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Abstract—For uplink large-scale MIMO systems, linear mini- ~ order is high [[7] (e.g., 128 antennas at the BS with 64 QAM
mum mean square error (MMSE) signal detection algorithm is  modulation), the complexity is still unaffordable. Anothe
near-optimal but involves matrix inversion with high complexity. category is based on the tabu search (TS) algorithm derived

In this paper, we propose a low-complexity signal detection e e .
algorithm based on the successive overrelaxation (SOR) nieid from artificial intelligencel[8], such as the layered tabarsé

to avoid the complicated matrix inversion. We first prove a (LTS) algorithm [9]. This kind of algorithms utilizes theed
special property that the MMSE filtering matrix is symmetric ~ of local neighborhood search to estimate the transmittpubasi

positive definite for uplink large-scale MIMO systems, whiti  and limits the selection of neighborhood by a tabu list. When
is the premise for the SOR method. Then a low-complexity e neighborhood range is appropriately small and the iabu |

iterative signal detection algorithm based on the SOR methd . . .
as well as the convergence proof is proposed. The analysisIS carefully designed, the complexity is acceptable fogéar

shows that the proposed scheme can reduce the computationaiscale MIMO systems, but it suffers from a non-negligible
complexity from O(K?) to O(K?), where K is the number performance loss compared to the optimal ML detector. To
of users. Finally, we verify through simulation results tha the make a trade-off between the performance and complexity,
proposed algorithm outperforms the recently proposed Neurann - e an resort to linear signal detection algorithms, such

series approximation algorithm, and achieves the near-ojrnal . .-
performance of the classical MMSE algorithm with a small &S the zero-fprcmg (Zl_:) and minimum mean square error
number of iterations. (MMSE) algorithms, which are near-optimal for uplink multi
user large-scale MIMO systenis [4]. However, these algmosth
l. INTRODUCTION involve unfavorable inversion of a matrix of large size, who
Large-scale multiple-input multiple-output (MIMO) is con complexity is still high for large-scale MIMO systems. Very
sidered as a key technology for future wireless communicacently, to reduce the complexity of matrix inversior, J[10
tions [1]. Unlike the traditional small-scale MIMO techngly proposed the Neumann series approximation algorithm to
(e.g., at most 8 antennas in LTE-A), large-scale MIMO exconvert the matrix inversion into a series of matrix-vector-
ploits a very large number of antennas (e.g., 128 antennadiplications. However, only marginal reduction in comptgx
even more) at the base station (BS) to simultaneously seocan be achieved.
multiple user equipments (UE<)I[2]. It has been theordjical In this paper, we propose a matrix inversion-less signal
proved that large-scale MIMO can provide potential opportaletection algorithm with low complexity based on the SOR
nity to increase the spectrum and energy efficiency by ordenethod [11] for large-scale MIMO systems. We first prove
of magnitude[[B]. that the MMSE filtering matrix is symmetric positive definite
However, some challenging problems have to be solvedftr uplink large-scale MIMO systems, according to which we
realize such attractive merits of large-scale MIMO in pi@et propose to exploit the SOR method to avoid the complicated
One of them is the practical signal detection algorithm i@ thmatrix inversion. We also prove the convergence of the pro-
uplink [4]. The optimal detector is the maximum likelihoodposed signal detection algorithm to guarantee its fedsibil
(ML) detector whose complexity exponentially increasethwiin practice. We verify through simulation results that the
the number of transmit antennas, which makes it impractigaoposed algorithm can efficiently solve the matrix invensi
for large-scale MIMO systems. To achieve the (close) ogtimproblem in an iterative procedure until the desired dedecti
ML detection performance with reduced complexity, severatcuracy is attained. To the best of our knowledge, this vigrk
non-linear signal detection algorithms have been proposéuk first one to utilize the SOR method for the signal detectio
One typical category is based on the sphere decoding (SB)uplink large-scale MIMO systems.
algorithm [5], such as the fixed-complexity sphere decoding The rest of the paper is organized as follows. Sedcfibon I
(FSD) algorithm [[6]. This kind of algorithms uses the unbriefly describes the system model. Secfiah Il specifies the
derlying lattice structure of the received signal and cdes proposed low-complexity signal detection algorithm, thge
the most promising approach to achieve the ML detectiawith the convergence proof and the complexity analysis. The
performance with reduced complexity. It performs well fosimulation results of the bit error rate (BER) performance
the conventional small-scale MIMO systems, but when thtere provided in Sectiob IV. Finally, conclusions are drawn
dimension of the MIMO systems is large or the modulatioim Section[ V.
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Notation We use lower-case and upper-case boldface letteld. L ow-COMPLEXITY SIGNAL DETECTION FOR UPLINK
to denote vectors and matrices, respectively;, (), ()71, LARGE-SCALE MIMO
and |-| denote the transpose, conjugate transpose, matrix in-I thi i first ial v of | i
version, and absolute operators, respectivielyf-} andIm{-} 1 tis Section, we Tirst prove a special property ot ‘arge

denote the real part and imaginary part of a complex numb%(r:ale MIMO systems that the MMSE filtering matrix is

. o : . -~ “symmetric positive definite. Based on this property, we then
respectively; Finallyl ; represents thé/ x N identity matrix. propose a low-complexity signal detection algorithm il

the SOR method to iteratively achieve the MMSE estimate
without matrix inversion. The convergence proof is also ad-
ressed. Finally, we provide the complexity analysis of the
roposed algorithm to show its advantage over conventional
schemes.

Il. SYSTEM MODEL

We consider a uplink large-scale MIMO system employing
N antennas at the BS to simultaneously seiesingle-
antenna UEs[]2],[14]. Usually we havé&v >> K, e.g.,
N =128 and[_( N 16_have been consm!ered inl (4]. . A. Matrix inversion-less signal detection utilizing SORnoel

The transmitted bit streams from different users are first _ .
encoded by the channel encoder and then mapped to Smenllke the conventional (Sma”'scale) MIMO SyStemS Wlth
bols by taking values from a modulation alphabet. L&mall number of antennas, large-scale MIMO systems enjoy a
Se = [Se.1,- - Se.i]” denote the transmitted signal vectoppecial property that the column vectors of the channelirmatr
from all K users, andd, € C¥N*X denote the flat Rayleigh are asymptotically orthogonall[4]. Based on that, we prove
fading channel matrix, whose entries are assumed to l}b@t the MMSE fllterlng matrix is Symmetric pOSitive definite
independently and identically distributed (i.i.d.) witrerp In the followingLemma 1.

mean and unit vari;smcEI[Z]. Then the received signal veciofmma 1. For uplink large-scale MIMO systems, the MMSE
Ye = [Ye15- e at the BS can be represented 8 fjjtering matrix W is symmetric positive definite

ye=H_ s.+n., (@)} Proof: Since the complex-valued MIMO system model has
been converted into the real-valued one, the transpose of
wheren,. = [n. 1, - -, n.n]? is the noise vector whose entriesnatrix and the conjugate transpose of matrix will be the same
are i.i.d and follow the distributio@ (0, o2). e.g.,G = HYH = HTH. Thus, we have
For signal detection, the complex-valued system model (1) T’ T .
can be converted into a corresponding real-valued one as G'=(HH) =H H=G, (6)

which indicates that the Gram matr& is symmetric. Mean-
while, for uplink large-scale MIMO systems, the column

wherey = [Re{y.} Im{y.}]” is of size 2N x 1, accord- vectors of the real-valued channel mattixare asymptotically
- _ E ur _ ’ 7 orthogonal [[4], i.e., the equatioilq =0 has an unique
ingly s=[Re{s.} Im{s.}]", n=[Re{n.} Im{n.}]", : A

and solution, which is the2K x 1 zero vector. Thus, for any
2K x 1 non-zero real-valued vectat we have

y = Hs +n, (2)

H— Re{H.} —Im{H_.} 3)

© L Im{Her  Re{Hc} [,y o (Hr)"Hr =" Gr > 0, (7)

At the BS, after the channel matritd has been obtained which implies thatG is positive definite. Considering (6)
through time-domain and/or frequency-domain training pand (7), we can conclude that the Gram ma@x=H"H
lots [12] [13], the task of signal detection is to recover thig symmetric positive definite. Finally, as the noise var&n
transmitted signal vectos from the received signal vectors? is positive, the MMSE filtering matritW = G + o2Ix
y. It has been proved that the linear MMSE signal detection (5) is symmetric positive definite, too. [ |
algorithm is near-optimal for uplink multi-user large-Eea  The special property that the MMSE filtering matr
MIMO systems|[[4], and the estimate of the transmitted signi@l uplink large-scale MIMO systems is symmetric positive

vectors can be obtained by definite inspires us to exploit the SOR method to efficiently
. . ) Cern L solve (4) with low complexity. The SOR method is used to
S=H"H+oLk) H'y=Wy, (4)  solve N-dimension linear equatioAx = b, where A is the

o ) N x N symmetric positive definite matrixx is the N x 1
where y = Hy, and the MMSE filtering matrixW is  gojution vector, andb is the N x 1 measurement vector.
denoted as Unlike the traditional method that directly computds 'b

W =G + ¢’Iyg, (5) to obtainx, the SOR method can efficiently solve the linear
equation in an iterative manner without the complicatedrixat
where G = H”H is the Gram matrix. The computationalinversion. Since matriXA is symmetric positive definite, we
complexity of the direct matrix inversioW —! is O(K?), can decompose it into a diagonal componBx, a strictly
which is high for large-scale MIMO systems. lower triangular componerdt , and a strictly upper triangular



componentL’ . Then the SOR iteration can be describediccording to the definition of eigenvalue, we have

as (L] C L 1D‘11D D-LT A 14
«(+1) r=( +E ) (E —D-L)r=Ar, (14)

~(La+ D) (- 1DA- 15

) (i>+b] (8) wherer is an arbitrary2K x 1 non-zero real-valued vector.
x )
w

Note that (14) can be also presented as

yvher_e the superscript=0,1,2,- - - dethes the number Qf (lD D-LT)r= (L + lD))\nr. (15)
iterations, andw represents the relaxation parameter, which w w
plays an important role in the convergence and the conveegefultiply both sides of (15) by will yield
rate. Note that whem = 1, the SOR method is the same as 1 1
the well known Gauss-Seidel methad[11], which means that /(=D -D - LT)r = \,r" (L + —D)r. (16)
the Gauss-Seidel method is a special case of the SOR method. w w
We will discuss the selection of the relaxation parametén  Then we take transpose on both sides of (16), and another
detail later in SectiofL TV. equation can be obtained as

Due to the MMSE filtering matri®W is symmetric positive
definite for uplink large-scale MIMO systems as proved in

Lemma 1, we can also decomposy’ as Note thatD = D7 asD is a diagonal matrix. Add (16) and
W=D+L+L7T, (9) (17) will lead to

rT(lD —D—-L)r =\ (LT + lD)r. (17)
w w

where D, L, and L” denote the diagonal component, the r <(3 ~9D-L- LT> =\ rT(LT+L+3D)r (18)

strictly lower triangular component, and the strictly uppe w " w '

triangular component oW, respectively. Then we can UtilizeSubstituting (9) into (18), we have

the SOR method to estimate the transmitted signal vectsr

below (1- )\n)(% 1 Dr = (1A W, (19)
S(ZH):(L‘F%DY1 [((%—1)D—LT) S(Z)+$’] , (10) since the MMSE filtering matrixXW is positive definite as

proved above, the diagonal matiiX is positive definite, too.

wheres(?) denotes the initial solution, which is usually set a¥hen we haver’Dr > 0 and r” Wr > 0. Besides, we also

a2K x 1 zero vector without loss of generalify [11]. Then thehave(% —1)>0if 0 <w < 2. Thus, we can conclude that

solution to the signal detection problem (4) can be solved By — \,,)(1 + \,,) > 0, which means

the SOR method according to
[An] < 1. (20)

1 ) 1 .
(L"‘ED)S(ZH) =y+ ((E —1)D~ LT) sU. (1) Substituting (20) into (13), we can assert th&C) < 1, so
_ ] ] the SOR iteration (11) is convergent. [ |
As (L+D) is a lower triangular matrix, one can solve the 1t s worth pointing out that another different proof of
equation (11) to O_btaiﬂ(zﬂ) with low complexity as will be | emma 2 can be found in[14, Theorem 11.2.3], which utilizes
addressed in Sectignllll-C. Next we will prove the convergen e orthogonal transformation with high complexity to dbta
of the proposed signal detection based on the SOR methog,q convergence proof, while our method directly expldies t

B. Convergence proof definition of eigenvalue, which is simpler than the existing
method [14].
Lemma 2. For uplink large-scale MIMO systems, the signal
detection algorithm using the SOR method is convergent when
the relaxation parametew satisfies) < w < 2. The computational complexity in terms of required number
) . B 11/ 1 T of multiplications is analyzed in this part. It can be founoi
d zr(()gf;i-véeD(;??;?\(/jvher(eI(lj—i;swc]aDLll)e d (avg ]?he i]tgratilcl)n)maant(rjix. (11) that the computational complexity of thiéh iteration

. . : of the proposed signal detection algorithm originates from
Then the SOR iteration (11) can be rewritten as solving the linear equation. Considering the definitionInf

st = cs™ +d. (12) L, andL”, the solution can be presented as

Computational complexity analysis

The spectral radius of the iteration mati® is defined  s&™ = (1 — w)s()
- i = w . i i
as the non-negative numbg(C) | Jnax [An|, where ), i (G — Z meksé +1) Z Wm,ks;(c)), 1)

denotes thexth eigenvalue ofC. The necessary and sufficient Winm k<m k>m
conditions for the convergence of (12) is that the spectral m k=12, 2K,
radius should satisfy [11, Theorem 7.2.2]

©) ol < 1 (13) where sﬁ,?, sﬁ,i“), and g,, denote themth element of
P = max n .

19n S5k s, s+ and y in (4), respectively, andV,, denotes



the mth row and kth column entry of W. The required -+ | 8 Proposed detection algorithm, N=64, k=8
— . . 5 (z) 355'591 —+&— Proposed detection algorithm, N=128, K=16
number of multiplications in the computation 0f — w)sy, = & — MMSE with exact matrix inversion, N=64, K=8
~ 41 3 .
and o —(Gm — > meksgf ) > Wm,ksgcl)) is 1 and

— % — MMSE with exact matrix inversion, N=128, K=16
k<m k>m
2K + 1, respectively. Therefore the computation of each ele-
ment ofs(“+1) require2 K + 2 times of multiplications. Since
there ar@2K elements ins'“t1), the overall required number
of multiplications is4K? + 4K.

BER

TABLE |
COMPUTATIONAL COMPLEXITY

Conventional Neumann series  Proposed signal detection

approximation algorithm[10] algorithm
i=2 12K2 — 4K 8K?2 + 8K
i= 8K?3 +4K? — 2K 12K2 + 12K
i= 16K3 — 4K? 16K?2 + 16K S4
i=25 24K3 — 12K?2 4+ 2K 20K2 4 20K 10 02 04 06 08 1 12 14 16 18

w

Tablel:l_compares_ the.complegity of the conventional NeL,L-lg. 1. BER performance of the proposed SOR-based signakiitmt
mann series approximation algorithm[10] and the proposed algorithm against the relaxation parameterwhere SNR = 4 dB and = 3.

gorithm based on the SOR method. Since the complexity of the
classical MMSE algorithm i€)(K?3), we can conclude from
Table[] that the conventional Neumann series approximatior
algorithm can reduce the complexity fro(K?) to O(K?)

when the number of iterations is= 2, but the complexity is

still O(K?) wheni > 3. To ensure the approximation perfor-
mance, usually a large value ofis required to approach the

final MMSE solutions as will be verified later in Sectidn 1V. .
So the overall complexity is almost the same as the MMSE &
algorithm, which means only marginal reduction in compiexi

10°

can be achieved. However, we can observe that the complexit ~ © ~Neumann series approximation [10], i=2

X i 9 X — B - Neumann series approximation [10], i=3

of the proposed algorithm i® (k) for arbitrary number of 10°*|| = & = Neumann series approximation [10], i=5
iterations. And even foi = 2, the proposed algorithm enjoys e e cteston aortton, 3
a lower complexity than the conventional ohel[10]. —A—ar&r;fe‘#tsetemifn a:qm_ithm, i=5
oy . —_— with exact matrix inversion

Additionally, we can observe from (21) that the computation _,|L= % - optima ML detecion algorithm
of s\5™) utilizes st for k =1,2,---,m —1 ands\” for o 1 2 3 4

. . L . SNR (dB
l=m,m+1,---,2K, which is similar to the Gauss-Seidel @®)

method [11]. Then, two another benefits can be expected. Fig. 2. BER performance comparison whahx K = 64 x 8.
Firstly, after s&™) has been obtained, we can use it to

overwrite s\ which is useless in the next computation oflgorithm with complicated but exact matrix inversion is

S(ifl) Consequently, only one storage vector of siZé x 1 included as the benchmark for comparison. Besides, toyverif
m . ’

is required; secondly, whenincreases, the solution to (11)the near-optimal performance of the MMSE algorithm, the
becomes closer to the final MMSE solutién Thus s{:t?) performance of the optimal ML detection algorithm is also

can exploits the elements ngrl) fork =1,2,---,m — 1that provided. We consider two large-scale MIMO systems with

have already been computed in the current iteration to medyY > & = 64 x 8 and NV x K = 128 x 16, respectively. The
more reliable result than the conventional algorithni [10lyo Medulation scheme of 64 QAM is adopted. The rate-1/2 in-
utilizing all the elements o(?) in the previous iteration. Thus, dustry standard convolutional code with generator polyiatsn

a faster convergence rate can be expected, and the requitédo 1710] is employed, and a random interleaver is also
number of iterations to achieve a certain estimation aayura!/Sed to combat the burst error. The Rayleigh fading channel
becomes smaller. Based on these two special advantages ofiRdel is considered. After multi-user signal detectiorg th
SOR method, the overall complexity of the proposed a|gmithest|mated signal vector is used to extract the soft infoionat

can be reduced further. (by calculate the log-likelihood ratios (LLRs)) for softgut
Viterbi decoder for channel decoding.
IV. SIMULATION RESULTS Fig. 1 shows the BER performance of the proposed SOR-

To verify the performance of the proposed signal detectidrased signal detection algorithm against the relaxatioarpa
algorithm, we provide the BER simulation results comparesterw, where the signal-to-noise ratio (SNR) is 4 dB, and the
with the recently proposed Neumann series approximatioamber of iterations i$ = 3. As shown in Fig. 1, BERs of the
algorithm [10]. The BER performance of the classical MMSIEIMSE algorithm are2.8854 x 1072 for N x K = 64 x 8,



— © — Neumann series approximation [10], i=2
— B - Neumann series approximation [10], i=3
10°H = A - Neumann series approximation [10], i=5
—6— Proposed detection algorithm, i=2
—&— Proposed detection algorithm, i=3
—A— Proposed detection algorithm, i=5
—— MMSE with exact matrix inversion

- % — Optimal ML detection algorithm

0 1 2 3 4 5 6
SNR (dB)

Fig. 3. BER performance comparison whahx K = 128 x 16.

complexity near-optimal signal detection algorithm based
the SOR method in the uplink. The SOR-based algorithm
can iteratively realize the MMSE solution without compli-
cated matrix inversion, which can reduce the complexitynfro
O(K?) to O(K?). We also prove the convergence of the
proposed algorithm, and simulation results show that it can
achieve the near-optimal performance of the classical MMSE
algorithm with a small number of iterations. Moreover, the
idea of utilizing the SOR method to efficiently realize matri
inversion with low complexity can be extended to other signa
processing problems in wireless communications, suches th
precoding in the large-scale MIMO systems.
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relaxation parameters. We can observe that the BER curve
againstw looks like a parabola, and fortunately the optimal[1
w for both systems is 1.05. Furthermore, we have conducte
intensive simulations of different large-scale MIMO syste
configurations and found that the systems with fix®dK [2l
(e.g.,N/K = 8in Fig. 1) will share the same optimal selection
of w, which indicates that we can easily obtain the optimal [
after the system dimension$ and K have been fixed.

The BER performance comparison between the convery]
tional Neumann series approximation algorithin1[10] and
the proposed SOR-based signal detection algorithm when
N x K =64x8and N x K = 128 x 16 are shown in Fig. [5]
2 and Fig. 3, respectively, wheredenotes the number of
iterations. It is clear that the BER performance of bottg;
algorithms improves with the increased number of iteration
However, when the same iteration numbeilis used, the
proposed algorithm outperforms the conventional one foh bo
systems. Moreover, as we can observe from Fig. 2, the BER
performance of the proposed algorithm whier 3 is almost (8]
the same as that of the conventional one when5, which

1R
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