadhen
S I L PSS VEEVINg . .
s e e L network performance. It was found that in computationally
= {{/H/H/ constrained mobile networks, there is a benefit to inteatlgn
e KA/,/’ selecting a lower MCS value, as its lower computational
2 50 4 %{i TV demand may actually increase the effective throughputadae t
g éﬁ 749 O reduction in computational outage. The benefits of usingalo
[ —Ha %\ processing and using a conservative MCS selection policy
E 25 o REAN N\'O;O'_O_( become more pronounced as the user density increases.
n The analysis in this paper has assumed block-fading chan-
nels. In practice, user mobility and time-variant channéls

0 _ 0 have a significant impact on the performance of a centralized
10 10 RAN. The study of such systems is a key future direction
A for this research. It may be that the solution is to use an
Fig. 9. Sum throughput with cloud processing as functionhaf density aggressive MCS-selection scheme for some users, and eeserv
of UEs whenNeo,q = 8. Two MCS-selection schemes are considerecthe conservative MCS-selection scheme for only a small
computationally aware selection (CAS) and max-rate sele¢MRS). number of user so as to not overload the system. Such a
strategy could be interpreted as a kind of “computational
policy for the LP system. For the CP system, CAS is beneficiatater-filling”, and could allow for reducing the ratio of gea

as long ax’max < 40 Mbit-iter/s; for systems with less of ato-average computational effort in a centralized RAN, ¢tgr

complexity constraint MRS is better.

Fig. [@ shows the effect of mobile density on the sum
throughput. Againg = 3.7, and the average SNR= 20 dB.
The figure shows results for CP, both with no complexity conft]
straint Crmax = oo) and with a constraint o, = 30 Mbit- 2]
iter/s. The two MCS selection policies are again considereé
When there is no complexity constraint, the sum throughput
rises with \. In this case, the throughput of MRS is higher[3
than CAS. However, when there is a complexity constrainiyj
throughput falls with higher valueswhen MRS is used. This
is due to a high prevalence of computational outages in heavi
loaded systems. However, if the more conservative CAS yoligs)
is used, performance is approximately the same as if there
were no complexity constraint. This confirms the effectesn
of using a more conservative MCS-selection policy in densg)
networks.

V. CONCLUSIONS

Computational limitations in mobile wireless networks @av [7]
a significant impact on the network performance in the mod-
erate to high SNR regime. Such computational Iimitationfgl
are of particular interest to small-cell networks, whereARA
are computationally limited due to economic constraintse T
computational constraints are also of fundamental impoga [9]
to the design of centralized RAN architectures. With the
framework introduced in this paper, a direct link betweel0]
the employed computing technology and the communication
technology can be drawn, which opens the opportunity ter)
exploit new degrees of freedom within a mobile network.
The newly introduced concept afomputational outage
. X : [12]
helps to quantify the complexity-throughput tradeoff imee
tralized RAN platforms. Such a quantification allows the
computational requirements for centralized RAN platfortims (13]

be specified in a meaningful way. The analysis furthermore
provides insight into theeomputational diversity that can be

increasing the utilization of the network infrastructure.
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