arXiv:1409.1666v1 [csIT] 5 Sep 2014

Fundamental Limits on Communication for
Oblivious Updates in Storage Networks

Preetum Nakkiran, Nihar B. Shah, K. V. Rashmi
Department of EECS, University of California, Berkeley
{preetum,nihar, rashmikv}@berkeley.edu

Abstract—In distributed storage systems, storage nodes inter-
mittently go offline for numerous reasons. On coming back online,
nodes need to update their contents to reflect any modifications
to the data in the interim. In this paper, we consider a setting
where no information regarding modified data needs to be logged
in the system. In such a setting, a ‘stale’ node needs to update
its contents by downloading data from already updated nodes,
while neither the stale node nor the updated nodes have any
knowledge as to which data symbols are modified and what their
value is. We investigate the fundamental limits on the amount of
communication necessary for such an oblivious update process.

We first present a generic lower bound on the amount of
communication that is necessary under any storage code with a
linear encoding (while allowing non-linear update protocols). This
lower bound is derived under a set of extremely weak conditions,
giving all updated nodes access to the entire modified data and
the stale node access to the entire stale data as side information.
We then present codes and update algorithms that are optimal in
that they meet this lower bound. Next, we present a lower bound
for an important subclass of codes, that of linear Maximum-
Distance-Separable (MDS) codes. We then present an MDS code
construction and an associated update algorithm that meets this
lower bound. These results thus establish the capacity of oblivious
updates in terms of the communication requirements under these
settings.

I. INTRODUCTION

In recent years, there has been a tremendous increase in
the amount of digital data stored. This has lead to the popular
paradigm of distributed storage wherein the data to be stored is
partitioned into fragments and stored across multiple storage
nodes connected through a network. This includes peer-to-
peer storage systems [/1]-[4]], globally distributed storage sys-
tems [S]], [6]], data-center based storage systems [7], [8], and
caching networks [9]. These distributed storage systems store
data in a redundant fashion, using either replication or erasure
coding, in order to ensure reliability and availability in the face
of frequent unavailability events. Under replication, multiple
copies of the fragments are stored on different nodes, for
example, the Google File System and the Hadoop Distributed
File System use 3-replication as the default strategy for intro-
ducing redundancy. Under erasure coding, the data fragments
are encoded using erasure codes such as Reed-Solomon codes
and the encoded fragments are stored on different nodes [|10]].

The storage nodes in the system can go offline for certain
intervals of time for various reasons. For instance, there is
frequent node churn in peer-to-peer networks as nodes join and
leave the network at their will; software issues, maintenance
shutdowns, reboots, etc. cause nodes to go offline in distributed

IEEE Global Communications Conference (GLOBECOM) 2014.

storage systems [11], [12[); machines are switched off for
certain intervals of time for power savings in some data
centers [13]].

We consider the setting of mutable data where the data
may be modified during its lifetime (as opposed to immutable
data which is read-only). When data gets modified, all stored
fragments pertaining to this data (either the replicas or the
encoded fragments) need to be updated to reflect this modifi-
cation. When a node comes back online, its contents need to be
updated to reflect any modifications to the data that occurred
when the node was offline. We term such a node as a stale
node.

One approach towards enabling stale nodes to update their
contents is to centrally track all modifications to the data.
Under such a complete-information approach [14]-[17], the
data in a stale node is updated via communication with a
central node which provides the precise value of the updated
fragments to the stale node. However, this approach has the
drawback of requiring the system to centrally keep a log
of every modification of the data. This paper, on the other
hand, considers an entirely distributed approach in which the
system does not store any information regarding the modified
data. Here, a stale node needs to update its contents by
communicating and downloading data from other updated
storage nodes present in the system. Neither the stale node
nor the updated nodes are aware of what data was modified
and what its updated value is. We term such an update process
as an oblivious update. In this paper, we seek to establish the
fundamental limits on the amount of communication required
to perform oblivious updates.

In a distributed system, one could constantly store and
maintain, in every storage node, a log of all updates. When
required to update a stale node, one could use these logs
to identify and transmit the updated data. Oblivious updates,
on the other hand, do not necessitate any such additional
storage, and also help avoid logistical issues in maintaining
any logs. As we will show later in the paper, the amount of
communication required to perform an oblivious update is,
in fact, not much larger than the amount of communication
required for updates in the complete-information setting.

A related line of work is that on maintaining consistency
in databases [18], [19] in the presence of modifications to
the data. The primary problems here are of ensuring that
read requests are served from up-to-date data, and maintaining
availability of the data. The problem of set reconciliation [20]]
also has similarities with the problem of oblivious updates.

node 1 3a’ +b+10d 3b +c+ 10e 3d +e
node 2 4a’ + 8b + 8d 4b + 8c + 8e 4d + 8e
node3 | 53’ +6b+ 6d 5b + 6¢ + 6e 5d + 6e
2
node4: a+6b+5d b + 6¢ + 5e d + 6e
a’ + 6b+5d b + 6¢c + 5e d + 6e

Fig. 1.

A code and an update algorithm that performs optimal oblivious updates. The code operates over the finite field F11. The symbol a was modified to

a’ during a period when node 4 was temporarily unavailable/offline. Upon returning, node 4 updates its stored data despite all nodes being oblivious to the
identity and the value of the modified symbol. The update protocol downloads a total of 2log, 11 bits (i.e., one symbol of F11 each from any two of the

updated nodes), which is the minimum possible.

The set reconciliation problem involves two entities, each of
whom has some set of values, and the goal is to enable these
two entities to learn the difference between their sets with the
minimum amount of communication.

Following the literature on classical complete-information
updates [14]-[17], in this paper we study the case when at
most a single symbol is modified. Here, a ‘symbol’ refers to
the smallest granularity of data that can be modified. The case
of a single-symbol update is a stepping stone to the more
general case of multiple symbol-updates. Further, motivated
by practical considerations, we restrict our attention to linear
codes, i.e., where the encoding process for storage is linear.
Although the storage codes are linear, the update protocol is
allowed to involve non-linear computations as well, thereby
leading to more general bounds.

In this paper we investigate the fundamental limits on the
amount of data that needs to be communicated to perform
oblivious update of a stale node when a single message symbol
is modified. We show that under any code that has a linear
encoding (over a finite field of size ¢), including the special
case of ‘replication’, a stale node needs to download at least
2log, ¢ bits when any one of the message symbols is modified
(Section [MI). This lower bound is obtained via a genie-
based argument under a set of extremely weak conditions
allowing infinite connectivity for the stale node and giving
the entire modified data to all the updated nodes and the
entire stale data to the stale node as side information. We then
present codes and update algorithms that, perhaps surprisingly,
meet these lower bounds on communication (Section [[V).
Here, oblivious updates are preformed by having a stale node
download only 2log, g bits, while the amount of data stored
in the node may be arbitrarily large. These codes are also
optimal with respect to the ‘storage-bandwidth tradeoff’ for
distributed storage [21]. We then investigate the class of codes
that are ‘Maximum-Distance-Separable’ (MDS). MDS codes
are a popular choice for distributed storage since they provide
maximum reliability with minimum storage overheads. When
the linear code is restricted to be MDS, we establish a lower
bound on the amount of communication required for oblivious
update (Section [V)), and additionally, present an MDS code and

an update algorithm that meets this lower bound (Section [VI).
These results thus establish the capacity of the communication
requirements for oblivious updates under linear codes.

The next section formalizes the problem setting and presents
an illustrative example.

II. PROBLEM DESCRIPTION
A. Problem Setting

Consider B symbols of data, termed the message, that are
to be stored across n storage nodes. Each symbol of data is
assumed to belong to some finite field I, of size g. Each node
has a capacity of storing A > 2 symbols over IF,. The data
is stored across the nodes using a code that is linear over IF,.
Now suppose some storage node, say node s, was busy or
offline for some period of time. In this period, suppose one
of the B message symbols was updated. The remaining nodes
now store (encodings of) the updated data. However, node s
still contains stale data, and we will call this node as the the
stale node. Now, when node s comes back up, its contents
must be updated to reflect the updated message. To this end,
the stale node connects to one or more of the other nodes, and
downloads some functions of the data stored in them. The goal
is to minimize this amount of download.

In the setup we consider, none of the nodes are required to
store any information about the identity or the value of the
symbol that was updated. The update of the stale node’s data
is thus oblivious of the update in the message. We do assume,
however, that the stale node knows that at most a single symbol
was updated. We also assume that the code is linear, i.e., each
nodes stores A linear combinations of the B message symbols.
Note that we only assume that the underlying encoding of
the stored data is linear, and the data passed during an
update operation may comprise arbitrary (linear or non-linear)
functions of the data stored in the updated nodes.

The second half of the paper considers a very popular
subclass of codes known as Maximum-Distance-Separable
(MDS) codes. MDS codes satisfy the two following properties:
(a) The entire message of B symbols can be recovered from
the data stored in any k of the n nodes, for some pre-defined

parameter k. This ensures that the storage system can tolerate
the failure of any arbitrary (n — k) of the m nodes, and
furthermore, ensures high availability of the data since it can
be recovered from any k nodes. (b) The storage requirement
at each node is A = % which is the minimum possible when
satisfying the first property. Again, the goal is to minimize the
amount of download required to perform an oblivious update.
Notational conventions: For vectors v; and vo of equal
lengths, dg(vi,vy) will denote the Hamming distance be-
tween them. For any positive integer r, [r] will denote the set
{1,...,r}. Vectors will be column vectors by default.

B. Example

We illustrate the problem setting with an example of a
storage code and an update algorithm that are optimal. The
code, shown in Fig. |1} operates in the finite field F1; of size
11. The message comprises B = 5 symbols {a, b, ¢, d, e}, each
drawn from Fi;. The message is encoded and stored across
n = 4 storage nodes as shown in the figure. One can verify
that the entire message is recoverable from any two of the four
nodes, thus making the storage system tolerant to the failure
of any two of the four nodes.

Now suppose node 4 was unavailable for some period of
time, during which message symbol a was updated to a’. The
three other nodes store the updated data, and (‘stale’) node 4
must update its own data by downloading data from the three
other nodes. The nodes do not keep any record of what is
updated and by how much, i.e., do not know that symbol a
was updated and that its new value is a’. The update protocol
is thus required to be oblivious of the update.

The lower bounds derived subsequently in Section [[TI] dictate
the necessity of downloading at least 2log, 11 bits for the
update. The following update protocol meets this lower bound,
with the stale node downloading one symbol of [F;; each from
two arbitrary updated nodes. The stale node contacts any two
other nodes, say nodes 1 and 2, and asks for the inner product
of their respective data with [1 6 5]. The two nodes return the
values of (3a’ +8b+ 6¢+3d+10e) and (4a’ + 10b+ 4c+ 6d)
respectively. Of course, the stale node does not know that
this received data is computed with a’ and not a. Next, the
stale node computes an inner product of its own data with
[3 1 10] to get the value of (3a + 8b + 6¢ + 3d + 10e),
and an inner product of its own data with [4 8 8] to get the
value of (4a+ 10b+ 4c+ 6d). Subtracting these from the data
received from the two other nodes, the stale node obtains the
values of {3(a’ —a),4(a’ —a)}. If both these values are zero,
then no symbol was updated, and the algorithm terminates.
If not, then the algorithm continues in the following manner.
Since the identity of the updated symbol is not known, from
the perspective of the stale node, these two values could
correspond to either {3(a’—a),4(a’—a)} or {8(b'—b), 10(b'—
b)} or {6(c' — ¢),4(c" — ¢)} or {3(d' — d),6(d" — d)} or
{10(¢’ —e),0(e’ — e)}. The stale node now takes the ratio of
the two values; this ratio 3 : 4 uniquely identifies that symbol
a was updated. Multiplying the first value 3(a’ — a) by 371
gives the value of the update (a’ —a). This amount is added to
the first symbol of the stale node, and the result (a’ +6b+ 5d)
is stored as the updated first symbol of the stale node.

This storage code and update protocol are generalized to
arbitrary system parameters in Section

III. LOWER BOUNDS FOR ARBITRARY LINEAR CODES

This section derives lower bounds on the amount of down-
load for oblivious update under any arbitrary code with linear
encoding. Note that although we consider the encoding to be
linear, we allow the update operation to be executed via any
arbitrary (linear or non-linear) functions.

Theorem 1: Consider a scenario where the stale node is
allowed to connect to any arbitrary number of updated nodes.
Furthermore, suppose a genie provides all updated nodes with
all the updated message symbols and the stale node with all
the stale message symbols as side information (the nodes still
do not know the identity or value of the symbol that was
updated). In order to update the data stored in the stale node,
it must download a total of at least 21log, ¢ bits.

Proof: Let m denote the vector of the B stale symbols,
and let m’ denote the vector of the B updated symbols, with
dg(m,m’) < 1. Let G, denote the (A x B) generator matrix
of the stale node, i.e., the stale node stores GGym, and wants
Gsm’. Assume without loss of generality that the A rows
of G, are linearly independent. Note that our genie has also
provided the entire stale message m to the stale node.

Since the genie has provided each updated node with all the
updated message symbols m’, one can assume without loss
of generality that the stale node connects to only one updated
node. On being contacted by the stale node, the updated
node must return some function of the data: let f denote
this function, i.e., the updated node returns f(m/') to the stale
node. We will now show that the cardinality of the range of
f cannot be less than ¢2, thus necessitating a download of at
least 2log, g bits. We employ a contradiction-based argument,
for which we assume that the cardinality of the range of f is
strictly smaller than ¢2.

The linear independence of the A rows of G implies
existence of A coordinates ¢i,...,£4 € [B] of m such
that for every fixed value of m\{my,,...,mg,}, the map
(me,,...,me,) — Ggm is a bijection. Without loss of
generality, let £; = i Vi € [A]. Consider the set of ¢ messages
of the form [mf,m5,0...,0]. Since the range of f contains
strictly fewer than q2 values, there must exist some two distinct
messages, say m(@ and m®, in the aforementioned set of
q? messages, for which f(m(®) = f(m®).

Now we know that m(® # m®, f(m@)) = f(m®),
Gm@ £ G,;m®, and dH(m(a), m(b)) < 2. The last
property implies existence of some m(®) ¢ (F,)®Z such that
di(m© m®) < 1 and dy(m'©,m®) < 1. Finally,
suppose M) is the stale message. Now, m(® and m(®) are
two possible candidates for the updated message. The stale
node has access to the same data in both cases: Gym (9 as its
own stale data, and f(m(®) = f(m()) downloaded from the
updated node. This prevents the stale node from distinguishing
between m(® and m® as the updated message. However,
the updated data at the stale node must be different (since
Gom(® £ G,m®), making it necessary to distinguish
between the two cases. This causes a contradiction.]

IV. CODES ACHIEVING LOWER BOUNDS

The lower bound derived in Theorem [I]is in the presence of
a very helpful genie. This section presents codes and update
algorithms that meet this bound in the absence of this genie.
These upper bounds are obtained by proving the existence of
codes meeting these bounds, and towards this, we employ the
product-matrix framework of [22]]. Interestingly, the proposed
codes are also optimal with respect to the storage-bandwidth
tradeoff derived in [21]]. The update algorithms presented here
require the stale node to connect to any two updated nodes.

A. Encoding

The code is associated to an additional parameter k €
[n — 1], and has the property that the entire message can be
recovered from any k of the nodes. Assume that B is divisible

by (k(n -1) - k(le)) Let P := m.

Under the proposed code, each node is required to store A =
(n — 1)P symbols over F,. The value of ¢ will be specified
later.

Construct P symmetric matrices {MP}pG[P}’ each of size
((n=1) x (n— 1)), in the following manner. In each matrix
{M,}pe1p)» set the bottom-right ((n —1—Fk) x (n —1 —k))
submatrix to zero. Each of these (symmetric) matrices now
have (k(n -1)- @) free elements remaining. Partition

the B message symbols into P sets of (k:(n -1) - @)
symbols each. For each p € [P], populate the remaining free
elements of matrix M,, with the message symbols of the pf
set.

Construct vectors {9y}, (,), each of length (n — 1), and
scalars {ng,p}ee[nl’pe[lg] that satisfy: .
(a) every submatrix of [¢p; --- ,] is of full rank
(b) for every (ui,us,s) € [n]® such that u; # up # s, and
every (p. i, /) € [P]x[(n—1) and (p/, 7', ') € [P]x[(n—1)]?
such that (p,,j) # (p',7,7),

nuhpfyul,s(iv j)nuzyp”yums(ilv j/)
7£ nul,p")/uhs(i/a j/)TITLQ,pruQ,S (7’7]))

where
o S uits g FYugss i i FE
'Yu,s(’l,]) = .
Yu,iVs,i otherwise .

Each of these requirements is equivalent to showing that a
product of polynomials is non-zero. One can see that each
of these polynomials individually is a non-zero polynomial.
The Schwartz-Zippel lemma ensures that there exist values
of {ths}ep, and {va}ze[n],pe[P] satisfying all the desired
conditions when the size ¢ of the underlying finite field I, is
large enough. Finally, for every £ € [n], node £ stores the data

{ngp}pe[P] '

Condition (a) will help in recovery of the entire message from
any k of the nodes, and condition (b) will help in performing
the oblivious updates.

(D

'If not, then append an appropriate number of zeros to the message. Since
the amount of data B is typically much larger than n and k, this operation
is relatively inexpensive.

B. Oblivious Update Algorithm and Performance

Theorem 2: In the code constructed in Section any
stale node can perform an oblivious update by downloading
one symbol each from any two updated nodes when at most
one symbol has changed.

Proof: Let {M,},c;p) be the matrices comprising the
stale message, as constructed in Section The construc-
tion is such that no two matrices in {M},c[p] have any
element in common. As a result, the update of a single element
causes a change in only one of these matrices. Let { M, },¢(p)
be the matrices comprising the updated message. Algorithm [I]
updates the data of a stale node by connecting to any two
updated nodes and downloading only one symbol from each.
Recall that the notation . .(-, -) used Step 2 onwards is defined
in (I). Step 6 employs condition (b) of the encoding which

guarantees 7y, pYu,,s(i,7) # 0. -

Algorithm 1 Optimal Oblivious Update

Stale node s contacts any two updated nodes u; and ug

Updated Nodes: Node u; (i € {1,2}), which stores up-
dated data {'«,baMI’,}pE[p], returns the single symbol

P
Zp:l nul ,ngi MZI)/IIZ)S

Stale Node: Stale node s, which stores stale data
{wSTMp} , receives the two symbols
pE[P]
P P
Tll = Znul,lﬂrblez/ﬂ/}s) Té = Znu2yp¢z2M;¢s'
p=1 p=1

It performs the following operations.
1) From its stale data, compute:

P P

L= Znul,p"/)a Mpp,, ry:= Znuz,pd’;Mp"ps

p=1 p=1

2) Subtract these from the received symbols to get d; :=
ry —ry and d2 := 14 — ro If the changed symbol
is at location (7,7) of matrix M, and its value has
been changed by 6, then di = 7y, pyu,,s(4,5)0 and
do = ﬁuz,ﬂug,s(i,j)5

3) If d; = d2 = 0O then the stale node already has the
updated data; exit

4) Compute the ratio d
Tus,pVus,s (15 1)

5) Condition (b) ensures that this ratio is different for
different (p,i,7), so use the ratio to identify changed
location (g, jo) and pq.

6) Compute 6 = (’r]uhpofyul,s(iO?jO))_ldl

7) Construct an ((n— 1) x (n— 1)) matrix A with value
0 at locations (ig, jo) and (jo,%0) and zeros elsewhere;
in the stale node, update data 1/JZMPO to wa;O as

YIM =pIM,, +plA

dy = nul,p’Yul,s(ia])

Theorem 3: In the code constructed in Section [[V-Al the
message can be recovered from the data stored in any k nodes.
Furthermore, the code is optimal with respect to the storage-

bandwidth tradeoff of [21]].

Proof: The code falls under the ‘product-matrix MBR’
framework of [22, Section IV] from which it derives these
properties.]

V. LOWER BOUNDS FOR LINEAR MDS CODES

In this section, we consider the class of codes that are
‘Maximum-Distance-Separable (MDS)’ (recall definition from
the last paragraph of Section [[I-A). We provide lower bounds
on the amount of download for arbitrary MDS codes with
linear encoding. Although we consider the encoding to be
linear, we allow the update operation to be executed via any
arbitrary (linear or non-linear) functions.

Theorem 4: Under any MDS code with linear encoding,
a stale node must contact at least k£ updated nodes. Upon
contacting k nodes, the stale node must download at least
2log, q bits from each them.

Proof: We will first show that an oblivious update cannot
be performed by contacting just (k—1) nodes. The proof is by
contradiction for which we will assume existence of some (k—
1) nodes from which some stale node can be updated. Suppose
the entire data stored in these (k — 1) nodes is made available
to the stale node. Since the code is MDS, there exists exactly
one message whose encoding equals the data currently stored
in these (k — 1) updated nodes and the stale node. The stale
node will thus be unable to distinguish between the two cases:
(a) this message as the stale message and no update, and (b)
the actual stale and updated messages. The updated data at the
stale node must be different in the two cases, thus necessitating
it to distinguish the two cases. This yields a contradiction.

Now assume the stale node connects to some k nodes. We
now show that it must download at least 2log, g bits from
each of these k nodes. It suffices to show that the last of these
k updated nodes must pass 2log, ¢ bits, since any of these k
nodes may be defined as the last node. To this end, consider
a genie who provides the entire data stored in the first (k—1)
updated nodes to the stale node, and furthermore, provides the
entire updated message to the last updated node.

Let m € (F,)® be the stale message, and m’ € (F,)” be
the modified message (with di(m, m’) < 1). Let G4 denote
the (A x B) generator matrix of the stale node, i.e., the stale
node stores Gym under message m. Assume without loss of
generality that the A rows of G are linearly independent.
Upon being contacted by the stale node, the last updated node
(to whom the genie has provided all the updated data) must
send some function of the data: let f denote this function, i.e.,
the updated node returns f(m/) to the stale node. We will now
show that the range of f must contain at least ¢> elements,
thus necessitating a download of at least 2log, ¢ bits.

The linear independence of the A rows of G, implies
existence of A coordinates ¢i,...,{4 € [B] of m such
that for every fixed value of m\{my,,...,mg,}, the map
(mey,...,me,) — Gym is a bijection. Without loss of
generality, let ¢; =i Vi € [A].

Let S’ denote the set of all ¢* messages of the form
[mfy,...,m/y,0...,0]. Construct a second set S” from S’ in
the following manner. For each m/ € &', find the unique

vector m” € (F,)® such that Gom” = Gym’ and the
encoding of m/ in the first (k — 1) updated nodes is zero.
Since the code is MDS, for each m/, there exists exactly one
such ", Set 8" as the collection of these vectors m’.

Partition the set S”, of size ¢, into sets that map onto
identical values in the range of f. Since the range of f has a
cardinality strictly smaller than ¢, at least one of these sets
must have a cardinality strictly greater than ¢4~2. Let us call
this set R”.

Now consider the original elements R’ C S’ which were
transformed into R”. In this set R’, of size greater than ¢ 2,
there must exist some two messages m(®’ and m ()’ which
match on the first (A — 2) coordinates. It follows that there
exists m(©)’ € (F,)? such that dg(m®’, m(®’) < 1 and
di(m®’ m)’) < 1. Next, let m(®” and m®" respec-
tively be the (distinct) constituents of R” that are derived from
m @’ and m®)’ respectively.

Finally, consider the following scenario. Suppose the orig-
inal message was (m(®” — m(®)’ 4 m(9) and this was
updated to m(®”. This constitutes the update of at most
one symbol since dy(m(®” — m(®)' + m() mr) =
di(m(@’ m(9)’) < 1. We claim that this scenario is indis-
tinguishable from the scenario of the original message being
(m®” — m(®)’ L m(9)) and the updated message being
m®"”_ To this end, first observe that the latter situation also
constitutes the update of at most one symbol since dz (m®)” —
m®’ +m m®") = 4y (m®’ m(9") < 1. Furthermore,
since Gem@' = Gom @ and Gom®’ = G.m®” it
must be that the encoding Gy(m(@” — m(®’ 4 m(e)) of
(m®” —m(®)’ 1 m()’) at the stale node is identical to the en-
coding Gs(m(b)uim(b)urm(c)/) of (m(b)uim(b)urm(c)/)
in the stale node. The data stored in the stale node thus
provides no information pertaining to distinguishing these two
scenarios. As discussed above, the encoding of m (@ and
m(®)” both result in zeros at the first (k—1) helper nodes. Fur-
thermore, m(a)//’m(b)// cR' — f(m(a)//) — f(m(b)//)
which makes the data downloaded from the last updated
node identical in the two cases. An accurate update is thus
impossible in this situation, thus proving our claim. []

VI. MDS CODES ACHIEVING LOWER BOUNDS

In this section, we present upper bounds on the amount of
download required for oblivious updates under MDS codes,
that meet the lower bounds established in Theorem [4]

A. Encoding

Each node has a storage capacity of A := % symbols. Let

m be a B-length vector consisting of the B message symbols.
Let T" be an arbitrary (nA x B) matrix with the property that
every submatrix of I' is of full rank. For instance, one can
choose I' as a Cauchy matrix. Construct n matrices {I'¢} e[y,
each of size (A x B), by partitioning T" into n blocks of A
rows each. Finally, for every ¢ € [n], node ¢ stores the data

Fgm .

B. Oblivious Update Algorithm and Performance

Theorem 5: In the code constructed in Section any
stale node can perform an oblivious update by downloading
2log, g bits each from any k updated nodes when at most one
symbol has changed.

Proof: Let m € (F,)? be the stale message and let m’ €
(F,)® be the updated message, with dg(m,m’) < 1. For
every £ € [n], let I‘y) and F§2) be the first and second rows of
Ty, respectively. Further, for any m € {1,2} and any j € [B],
let (T™); denote the jt* element of I'{™.

Algorithm [2] updates the data of a stale node by connecting
to any k£ updated nodes and downloading exactly two symbols
from each. Steps 5 and 6 of Algorithm [2| employ the fact that
every submatrix of I' is of full rank. [|

Algorithm 2 Optimal Oblivious Update in an MDS Code

Stale node s contacts any k updated nodes u, ..., ug.

Updated Nodes: For ¢ € {1,2}, define A-length vectors
{éé,i}ee[k] as

17"

[&iq] =TV

Tu,

Updated node uy (¢ € [k]), which stores the updated data
Ty, m/, returns the two symbols:

T !’ T /
55,1Fuem and £g72Fulm

Stale Node: Stale node s, which stores stale data I'ym,
performs the following operations.

1) From the set of 2k received symbols, compute
25:1 Szlfwm’ = Fgl)m’ and Zif:l EZQFWm’ =
F,(f)m’

2) Given the stale stored data, containing Fgl)m and
FgQ)m, take differences to obtain d; := Fgl)(m’ —m)
and dy :=T'{? (m' —m)

If the changed symbol is at location j in the message
vector, and its value has been changed by d, then d; =
(Fgl))Jd and dg = (Fg))j(s

3) If d; = d2 = O then the stale node already has the
updated data; exit

4) Compute the ratio d; : dy = (Fgl))j : (Fg2))j

5) By construction, this ratio is unique for different
values of j, so use the ratio to identify the location
Jo of the change.

6) Compute § = ((I'{"));,) " dy

7) Construct a B-length vector § with value § at loca-
tion jo and zeros elsewhere; update the stale data by
computing I'ym/ =T y;m + T',6

Theorem 6: The code constructed in Section is
maximum-distance-separable (MDS).
Proof: Each node stores only % symbols, and since every
submatrix of I is of full rank, the entire message is recoverable
from any £ of the nodes.]

VII. SUMMARY AND OPEN PROBLEMS

This paper considered the problem of oblivious updates
wherein the data stored in a storage node needs to be updated
by downloading data from already updated nodes in the
storage network, but with none of the nodes knowing the
identity or the value of the modified data symbols. Oblivious
updates allow the system to ensure that all nodes have the
updated data (even after being offline/unavailable) without
having to keep a log of modifications. We established the fun-
damental limits on the communication required for performing
such oblivious updates, when a single message symbol is
modified, by deriving genie-aided lower bounds and designing
storage codes and update algorithms meeting these bounds.
Our goal for the future is to extend the characterization of the
fundamental limits in multiple directions, such as considering
oblivious updates for multiple symbol modifications, non-
linear codes, and interactive update protocols. In addition,
to complement the theoretical standpoint of this paper, we
also plan to investigate the questions that arise in practical
implementations of oblivious update protocols, such as the
design of explicit codes, and quantification of the minimal state
that needs to be maintained for realizing the update algorithms.

REFERENCES

[1] R. Bhagwan et al., “Total recall: System support for automated avail-
ability management,” in NSDI, 2004.

[2] A. Rowstron and P. Druschel, “Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility,” in ACM
SIGOPS, 2001.

[3] “Crashplan,” 2014. [Online]. Available: code42.com/crashplan

[4] “Space monkey,” 2014. [Online]. Available: spacemonkey.com

[5] J. Kubiatowicz et al., “Oceanstore: An architecture for global-scale
persistent storage,” ACM Sigplan Notices, 2000.

[6] “Cleversafe,” 2014. [Online]. Available: cleversafe.com

[7]1 S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” in
ACM SOSP, 2003.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE MSST, 2010.

[9]1 B. Tang, H. Gupta, and S. Das, “Benefit-based data caching in ad hoc

networks,” IEEE Trans. Mob. Computing, 2008.

D. Borthakur, “HDFS architecture guide,” 2008. [Online]. Available:

http://hadoop.apache.org/common/docs/current/hdfsdesign.pdf

D. Ford et al., “Availability in globally distributed storage systems,” in

USENIX OSDI, Oct. 2010.

K. V. Rashmi er al., “A solution to the network challenges of data

recovery in erasure-coded distributed storage systems: A study on the

Facebook warehouse cluster,” in Proc. USENIX HotStorage, Jun. 2013.

M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic right-sizing

for power-proportional data centers,” IEEE/ACM Trans. Nw., 2013.

M. Blaum and R. Roth, “On lowest density MDS codes,” IEEE Trans.

Inf. Th., 1999.

L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low-density MDS codes

and factors of complete graphs,” IEEE Trans. Inf. Th., 1999.

J. S. Plank, “The RAID-6 liber8tion code,” International Journal of High

Performance Computing Applications, vol. 23, no. 3, pp. 242-251, 2009.

I. Tamo, Z. Wang, and J. Bruck, “Access vs. bandwidth in codes for

storage,” in ISIT, Jul. 2012.

W. Vogels, “Eventually consistent,” Comm. of the ACM, 2009.

A. Demers et al., “The Bayou architecture: Support for data sharing

among mobile users,” in Proc. IEEE MCSA Workshop, 1994.

Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with

nearly optimal communication complexity,” IEEE Trans. Inf. Th., 2003.

A. Dimakis et al., “Network coding for distributed storage systems,”

IEEE Trans. Inf. Th., Sep. 2010.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating

codes for the MSR and MBR points via a product-matrix construction,”

IEEE Trans. Inf. Th., Aug. 2011.

[10]
[11]

[12]

[13]
[14]
[15]
[16]
(17]

[18]
[19]

[20]
[21]

(22]

code42.com/crashplan
spacemonkey.com
cleversafe.com
http://hadoop. apache. org/common/docs/current/hdfs design.pdf

	I Introduction
	II Problem Description
	II-A Problem Setting
	II-B Example

	III Lower Bounds for Arbitrary Linear Codes
	IV Codes Achieving Lower Bounds
	IV-A Encoding
	IV-B Oblivious Update Algorithm and Performance

	V Lower Bounds for Linear MDS Codes
	VI MDS Codes Achieving Lower Bounds
	VI-A Encoding
	VI-B Oblivious Update Algorithm and Performance

	VII Summary and Open Problems
	References

