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Abstract—We investigate the performance of delay constrained
data transmission over wireless networks without end-to-end
feedback. Forward error-correction coding (FEC) is performed
at the bit level to combat channel distortions and random
linear network coding (RLNC) is performed at the packet level
to recover from packet erasures. We focus on the scenario
where RLNC re-encoding is performed at intermediate nodes
and we assume that any packet that contains bit errors after
FEC decoding can be detected and erased. To facilitate explicit
characterization of data transmission over network-coded wire-
less systems, we propose a generic two-layer abstraction of a
network that models both bit/symbol-level operations at the lower
layer (termed PHY-layer) over several heterogeneous links and
packet-level operations at the upper layer (termed NET-layer).
Based on this model, we propose a network reduction method to
characterize the throughput-reliability function of the end-to-end
transmission. Our approach not only reveals an explicit tradeoff
between data delivery rate and reliability, but also provides an
intuitive visualization of the bottlenecks within the underlying
network. We illustrate our approach via a point-to-point link
and a relay network and highlight the advantages of this method
over capacity-based approaches.

Index Terms—Wireless networks, random linear network cod-
ing, delay, throughput, reliability, cross-layer optimization

I. INTRODUCTION

In wireless communication systems, much effort has been

devoted to advanced forward error-correction coding (FEC)

and signal processing techniques on the physical layer to

pursue reliable transmission over each single hop. Even if

data transmission over each individual link is reliable, the

end-to-end transmission can still fail as a result of packet

losses caused by higher-layer effects, such as congestion or

buffer overflow. These missing packets are usually detected

and recovered by some automatic repeat-request (ARQ) based

mechanisms on data link layer and/or on transport layer. Many

wireless networks are inherently heterogeneous in the sense

that the channel quality, system implementation, and available

resources can be vastly different from link to link. These

parameters may interact with and be dependent upon one

another, which can make the performance analysis a difficult

task over networks of nontrivial size.

In this paper, we focus on delay constrained data trans-

mission over wireless networks where end-to-end feedback is

absent or performed at a higher layer, motivated by scenarios

where the end-to-end feedback is unavailable, excessively de-

layed, or onerous. While, from solely a throughput perspective,

coding at the physical layer should suffice if the only losses

are due to deleterious effects at that layer, operational wireless

communication systems differ from this paradigm in operation.

Firstly, they are comprised of at least two layers, which we

coarsely identify as PHY and NET; the latter operates on the

packet level. Secondly, some losses are not due to physical

layer effects (such as buffer overflow). Finally, throughput may

not be the only parameter we seek to improve; in particular,

we consider the tradeoff between throughput and reliability,

under a delay constraint.

To model this behavior, we propose a generic two-layer

abstraction of the wireless network incorporating the effects

of bit/symbol-level operations at the PHY over multiple het-

erogeneous links and packet-level operations at the NET. Our

model assumes that packets are either provided to the NET

layer intact or erased, a simplification based on the operations

practiced by state-of-the-art systems. PHY level techniques

(such as adaptive coding and modulation), while imperative

in achieving this effect, are not explicitly considered here. We

focus on the scenario where intermediate nodes can perform

random linear network coding (RLNC) [1] re-encoding based

on the received packets. The interaction of parameters from

the different layers is characterized by a clean and general

interface; we assume that we always know the PHY-layer op-

erations. Based on this model, we propose a network reduction

method that works on the NET-layer of the wireless system

to characterize the throughput-reliability function of the end-

to-end transmission under the delay constraint. Our approach

not only reveals an explicit tradeoff between data delivery rate

and reliability, but also provides an intuitive visualization of

the bottlenecks within the underlying network. We illustrate

our approach via a point-to-point link and a relay network

and highlight its advantages over capacity-based approaches.

The rest of this paper is organized as follows. We first give

a brief overview of related work in Sec. II and then present

the two-layer model in Sec. III. We analyze the probability of

errors on both layers in Sec. IV and describe the network

reduction method in Sec. V. In Sec. VI we establish the

throughput-reliability function and illustrate via examples how

it can be used for system design. Sec. VII is the conclusion.

List of Notation

• F
l
q: set of all length-l vectors over the finite field Fq
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• λ̄ , [λ̄[0], . . . , λ̄[n]] ∈ [0, 1]n+1: a vector representing

the probability mass function evaluated at {0, 1, . . . , n}
• Λ̄c: a vector representing the complementary cumulative

distribution function (i.e., Λ̄c[k] =
∑n

i=k λ̄[i])
• ∗ : operator for convolution of two vectors

• ⊙ : element-wise multiplication (Hadamard product).

II. RELATED WORK

Numerous research efforts have been devoted to charac-

terizing the interaction between channel coding and packet-

erasure coding from different aspects; we only list a sampling

here. Vehkaperä and Médard in [2] propose a two-layer

concatenated code framework with a total delay constraint,

where error exponents for random coding are used to analyze

both inner and outer codes. This framework investigates a

throughput-delay tradeoff, clarifies the embedding of error

functions in a multi-level approach, and models the fact that

data may be lost at either layer. Barg et al. in [3] also consider

error exponents, although the focus is on joint channel and

packet coding rather than decoupled codes and the regime

is asymptotic in block lengths at both layers. Berger et al.

in [4] focus on a flat block-fading channel, where perfect

channel decoding is assumed for all rates below capacity

and perfect packet-erasure coding is assumed when a fixed

overhead requirement is met. The tradeoff between spectral

efficiency and end-to-end probability of error is explored; one

particularly useful insight is the investigation of this trade-

off with few choices of physical layer transmission modes.

Courtade and Wesel in [5] also assume perfect channel and

erasure coding as in [4], but consider both fast and slow flat

block-fading with a delay constraint. They employ a Gaussian

approximation of end-to-end outage probability and optimize

for power consumption under end-to-end rate and reliability

constraints. In [6], Koller et al. consider RLNC operating on

top of a random code over a binary symmetric channel (BSC)

for a one-hop broadcast network. The expected number of

transmissions required to decode is minimized, and it is noted

that this optimization problem is not equivalent to optimizing

the expected number of accurate bits per transmission.

While [2]–[6] all elucidate different angles of the cross-

layer problem, they all consider only single-link networks

where generalization to larger topologies is nontrivial. We also

recognize some works that consider more complicated network

structures. Swapna et al. in [7] work on RLNC over k packets

broadcasting to n users over independent time-correlated era-

sure channels. They conclude that k must scale at O(log(n)) to

ensure non-zero throughput. Under such conditions, the mean

and variance of total transmission time depend on channel

correlation. Lun et al. in [8] propose a framework to translate a

lossy unicast/multicast network into a lossless packet network

with only point-to-point arcs (for wireline) and hyper-arcs

(for wireless). Assuming that the number of packets is large

and that the arrivals of packets at each node are independent

Poisson processes, the probability of RLNC decoding error is

characterized by the delay, rate, and the network capacity. The

average throughput of each individual link is the figure of merit

characterizing system performance [8]; additionally, delay is

based entirely on the depth of the network independently of

propagation time. Lower layers are not considered in [8]. Ming

et al. in [9] investigate the delay in packet erasure networks

where RLNC is used in a rateless fashion, and the delay is

optimized based on the tradeoff between codeword lengths on

physical layer and on network layer.

III. SYSTEM MODEL: TWO-LAYER ABSTRACTION

A source node intends to transmit some messages to a

remote destination via a wireless network. The transmission

has to be completed within a certain delay constraint with

a rate of success no less than a predefined threshold. The

underlying wireless network connecting the source and the

destination suffers from both deleterious effects on the PHY-

layer and packet losses at the NET. The two layer abstraction

of the source node is shown in Fig. 1.

A. Abstraction of the NET-Layer

On the NET layer, a new generation of source messages is

first evenly split into κ segments V1, V2, . . . , Vκ, each of ηl
bits (appending zeros when necessary) where 0<η<1. These

message segments are fed to the RLNC encoder to generate

n RLNC-coded messages of the same size, which are then

passed through the packetization process where a header of

(1−η)l bits is added to each of the RLNC-coded messages

to formulate packets of size l bits. The above process can be

summarized as follows

(Fηl
2 )κ RLNC

−−−−−→
(Fηl

2 )n packetization
−−−−−−−−−−→

(Fl
2)

n. (1)

Here we assume that the packet length l and format (overhead)

are long-term, system-wide parameters that cannot be adjusted

based on a single transmission task. These RLNC-coded

packets are then passed to the PHY layer for transmission.

After a period of time τ , if the destination receives at least κ
packets and the decoding is successful, we say the transmission

task is accomplished. Otherwise the task fails. The benefits of

choosing RLNC as the erasure code are two fold: its decoding

error probability is easy to analyze, and its re-encoding process

at intermediate nodes is straightforward and facilitates the

network reduction approach we propose in this paper.

Our NET-layer model is generic in the sense that we do

not refer to any specific network protocols. Rather, we use the

abstraction of a “packet” as the atomic unit of information that

is exchanged between the two layers. Note that in canonical

Internet layering models, a packet has different meaning in dif-

ferent layers: a packet in an upper layer becomes the payload

of another packet in the adjacent lower layer. In our model, a

packet [Xk, Ok] differs from the canonical concept, since its

payload Xk refers to the RLNC-coded message (cf. service

data unit on transport layer), but its overhead Ok refers to all

bits other than the payload: all the control/protocol information

(cf. overhead brought by data link layer, network layer, and

transport layer) plus the RLNC encoding coefficients. The

proportion of the payload (η) within each packet is a system

parameter that reflects the actual network protocol in use.
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Fig. 1. Two layer abstraction of the source node. At the NET, a new generation
of source message is first evenly split into κ segments V1, V2, . . . , Vκ, each
of ηl bits (appending zeros when necessary), and then passed through RLNC
encoding (generating payload Xk) and packetization process (adding header
Ok) to generate packets of size l bits. These packets are passed to the PHY
layer where they are grouped into frames of mr bits, and then translated into
m-symbol codewords over Fm

z by operations such as the channel coding and
modulation for media access (abbr. MAC).

B. Abstraction of the PHY-layer

On the PHY-layer, packets from the NET-layer are grouped

into frames1 of mr bits, and each frame is then mapped

onto an m-symbol sequence (a.k.a., codeword) over F
m
z by

operations such as the channel coding and modulation process

for media access (abbr. MAC). The operation at the PHY can

be described by the following mapping

(Fl
2)

n → (Fmr
2 )

nl
mr → (Fm

z )
nl
mr . (2)

Since each codeword carries a message of mr bits, or equiva-

lently, α=mr/l packets, we call α the packet loading param-

eter as it decouples the PHY and the NET cleanly such that a

packet is the basic unit at the NET and a message/codeword

is the basic unit at the PHY.

The MAC block at the PHY does not specify or rely on

any specific coding and modulation techniques. In effect, any

physical layer operations that affect the transition from frames

to codewords can be incorporated into the MAC block by

adjusting the data rate r (bits per symbol-time, or equivalently,

bits per channel-use). By focusing on r at the PHY, our model

facilitates flexible MAC, channel coding, and modulation

schemes in the system. For example, when two users share

a channel via hierarchical modulation where z-QAM is used,

and their channel coding rate are c1 and c2, respectively,

the effective data rates are ri = 1

2
ci log2(z), i = 1, 2. The

corresponding MAC operation at the PHY is described by

(Fmr1
2 ,Fmr2

2 ) → (F
m

r1
c1

2 ,F
m

r2
c2

2 ) → (Fm√
z
, F

m√
z
) → F

m
z . (3)

C. Interface between Two Layers

Based on the two-layer abstraction, we can model and track

the data flow over wireless networks as illustrated in Fig. 2

for transmission over a two-hop network. Note that at the

1Note that our framing operation differs from canonical packet aggrega-
tion/segmentation in the sense that it incurs no change on the structure of a
packet, which ensures independent packet erasures at a cost of overhead.
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Fig. 2. Flow chart of a two-hop network where the source sends mi-symbol
codewords at data rate ri over channel hi to the relay. The relay stores
its received packets in a buffer, performs RLNC over the buffer, and then
forwards the re-encoded packets to the destination over channel hj with PHY
layer parameters (mj , rj). Dashed blocks indicate the decoding process. The
elements in each stage are represented by vectors over finite fields.

relay a new RLNC-coded packet is generated in two steps:

its payload is a random linear combination of the payloads

of all the received RLNC packets stored in its buffer2, and

the coding vector in the header is likewise the corresponding

linear combination of coding vectors in the buffer.

At the PHY, there are many dependent operating parameters

even on a single link i: channel hi, codeword length mi,

data rate ri, channel coding rate ci, modulation order zi,
packet loading factor αi, and codeword error probability p̃e,i.
Regardless of the PHY-layer operations, we only focus on two

parameters that directly affect the NET: ni (number of packets

transmitted within the delay constraint τ ) and pe,i (packet

erasure probability, which may be different from the codeword

error probability p̃e,i as discussed in Sec. IV).

At the NET, the number of RLNC coded packets that can be

transmitted over a channel is limited by the PHY-layer settings.

A packet can be either erased at the PHY with probability pe,i,
or dropped by the NET-layer effects with probability pt,i. We

denote the overall packet erasure probability as a function

ξi = Pe(pe,i, pt,i, l). (4)

Now for each link, at the NET we only focus on ni and ξi
(the overall packet erasure probability).

IV. ERROR ANALYSIS

Given a generation of κ messages W={V1, V2, . . . , Vκ}
each of ηl bits, by representing them as vectors over Fq , a

RLNC-coded packet Xk is constructed by

Xk = ak,1V1 + ak,2V2 + · · ·+ ak,κVκ, (5)

where the encoding coefficients {ak,1, ak,2, . . . , ak,κ} are

drawn uniformly at random from Fq. The re-encoding process

at intermediate nodes is the same as in (5) except that the

linear combination is over the payloads of received packets.

By the end of the delay constraint τ , some of the coded packets

will have been received together with their encoding vectors.

2As pointed out in [10], the buffer can be as small as one packet in size.



If these encoding vectors formulate a matrix of rank κ, we

are able to recover W through Gaussian elimination. If the

rank is less than κ, the transmission fails. Through any link, a

packet may be erased with probability ξ, which depends both

on local parameters pe and pt as well as the packet length l
(a system parameter).

At the PHY, a codeword consisting of m symbols is trans-

mitted across the channel. The corresponding decoding error

probability p̃e depends on many parameters as explained in

Sec. III-C. We may approximate the error probability by error

exponent bounds as in [2], [3], by large deviation methods,

or by the recent finite block length bounds developed in [12].

Alternatively, we can always emulate the channel and draw

the rate-error probability curve based on engineering practice.

Due to the framing process at the PHY, one codeword contains

α=mr/l packets. If α=1, i.e., one packet per codeword, the

packet erasure probability pe at the PHY equals the codeword

error probability p̃e. If one codeword contains several packets,

each packet can still experience independent losses owing to

their independent cyclic redundancy check (CRC) embedded

in the packet headers. For the case α<1 or non-integer α,

we have pe>p̃e and their relationship depends on the actual

framing process. It is therefore favorable to have integer-

valued α in system design.

Let S be the number of packets successfully received by

the end of transmission, and let D be the number of degrees

of freedom (DoF) available at the decoder (i.e., the rank of

the matrix composed by encoding vectors). Given i.i.d. packet

erasure with probability ξ∈[0, 1], the probability of success of

the RLNC coded transmission can be written as (see [8], [11])

Pr{D=κ} =
n
∑

s=κ

(

n

s

)

(1−ξ)sξn−s

κ−1
∏

u=0

(1− qu−s). (6)

This formulation is exact, but it is also difficult to precisely

compute when κ
n

is well below the channel capacity (1−ξ).

With the help of an inequality given by Liva et al. in [11],

1−
1

q − 1
qκ−s <

κ−1
∏

u=0

(1 − qu−s) ≤ 1− qκ−s−1, (7)

we can get a lower bound for probability of error as follows

Pe(κ) = 1− Pr{D = κ}

≥ 1−

n
∑

s=κ

(

n

s

)

(1 − ξ)sξn−s
(

1− qκ−s−1
)

. (8)

This lower bound is very tight when q is large.

V. NETWORK REDUCTION

In the following discussion we assume that our RLNC re-

encoding operations are non-degenerate (i.e., q is sufficiently

large); if the coding vectors of the packets received at any node

span a subspace V of F
κ
q , where κ is number of information

messages within a generation over which RLNC is performed,

then any κ of the new vectors of the re-encoded packets also

span V . In such cases, the probability of success defined in

(6) is essentially the complementary cumulative distribution

function (CCDF) evaluated at S = κ.

AA BB C

EncodeEncode DecodeDecode Re-encode

n1, ξ1n1, ξ1 n2, ξ2

n2, ξ2

Fig. 3. Basic two-link parallel network and two-link tandem network.

A. Tandem Link Equivalence

Let our network consist of two directed links connecting

three nodes, as in the right part of Fig. 3. We will call these

links 1 and 2. Link i ∈ {1, 2} permits us to send ni packets per

delay period τ . Now define a random variable Si describing

the number of successfully delivered packets over the link i
within the generation. Assuming that we have an explicitly

defined channel model, we can get a probability mass function

(PMF) for Si, which will be described by the vector λ̄i ∈
[0, 1]ni+1, where

λ̄i[s] = Pr {Si = s} , s ∈ {0, 1, . . . , ni}, (9)

or equivalently by the CCDF of Si, Λ̄
c
i ∈ [0, 1]ni+1:

Λ̄c
i [s] = Pr {Si ≥ s} =

ni
∑

j=s

λ̄i[j], s ∈ {0, 1, . . . , ni}. (10)

Because our assumption permits us to ignore the possibility

of a degenerate decoding matrix, the number of DoF D at the

tail of the second link is equal to the minimum number of

packets received across either link. For the distribution of D,

we note that the following property holds for κ≤ min{n1, n2},

Pr{D ≥ κ} = Pr [{S1 ≥ κ} ∩ {S2 ≥ κ}]

= Pr{S1 ≥ κ}Pr{S2 ≥ κ}, (11)

where the second equality follows from the independence of

the two links. We have now found the CCDF of a single link

equivalent to that of the two-link tandem network. Then, if we

zero-pad the shorter of the two single-link CCDFs and denote

this operation with a ′, we have

Λ̄c
EQ[d] = Λ̄′c

1[d]Λ̄
′c
2[d], (12)

or equivalently,

Λ̄c
EQ = Λ̄′c

1 ⊙ Λ̄′c
2, (13)

where ⊙ denotes element-wise multiplication of two vectors.

B. Parallel Link Equivalence

Now we consider the scenario of two links in parallel,

as shown in the left part of Fig. 3. This problem can be

regarded as a kind of a dual to the tandem link problem. Let

ni and Si retain their definitions from earlier. If we expand

our assumption so that packets received from either link are

linearly independent, the DoF D at node B becomes

D = S1 + S2. (14)

Because S1 and S2 are independent, we can get a distribution

for D by convolving the distributions of S1 and S2:

λ̄EQ = λ̄1 ∗ λ̄2, λ̄EQ ∈ [0, 1]n1+n2+1. (15)

Notice that we can quite easily switch between λ̄ and Λ̄c

using a 1-to-1 linear operator.
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VI. THROUGHPUT-RELIABILITY TRADE-OFF

We inherit the setting of Lun et al. in [8], where a probability

of error is obtained based on long-term average. By reducing a

simple network to one distribution for received packets, given

by λ̄ or Λ̄c, we characterize a throughput-reliability tradeoff for

each generation of data under time constraint τ . The expected

number of DoF can be calculated by summing Λ̄c ∈ [0, 1]n+1,

E[D] =

n
∑

d=1

dλ̄[d] =

n
∑

d=1

Λ̄c[d] =

n
∑

d=0

Λ̄c[d]− 1 (16)

We can prove that E[D] asymptotically approaches the cut-

set capacity as τ → ∞3. Furthermore, 1− Λ̄c[κ] produces the

probability of error for any choice of κ, making it an attractive

option for system design. Since the effective rate is κl
τ

bits per

second, 1−Λ̄c[κ] can be regarded as the throughput-reliability

function given any specific l.
The advantage of our approach over capacity based ap-

proaches (e.g., as in [8]) can be visualized in Fig. 4 where two

links have the same capacity but differ largely in throughput-

reliability functions. With the throughput-reliability curve,

system designers have the option of selecting objective func-

tions more informative than throughput alone. The throughput-

reliability curve also facilitates the identification of the max-

imum generation size for a minimum reliability constraint

or the minimum probability of error for a given generation

size. Also, the end-to-end CCDF makes it easy to identify

the bottleneck in a network; by condensing large pieces of a

3Due to space limitation, the proof can be found in [13].
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Fig. 5. Results of optimization for κ(1− Pe(κ)) on a single link with one
modulation scheme and choice of 7 RS codes producing a range of n from
20 to 140. The underlying channel BSC(ǫ) varies on the abscissa, while pt is
fixed at 0.1. Optimal RS coding rate is shown in (a), NET-layer coding rate
(κ/n) in (b), and the goodput κ(1− Pe(κ)) in (c).

network to a few resultant distributions, we can pick out the

challenged area as the CCDF that tapers off the fastest.

A. Illustrations

For the purpose of illustration, we assume all PHY-layer

symbols consume the same transmission time τs. Given the

delay constraint τ , the maximum number of symbols than can

be transmitted on the NET layer is bounded by

ns ≤ (τ − 0.5τRTT)/τs,

where τRTT is the round trip time.

In Fig. 5, we show the theoretical results of code optimiza-

tion over a practically-motivated scenario for one link where

the channel at the PHY is a BSC(ǫ) where ǫ is the bit-crossover

probability. We envision a Reed-Solomon (RS) code with fixed

block length m=255 coding symbols (each of one-byte) and

only 7 choices for coding rate. Over this, we run RLNC over

F28 (i.e., one-byte encoding coefficients) where the number of

RLNC-coded packets n is limited by the delay constraint and

the RS coding rate. While varying bit-crossover probability on

the underlying channel and fixing pt, we evaluate κ(1−Pe(κ)),
the “goodput”, for every configuration of (r, κ), recording

the highest value. The top line shows the optimal RS code

rate, the second line shows the optimal RLNC rate, and the

bottom line shows the goodput. Interestingly, we see that the

network code rate drops down when the RS code begins to

fail and erasures due to decoding on the lower level become

more prevalent than dropped packets. This creates a smoothing

effect on throughput.

A similar setup is used on the relay network in Fig. 6 to gen-

erate results for Fig. 7; each link has the same selection of RS

codes with slightly different, but fixed, channel parameter and

NET packet erasure rate. To simplify simulation we assume

that ξi = pe,i+pt,i. With the chosen BSC channel parameters

(ǫ1, ǫ2, ǫ3) as shown in Fig. 6, the corresponding RS codeword

error probability pe,1=0.1 at RS rate 7/8, pe,2=0.25 at rate
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Fig. 6. A relay network where link i ∈ {1, 2, 3} has a BSC(ǫi) at the PHY
and a packet erasure probability pti at the NET.

4/8, and pe,3 = 0.32 at rate 3/8. The figure shows four

different optimization results. The stepped curve results (solid

line) is obtained by first selecting an end-to-end reliability

constraint and then finding the configuration whose end-to-

end CCDF (obtained using the network reduction techniques

described in Sec. V) provides the highest rate under this

reliability constraint. The curve (with marker ×) for the

expected end-to-end DoF (i.e., the capacity) is obtained based

on the end-to-end CCDF after network reduction. We also

optimize the expected DoF to cross each link individually,

and then calculate the end-to-end CCDF based on the local

optimal configurations. The result is indicated by the curve

with marker ©. Finally, we have one point ( ) indicating

the maximum possible value of the goodput κ(1 − Pe(κ)).
Note that optimizing for expected number of DoF does not

necessarily yield the same configuration as optimizing the rate

given a reliability constraint.

VII. CONCLUSION

In this paper we have explored the relationship between FEC

on the PHY layer and RLNC on the NET layer over simple

network flows with an end-to-end delay constraint. Working

from first principles, we developed an abstract, skeletal model

for generality, then applied the properties of RLNC to obtain

more detailed results. We briefly introduced a way to combine

links on the NET layer so as to derive the distribution of

the amount of information received per generation, instead

of only the expected amount (capacity). We argued that this

distribution can guide us to more efficient transmissions than

capacity alone, and made an effort to convey this point through

some practically-motivated optimization problems.

This work presents opportunity for extension on a few

fronts. First, we have developed in [13] an argument for the

validity of our network reduction procedure as well as a convex

optimization approach for system design. Furthermore, our

reduction operations cannot reduce arbitrary network flows in

their current state and new approaches have been developed

in [14] to provide very tight upper and lower bounds for the

end-to-end throughput-reliability curves. Finally, our abstrac-

tion could be useful in contexts other than constrained delay.
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Fig. 7. Performance of the relay network with limited PHY modes after
different optimization procedures. The stepped curve indicates the maximum
generation size (κ) while maintaining the error constraint on the abscissa.
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expected DoF across both the entire network and each link individually.
Finally, the red square indicates the maximum goodput (κ(1 − Pe(κ)))
achievable for any PHY configuration and choice of κ.
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