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Abstract—This work concerns wireless cellular networks ap- interfering signals do not overlap. A pilot coordinatiofneme
plying massive multiple-input multiple-output (MIMO) tec hnol-  is proposed to help satisfying this condition. The work[ih [5
ogy. In such a system, the base station in a given cell is eqpied iijize5 coordination among base stations to share downlin

with a very large number (hundreds or even thousands) of Each BS th f i binati f
antennas and serves multiple users. Estimation of the chamh messages. tac €n periorms lineéar combinations o

from the base station to each user is performed at the base Messages intended for users applying the same pilot seguenc
station using an uplink pilot sequence. Such a channel estition  This is shown to eliminate interference when the number of
procedure suffers from pilot contamination. Orthogonal pilot pase station antennas goes to infinity.

sequences are used in a given cell but, due to the shortage The category without coordination also includes notable
of orthogonal sequences, the same pilot sequences must be

reused in neighboring cells, causing pilot contamination.The Conm_buuons' A_ m‘%'“'ce” precoding t_e(_:hn'que is used in
solution presented in this paper suppresses pilot contamation, [6] with the objective of not only minimizing the mean
without the need for coordination among cells. Pilot sequere squared error of the signals of interest within the cell, ddab

hopping is performed at each transmission slot, which prodes minimizing the interference imposed to other cells.[In [7ki
a randomization of the pilot contamination. Using a modified shown that channel estimates can be found as eigenvectors

Kalman filter, it is shown that such randomized contaminatin f th . trix of th ved si | when th
can be significantly suppressed. Comparisons with conveatnal 0 € covarlance matrix o € receivea signal when the

estimation methods show that the mean squared error can be humber of base station antennas grows large and the system
lowered as much as an order of magnitude at low mobility. has “favorable propagation”. The work inl [8411] is based on

examining the eigenvalue distribution of the received aiga
o ) ~_identify an interference free subspace on which the signal i
~ Muliple-input multiple-output (MIMO) technology.[1] is projected. It is shown that an interference free subspane ca
finding its way into practical systems, like LTE and itg,e jdentified when certain conditions are fulfilled concegni
successor LTE-Advanced. It is a key component for theggs number of base station antennas, user equipment asenna
systems’ ability to improve the spectral efficiency. Thec8S channel coherence time and the signal-to-interferende rat
pf MIMO technology has motivated research in extending the Tpe major contribution of this paper is a pilot decontami-
idea of MIMO to cases with hundreds, or even thousands %tion, which does not require inter-cell coordinationd as
antennas, at.transmitting and/(_Jr receiving .side_z. This terof gpje to exploit past pilot signals. It is based on pilot sewee
termed massive MIMO In mobile communication systems,nopping performed within each cell. Pilot sequence hopping
like LTE, the more realistic scenario is to .have a massiYReans that every user chooses a new pilot sequence in each
amount of antennas only at the base station (BS), due tfgnsmission slot. Consider a user of interest and the teffec
the physical limitations at the user equipment (UE). It hae inter-cell pilot contamination when pilot sequenceffiog
been shown that such a system [2], in theory, can elimingte;ppjied. At each transmission slot, the pilot signal eftiser
entirely the effect of small-scale fading and thermal noisg; contaminated by a different set of interfering users. déen
when the number of BS antennas goes to infinity. The oniannel estimation at each transmission slot is affected by
remaining impairment is inter-cell interference, caused Rjjferent set of interfering channels. If channel estimatis
imperfect channel state information (CSl), which is a resularried out based solely on the pilot sequence of the current
of non-orthogonality of training pilots used to gather th&IC slot, then pilot sequence hopping does not bring any gaie. Th
This is often referred to gsilot contaminationlt is considered key in our solution is a channel estimation that incorparate
as one of the major challenges in massive MIMO systems [3hytiple time slots so that it can benefit from randomization
Mitigation of pilot contamination has been the focus off the pilot contamination. Recent work utilizing temporal
several works recently. These fall into two categories; wite - relation for channel estimation is found In [12], altgbu

coordination among cells and one without. The first categofg in combination with pilot hopping and not with the purpos
includes [4], where it is utilized that the desired and integ mitigating pilot contamination.

fering signals can be distinguished @n the channel cov_aeian Consider the simple example, where the channel of the UE
matrices, as long as the angle-of-arrival spreads of deaimel ot jnterest is time-invariant. Its estimation is perfornetoss

The research presented in this paper was supported by thishD@auncil multlple time slots. Spec'f'.ca-”y’ the resulting Channelmate
for Independent Research (Det Frie Forskningsrad) DEB35 — 00273 is the average of the estimates across the time slots. In the
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averaging process, the contamination signal is averaged ou

Note that, if the contamination signal remains constanbser ((9)
the time slots, i.e there is no hopping, this averaging l&ring

no benefit (except an averaging of the receive noise).

When the channel is time-variant and correlated across N @ cell 1
time slots, it remains possible to exploit the information
about the channel across time slots by an appropriate ffigeri
and benefit from contamination randomization. In this paper e
channel estimation across multiple time slots is performe .
using a modified version of the Kalman filter, which is capable
of tracking the channel and the channel correlation. The
level of contamination suppression depends on the channel
correlation between slots of the UE of interest as well as the
contaminators. In LTE, channel correlation between tinogss|
is large even at medium-high speeds, making the proposed
solution very efficient.

The remainder of this paper is organized as follows. Section
M]prese_nts .the applied system mOd.el and the p.rOble.m of pl_l ;[; 1. A cellular system with three cells. Cdllis of interest and the
contamination. The proposed solution is described in @RCtingignporing cells will potentially cause interferenced(@rows).

[Mand evaluated and compared to existing solutions inisect
V] Finally, conclusions are drawn in sectibn V.

S

h:o ‘((’ iz x!!

Cell 0

Cell 2

The CSI achieved this way is utilized in both downlink
and uplink transmissions based on the channel reciprocity
In this work we denote scalars in lower case, vectors gksumption. We define a pilot training period followed by
bold lower case and matrices in bold upper case. A SUPetschp yplink and a downlink transmission period as a time slot.
“T™ denotes the transpose and a superscrift tlenotes the gee Fig[P for an example of a transmission schedule with

conjugate transpose. two time slots. During then’th pilot training period, the

This work treats a cellular system consisting bfcells  pth yser in thef'th cell transmits a pilot sequence:! =
with K users in each cell. A massive MIMO scenario i 2k (1) xﬁ‘(z)...zﬁf(f)]T, where 7 is the pilot sequence

H n
considered, where the BS had antennas and the UE hasgngh deally, all pilot sequences in the entire system ar
a single antenna. We restrict our attention to the channgly,qonal in order to avoid interference. However, thisitd
estimation performed in a single cell, which we term “thd Ce}equire pilot sequences of at least length &, which in

of interest” and assign the index™ The channel betvyeen most practical systems is not feasible. Instead, orthdiggna
the BS in the cell of interest and thieth user in thelth ipin each cell only is ensured, i.e.= K, thereby dealing
with the potentially strongest sources of interference.aAs

cell is denotedh® = [h**(1) K*(2)...h*(M)], where
the individual channel coefficients are complex scalarteNgoq it all cells use the same set of pilots, potentiallysie!

k¢
that for £ > 0, h™" refers to a channel between the BS Oferterence from neighboring cells. This is referred toist
interest and a UE connected to a different base station.

! ! 1t bd , tamination. We define the contaminating €&t, as the set
furthermore restrict our attention to the estimation ofregl ¢ 5 pairsi, j, which identify all UEs applying the same pilot

channel coefficient, hence a channel is denoted as the Cnm@@quence in the'th time slot as the:'th user in thel’th cell
scalarh**. The work easily extends to vector estimations, ipience Tl — g Vi j e Ck
*Un T %n ) n "

which case spatial correlation can be exploited for impdove
performance. A rich scattering environment is assumed) suc

Il. SYSTEM MODEL

Time slot 1 Time slot 2

ke i ,
that h** can be modeled using Clarke’'s modell[13], hence by yprink Downlik  Pilot  Uplink Downlink
1 & .
hkl _ Z ej27'rfdt cos am+¢m’ (1)
VNs m=1 Fig. 2. Scheduling example.

where N, is the number of scattererg, is the maximum ) ) ) ) )
Doppler shift,a., and é., is the angle of arrival and initial The pilot S|_gnal recel\_/ed by the BS of interest, concerning
phase, respectively, of the wave from théth scatterer. Both thek'th user in then’th time slot can be expressed as
am and ¢, are i.i.d. in the interval—=, ) and fq = 2 f.,
yvherev is _the speed of the UR; is the speed of light and. Y0 = prOgho 4 Z hidgid 4 20, )
is the carrier frequency.

In a massive MIMO system, collection of channel state -
information (CSI) is performed using uplink pilot training where 20 = [250(1) 2}0(2)...28(7)]" and 2}0(j) are

1,jECKO

n



circularly symmetric Gaussian random variables with zesxhedulet. = 1. The goal of pilot sequence hopping is to
mean and unit variance for gll Here, only signals leading to maximizet,., either in an expected sense or maxmin sense,
contamination are included in the sum term, since afig%/ i.e. maximization of the minimum value. The latter can be
Y i,j ¢ Ck are removed when correlating with the appliegursued through a minimal level of coordination of pilot
pilot sequence. Hence, all contributions from the sum tersequence schedules among neighboring cells. However, this
are undesirable and will contaminate the CSI. Without losgork is strictly restricted to a framework with no inter-cel

of generality, we focus on the channel estimation for a singtoordination, hence, we focus on the expected valug..of

user in a single cell. Hence, in the remainder of the paper, wp#ot sequence hopping is performed at random and K,

omit the superscripk for ease of notation. thent, follows a geometric distribution, such that

IIl. PILOT DECONTAMINATION

The solution to pilot contamination proposed in this work P(te=d) = (1-p)"p, d=12,...,
consists of two components: p= i7 3)

1) Pilot sequence hopping: This component refers to K
random shuffling of the pilots applied within a cell. Thisvhere P(t. = d) is the probability that the collision distance
shuffle occurs between every time slot. The purpose isfd and p is the probability of a given UE being the next
this component is talecorrelatethe contaminating sig- contaminator. The expected value f I [t ], is then found
nals. When pilots are shuffled, the set of contaminatirap
users will be replaced by a new set, whose channel

coefficients are uncorrelated with those of the previous o0
set. Eft]=> d1-p)*'p
2) Kalman filtering: The autocorrelation of the channel d=1
coefficient of the user of interest is high at low mobility. > K-1\""1
This means that information about the value of the cur- - Z d (T) K

rent channel coefficient exists not only in the most recent
pilot signal, but also in past pilot signals. This can be =& (4)
extracted using a filter. For this purpose a Kalman filtgjence, the expected collision distance increases with the

is desirable due to its recursive structure, which providegimber of users/pilots per cell, which follows intuition.
low complexity, yet optimal performance. Additionally,

since the contaminating signals have been decorrelated, Cell 0 Cell 1
the Kalman filter will suppress the impact of these S
signals, leading to pilotlecontamination inerest__ UE!  UEZ  UE3 | UE4 | UES
A. Pilot Sequence Hopping ! s s S x 24 t
. T _ 2| X, X X XXX
Pilot sequence hopping is a technique where the UE v
randomly switch to a new pilot sequence in between time slol 3 X Xi Xz Xy Xs X3 :
This must be coordinated with the BS, which in practice ca _ 4 | X; X X; Xs X, X; ¢
be r%alized by letting thehBS send 3 seedI for a pseudor:and‘ = 5| x Xs X; X, X, X,
number generator to each UE. Random pilot sequence hopp &
is illustrated in Fig.[B in the case of = K = 5. Note E °f X X | X X X% X
how the identity of the contaminator changes between tirr 7| Xz Xs X; X; X1 . ¢
slots, as opposed to a fixed pilot sequence schedule, whi 8 | X, X; X, X; X; X,
the contaminator remains the same UE. Consequently, t o | x % b% b% % Y.
undesirable part of the pilot signal, i.e. the sum term[in (2] ’ _ ! . ’ ’
varies rapidly between time slots compared to the variatic 0] X Xs Xq Xi Xs X;

caused by the mobility of a single contaminator in a fixed

schedule. In fact, the impact of pilt sequence hoppingIiti, % 1 e o & o Pl e o e 7 Sl

a contamination perspective, can be viewed as a dram%ﬁ%’ch are orthogonal to the pilot?rom thSUE 6f interest.mes replr')eser{t

increase of the mobility of the contaminator. This in turade contamination and:; denotes a pilot sequence.

to a lowered autocorrelation, or decorrelation, in the aonit

nating signal, which is the motivation behind performintppi  Example: To help the understanding of the benefit from

sequence hopping. pilot sequence hopping, consider the ideal case of a con-
The level of decorrelation is related to the time betweestant channel between BS and UE of interest and a single

two instances, where the same user acts as a contaminaontaminating neighboring cell. Noise is disregarded iis th

We refer to this as the collision distance, and we denogégample, since attention is on decontamination. Moreaver,

it t., see Fig.[B. Note that in the case of a fixed pilaissume an infinite amount of orthogonal pilot sequences and



an infinite amount of users per cell, such that K = oo channel coefficient. The evolution of the channel coefficén
andE [t.] = oo, which means contaminating signals in all timexpressed by Clarke’s model does not follow the modédTiin (8).
slots are independent. For simplicity, we assumfer,, = 1, However, it can be transformed into an autoregressive (AR)
such that the estimate in time slotis model with a finite number of coefficients, which follows the
form of (8). If the instantaneous velocity of the user of iet,
. , and thereby the autocorrelation function, are known, the AR
hn = h + h,, ®) coefficients can be found using the Yule-Walker equations
whereh/, is the channel of the contaminator in time stat [14]. However, this cannot be assumed in our case, hence the
Now consider a new estimatdr,,, which is the average of all AR coefficients must be tracked along with the channel state.
estimates until time slot. Hence, we have For this purpose, we must modify the conventional Kalman
filter to include an AR model tracker. A% order AR model
" is applied, since experiments tell us this adequately captu
h, =h+ 1 Z h.. (6) the autocorrelation of the system. Therefore, only a siAdte
ni— coefficient,a,,, must be tracked.
edFirst we state the conventional Kalman filter [15] in our

In this case, the error in the estimate is solely compos " .
Y g gontext, where the AR coefficient is assumed known.

of the average of the contaminating signals, which are i
dependent and hav% varianeé. Hence, the variance of the
estimation error isZ=. If pilot sequence hopping had not
been performed, the variance of the estimation error had €n =Yn — Tndn_1hn_1, (9)
remaineds?, since k!, would be constant. Note that the

For all n:

— H 2 2 H
MSE goes towards zero for — oo, when pilot sequence Rn = z"p?f"_j— Ondr +0Tn@y (10)
hopping is performed. This is a result of the fact that a kn =pnz, R, (11)
pilot signal in the infinite past carries as much information By = anhp_1 + ke, (12)
about the current channel as the most recent pilot signal, in Pt = a2 (1 — kit )pn + (1 — a2), (13)

the ideal example of a constant channel. Note also that for
finite 7 (and K) and thereby finitek [t ], the variance of whereo? and o2 are noise power and total contamination
the estimation error is lower bounded @g since only a power (average over time), respectively, which are both as-
maximum of K independent estimates can be achieved. sumed known/, is ther x 7 identity matrix andh,, is the
a more practical example with a time-varying channel, thestimate ofh,,.
amount of information carried in a pilot signal decays over For the tracking of the AR coefficient, an approach similar
time. It is, however, still possible to extract such infotioa to the one in[[16] is taken. In_[16] the inclusion of an AR
using appropriate filtering techniques. For this purpose veeefficient tracker is presented for a Kalman predictor,a.e
have chosen a modified version of the Kalman filter, whicfilter with the purpose of predicting the channgl,, based
is described next. on all observations unti,,_,. In this work, we extend this
- . approach to take all observations ungj] into account.

B. Modified Kalman Filter The approach is based on calculating the partial derivative

A conventional Kalman filter can be used to track the stat@ith respect toa,, of the cost function, the mean squared
b,, of a system based on observatiogs, where error (MSE), and using this to adjust, in the direction of

decreasing MSE. The partial derivative of the MSE is

Yn = C,b, + dnv (7)
. . . 9 2
and C,, is the measurement matrix of the system ahdis Vi, = 8TE [|en| ]
measurement noise. Moreover, the evolution of the system " H . iH _H
state must follow = ~(@n_1@n1Zyy + hi oy 27 e, (14)
where g, = g% and is found by differentiating (12) with
b, =A,b,_1 +v,, (8) respect tau,, such that

where A, is the state transition matrix ang, is the process
noise. In a conventional application of the Kalman filtdr, an = (1 —knp)(angn-1 + hn_1) + mpe,.  (15)
is assumed constant and known.
The problem of estimating a time-varying channel basddere,m,, = g’fT:, which is found by differentiatind (11) with
on pilot signals, also termed channel tracking, can be solveespect toa,, hence
using the Kalman filter. The observations as expressed in (2)
follow the linear model in[{7), where the observation matrix oo
is the transmitted pilot sequence and the tracked stateeis th my = (1 = kn&n)snt, R, " (16)



TABLE |

Finally_, we introduced,, ;_g%:, which is a differentiation of SIMULATION PARAMETERS
([@3) with respect taz,,, giving us
| Parameter] Value | Description
2 . .
2 HiH o 0.2 Noise variance
Snt1 = a (1 —kpzn)sn(1 — 2z, k) — 2anknznp,.  (17) n
L 7 Number of cells
Using V,,, we can adjust,, as follows K 96 Users per cell
T 96 Pilot length
an = [an_1 — u[Va]T2]5, (18) w 105 Convergence speed
where . is a parameter adjusting the convergence speed and v 100 Derivative cap
the brackets denote truncations. The inner truncatiorhmvg fe 1.8 GHz Carrier frequency
v is to avoid dramatic adjustments in situations with a high N 20 Number of scatterers
slope and the outer truncation is to obey< a, < 1. The te 0.5 ms Time between pilots
need forv will be explained in _schoEI}\/. o _ a0 0.5 Initial AR coefficient
We can now state the modified Kalman filtering algorithm S " :
. . . . ho 0 Initial estimate
including an AR coefficient tracker: —— - :
q0 0 Initial differentiated estimate
For all n: p1 0 Initial error covariance
S1 0 Initial differentiated error covariance

€n =Yn — mnan—lhn—la

R, = :z:npn:z:f + 072117 + afznxf, . . 3
an accurate AR model, which suits the current mobility of the

_ _(,H H , ;H _H
Vi = (q"—la”’lx’zr:_lh"‘lx" Jen, UE of interest. This stresses the need for the modification of
an = [an—1 — #[Va] T ]o, the Kalman filter, as proposed in sectlon Ill-B. Moreoveisit
k, =p.2 R, seen that the derivative of the MSE with respegimay attain

S very high values at low,,. This can cause undesirably high
hp = aphyp_1 + knen, : . . . . .
Hool variance in the estimate of the optimal, which motivates
m, = (1 = kn2n)sn, R, ", the use of a derivative cap,
gn = (1 - knzn)(an(Zn—l + hn—l) +mnpe,,
Pn+1 = ai(l - knmn)pn + (1 - ai)=
Spp1 = a2 (1 — kpxy)sn (1 — :z:fkf) — 2anknT,pn. (19)

IV. NUMERICAL RESULTS
1.2

The proposed scheme (Estimator) has been simulated
compared to the scheme from [16] (Predictor) and the conve 1
tional solutions of least squares (LS) estimation and mimm |
mean squared error (MMSE) estimation based on a sin¢4 ‘
time slot. The expressions for the LS and MMSE estimato = 0|
are given in[(2D) and(21), respectively. An overview of th
parameters, which are common for all simulations, is give
in Table[l. The choice of: is based on experiments showin¢ o2
that this is a good compromise between convergence spt
and robustness towards variance. Throughout all simulstio
we assume that all users have equal and constant mobil
Moreover, we assume that contaminating signals have z
autocorrelation between time slots, which is justified bg th an 00 v (km/h)
choice of K = 96, such thatE [¢.] = 96, cf. (4).
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Fig. 4. MSE as a function of the autoregressive model coeificand the

R 1 user mobility.
hizs = (fl:,?:l:n) a:fyn, (20)
jymmse _ pH (p o H 27 20 pH -1 . 21 Fig.[3 shows a comparison of the S|mulg.ted estimators with
" 2 (@2 + Ol ocmam) Y (21) respect to MSE as a function of user mobility wheh= 0.6.

Initially, results are shown for the conventional Kalmatefil For both the predictor and the scheme proposed in this work,
expressed in equatiorfg (9) throughl(13). MSE as a functionrekults where the optimal value of,, is assumed to be
the user mobilityw, and the AR coefficienty,,, is shown in  known, have been included. This highlights the performance
Fig.[4. From this figure, it is evident how important it is toska of the tracker. It is evident that the tracker provides a very



good estimate of the optimal AR coefficient. Moreover, it ithe assigned pilot sequences within a cell, which ensures
seen that the proposed scheme outperforms LS and MMB8é&correlation in the time dimension of the contaminating
and performs as well as the predictor at low mobility. Asignals. This is essential, since it enables subsequesrirfit
high mobility, the proposed scheme outperforms LS and the suppress the contamination. For this filtering, the Kalma
filter has been chosen, due to its ability to track a time-veyy

A different perspective is given in Fif] 6. Here the MSE istate. However, a conventional Kalman filter is not able to
adapt to changes in the underlying model, which is necessary
at typical mobility levels as defined by 3GHRP [17]. This figureshen users have unknown and varying levels of mobility.
shows how the proposed scheme is able to suppress even ¥enythis problem we have presented a modified Kalman filter,
which can adapt the underlying model based on a minimization
of the mean squared error.

Numerical evaluations show that the proposed solution can
suppress a significant portion of the contamination at lodr an
moderate levels of mobility. Even at high mobility, i.e. car
speeds ofl00 to 130 km/h, the proposed solution can provide
a noticeable gain over conventional estimation methods.

predictor, while matching the performance of MMSE.

plotted as a function of the signal-to-interference ragR),

strong contamination at typical mobility.

1 T T T
— — — Estimator (optimal)
— — — Predictor (optimal)
—©— Estimator (tracker)
—&— Predictor (tracker)
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Fig. 5. Comparison between the proposed scheme and camvahsiolutions
with respect to means squared error as a function of mability

T T T
—©— Estimator (3 km/h)
—&— Estimator (30 km/h)

25 —+— Estimator (120 km/h)  |§
—#*— MMSE (3,30,120 km/h)
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2| i
]
2 151 1
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Fig. 6. Comparison between the proposed scheme and camvansiolutions
with respect to means squared error as a function of theIsigtiaterference
ratio.

V. CONCLUSIONS
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We have presented a solution to pilot contamination {r116]
channel estimation, which is a major challenge in massive
MIMO systems. It is based on a combination of a pilot
sequence hopping scheme and a modified Kalman filter. T[ﬁ@
pilot sequence hopping scheme involves random shuffling of
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