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Abstract—For uplink large-scale MIMO systems, linear mini-
mum mean square error (MMSE) signal detection algorithm is
near-optimal but involves matrix inversion with high complexity.
In this paper, we propose a low-complexity signal detection
algorithm based on the successive overrelaxation (SOR) method
to avoid the complicated matrix inversion. We first prove a
special property that the MMSE filtering matrix is symmetric
positive definite for uplink large-scale MIMO systems, which
is the premise for the SOR method. Then a low-complexity
iterative signal detection algorithm based on the SOR method
as well as the convergence proof is proposed. The analysis
shows that the proposed scheme can reduce the computational
complexity from O(K3) to O(K2), where K is the number
of users. Finally, we verify through simulation results that the
proposed algorithm outperforms the recently proposed Neumann
series approximation algorithm, and achieves the near-optimal
performance of the classical MMSE algorithm with a small
number of iterations.

I. I NTRODUCTION

Large-scale multiple-input multiple-output (MIMO) is con-
sidered as a key technology for future wireless communica-
tions [1]. Unlike the traditional small-scale MIMO technology
(e.g., at most 8 antennas in LTE-A), large-scale MIMO ex-
ploits a very large number of antennas (e.g., 128 antennas or
even more) at the base station (BS) to simultaneously serve
multiple user equipments (UEs) [2]. It has been theoretically
proved that large-scale MIMO can provide potential opportu-
nity to increase the spectrum and energy efficiency by orders
of magnitude [3].

However, some challenging problems have to be solved to
realize such attractive merits of large-scale MIMO in practice.
One of them is the practical signal detection algorithm in the
uplink [4]. The optimal detector is the maximum likelihood
(ML) detector whose complexity exponentially increases with
the number of transmit antennas, which makes it impractical
for large-scale MIMO systems. To achieve the (close) optimal
ML detection performance with reduced complexity, several
non-linear signal detection algorithms have been proposed.
One typical category is based on the sphere decoding (SD)
algorithm [5], such as the fixed-complexity sphere decoding
(FSD) algorithm [6]. This kind of algorithms uses the un-
derlying lattice structure of the received signal and considers
the most promising approach to achieve the ML detection
performance with reduced complexity. It performs well for
the conventional small-scale MIMO systems, but when the
dimension of the MIMO systems is large or the modulation

order is high [7] (e.g., 128 antennas at the BS with 64 QAM
modulation), the complexity is still unaffordable. Another
category is based on the tabu search (TS) algorithm derived
from artificial intelligence [8], such as the layered tabu search
(LTS) algorithm [9]. This kind of algorithms utilizes the idea
of local neighborhood search to estimate the transmitted signal
and limits the selection of neighborhood by a tabu list. When
the neighborhood range is appropriately small and the tabu list
is carefully designed, the complexity is acceptable for large-
scale MIMO systems, but it suffers from a non-negligible
performance loss compared to the optimal ML detector. To
make a trade-off between the performance and complexity,
one can resort to linear signal detection algorithms, such
as the zero-forcing (ZF) and minimum mean square error
(MMSE) algorithms, which are near-optimal for uplink multi-
user large-scale MIMO systems [4]. However, these algorithms
involve unfavorable inversion of a matrix of large size, whose
complexity is still high for large-scale MIMO systems. Very
recently, to reduce the complexity of matrix inversion, [10]
proposed the Neumann series approximation algorithm to
convert the matrix inversion into a series of matrix-vectormul-
tiplications. However, only marginal reduction in complexity
can be achieved.

In this paper, we propose a matrix inversion-less signal
detection algorithm with low complexity based on the SOR
method [11] for large-scale MIMO systems. We first prove
that the MMSE filtering matrix is symmetric positive definite
for uplink large-scale MIMO systems, according to which we
propose to exploit the SOR method to avoid the complicated
matrix inversion. We also prove the convergence of the pro-
posed signal detection algorithm to guarantee its feasibility
in practice. We verify through simulation results that the
proposed algorithm can efficiently solve the matrix inversion
problem in an iterative procedure until the desired detection
accuracy is attained. To the best of our knowledge, this workis
the first one to utilize the SOR method for the signal detection
in uplink large-scale MIMO systems.

The rest of the paper is organized as follows. Section II
briefly describes the system model. Section III specifies the
proposed low-complexity signal detection algorithm, together
with the convergence proof and the complexity analysis. The
simulation results of the bit error rate (BER) performance
are provided in Section IV. Finally, conclusions are drawn
in Section V.
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Notation: We use lower-case and upper-case boldface letters
to denote vectors and matrices, respectively;(·)T , (·)H , (·)−1,
and |·| denote the transpose, conjugate transpose, matrix in-
version, and absolute operators, respectively;Re{·} andIm{·}
denote the real part and imaginary part of a complex number,
respectively; Finally,IN represents theN×N identity matrix.

II. SYSTEM MODEL

We consider a uplink large-scale MIMO system employing
N antennas at the BS to simultaneously serveK single-
antenna UEs [2], [4]. Usually we haveN >> K, e.g.,
N = 128 andK = 16 have been considered in [4].

The transmitted bit streams from different users are first
encoded by the channel encoder and then mapped to sym-
bols by taking values from a modulation alphabet. Let
sc = [sc,1, · · ·, sc,K ]T denote the transmitted signal vector
from all K users, andHc ∈ CN×K denote the flat Rayleigh
fading channel matrix, whose entries are assumed to be
independently and identically distributed (i.i.d.) with zero
mean and unit variance [2]. Then the received signal vector
yc = [yc,1, · · ·, yc,N ]T at the BS can be represented as

yc=Hcsc+nc, (1)

wherenc = [nc,1, · · ·, nc,N ]T is the noise vector whose entries
are i.i.d and follow the distributionCN (0, σ2).

For signal detection, the complex-valued system model (1)
can be converted into a corresponding real-valued one as

y = Hs+ n, (2)

wherey = [Re{yc} Im{yc}]T is of size 2N × 1, accord-
ingly s = [Re{sc} Im{sc}]

T , n = [Re{nc} Im{nc}]
T ,

and

H =

[

Re{Hc} − Im{Hc}
Im{Hc} Re{Hc}

]

2N×2K

. (3)

At the BS, after the channel matrixH has been obtained
through time-domain and/or frequency-domain training pi-
lots [12] [13], the task of signal detection is to recover the
transmitted signal vectors from the received signal vector
y. It has been proved that the linear MMSE signal detection
algorithm is near-optimal for uplink multi-user large-scale
MIMO systems [4], and the estimate of the transmitted signal
vector ŝ can be obtained by

ŝ = (HHH+ σ2I2K)−1HHy = W−1ŷ, (4)

where ŷ = HHy, and the MMSE filtering matrixW is
denoted as

W = G+ σ2I2K , (5)

where G = HHH is the Gram matrix. The computational
complexity of the direct matrix inversionW−1 is O(K3),
which is high for large-scale MIMO systems.

III. L OW-COMPLEXITY SIGNAL DETECTION FOR UPLINK

LARGE-SCALE MIMO

In this section, we first prove a special property of large-
scale MIMO systems that the MMSE filtering matrix is
symmetric positive definite. Based on this property, we then
propose a low-complexity signal detection algorithm utilizing
the SOR method to iteratively achieve the MMSE estimate
without matrix inversion. The convergence proof is also ad-
dressed. Finally, we provide the complexity analysis of the
proposed algorithm to show its advantage over conventional
schemes.

A. Matrix inversion-less signal detection utilizing SOR method

Unlike the conventional (small-scale) MIMO systems with
small number of antennas, large-scale MIMO systems enjoy a
special property that the column vectors of the channel matrix
are asymptotically orthogonal [4]. Based on that, we prove
that the MMSE filtering matrix is symmetric positive definite
in the following Lemma 1.

Lemma 1. For uplink large-scale MIMO systems, the MMSE
filtering matrixW is symmetric positive definite.

Proof: Since the complex-valued MIMO system model has
been converted into the real-valued one, the transpose of
matrix and the conjugate transpose of matrix will be the same,
e.g.,G = HHH = HTH. Thus, we have

GT = (HTH)T = HTH = G, (6)

which indicates that the Gram matrixG is symmetric. Mean-
while, for uplink large-scale MIMO systems, the column
vectors of the real-valued channel matrixH are asymptotically
orthogonal [4], i.e., the equationHq = 0 has an unique
solution, which is the2K × 1 zero vector. Thus, for any
2K × 1 non-zero real-valued vectorr, we have

(Hr)
T
Hr = rTGr > 0, (7)

which implies thatG is positive definite. Considering (6)
and (7), we can conclude that the Gram matrixG =HTH

is symmetric positive definite. Finally, as the noise variance
σ2 is positive, the MMSE filtering matrixW = G+ σ2I2K
in (5) is symmetric positive definite, too.

The special property that the MMSE filtering matrixW
in uplink large-scale MIMO systems is symmetric positive
definite inspires us to exploit the SOR method to efficiently
solve (4) with low complexity. The SOR method is used to
solveN -dimension linear equationAx = b, whereA is the
N ×N symmetric positive definite matrix,x is the N × 1
solution vector, andb is the N × 1 measurement vector.
Unlike the traditional method that directly computesA−1b

to obtainx, the SOR method can efficiently solve the linear
equation in an iterative manner without the complicated matrix
inversion. Since matrixA is symmetric positive definite, we
can decompose it into a diagonal componentDA, a strictly
lower triangular componentLA, and a strictly upper triangular



componentLT
A

. Then the SOR iteration can be described
as [11]

x(i+1)

= (LA+
1

w
DA)−1

[(

(
1

w
−1)DA−LT

A

)

x(i)+b

]

,
(8)

where the superscripti = 0, 1, 2, · · · denotes the number of
iterations, andw represents the relaxation parameter, which
plays an important role in the convergence and the convergence
rate. Note that whenw = 1, the SOR method is the same as
the well known Gauss-Seidel method [11], which means that
the Gauss-Seidel method is a special case of the SOR method.
We will discuss the selection of the relaxation parameterw in
detail later in Section IV.

Due to the MMSE filtering matrixW is symmetric positive
definite for uplink large-scale MIMO systems as proved in
Lemma 1, we can also decomposeW as

W = D+ L+ LT , (9)

where D, L, and LT denote the diagonal component, the
strictly lower triangular component, and the strictly upper
triangular component ofW, respectively. Then we can utilize
the SOR method to estimate the transmitted signal vectors as
below

s(i+1)=(L+
1

w
D)−1

[(

(
1

w
−1)D−LT

)

s(i)+ŷ

]

, (10)

wheres(0) denotes the initial solution, which is usually set as
a 2K × 1 zero vector without loss of generality [11]. Then the
solution to the signal detection problem (4) can be solved by
the SOR method according to

(L+
1

w
D)s(i+1) = ŷ +

(

(
1

w
− 1)D− LT

)

s(i). (11)

As (L+ 1
w
D) is a lower triangular matrix, one can solve the

equation (11) to obtains(i+1) with low complexity as will be
addressed in Section III-C. Next we will prove the convergence
of the proposed signal detection based on the SOR method.

B. Convergence proof

Lemma 2. For uplink large-scale MIMO systems, the signal
detection algorithm using the SOR method is convergent when
the relaxation parameterw satisfies0 < w < 2.

Proof: We defineC = (L+ 1
w
D)−1( 1

w
D−D− LT ) and

d = (L+ 1
w
D)−1ŷ, whereC is called as the iteration matrix.

Then the SOR iteration (11) can be rewritten as

s(i+1) = Cs(i) + d. (12)

The spectral radius of the iteration matrixC is defined
as the non-negative numberρ(C) = max

1≤n≤2K
|λn|, whereλn

denotes thenth eigenvalue ofC. The necessary and sufficient
conditions for the convergence of (12) is that the spectral
radius should satisfy [11, Theorem 7.2.2]

ρ(C) = max
1≤n≤2K

|λn| < 1. (13)

According to the definition of eigenvalue, we have

Cr = (L+
1

w
D)−1(

1

w
D−D− LT )r = λnr, (14)

wherer is an arbitrary2K × 1 non-zero real-valued vector.
Note that (14) can be also presented as

(
1

w
D−D− LT )r = (L +

1

w
D)λnr. (15)

Multiply both sides of (15) byrT will yield

rT (
1

w
D−D− LT )r = λnr

T (L+
1

w
D)r. (16)

Then we take transpose on both sides of (16), and another
equation can be obtained as

rT (
1

w
D−D− L)r = λnr

T (LT +
1

w
D)r. (17)

Note thatD = DT asD is a diagonal matrix. Add (16) and
(17) will lead to

rT
(

(
2

w
− 2)D− L− LT

)

r=λnr
T (LT+L+

2

w
D)r. (18)

Substituting (9) into (18), we have

(1 − λn)(
2

w
− 1)rTDr = (1 + λn)r

TWr. (19)

Since the MMSE filtering matrixW is positive definite as
proved above, the diagonal matrixD is positive definite, too.
Then we haverTDr > 0 and rTWr > 0. Besides, we also
have( 2

w
− 1) > 0 if 0 < w < 2. Thus, we can conclude that

(1− λn)(1 + λn) > 0, which means

|λn| < 1. (20)

Substituting (20) into (13), we can assert thatρ(C) < 1, so
the SOR iteration (11) is convergent.

It is worth pointing out that another different proof of
Lemma 2can be found in [14, Theorem 11.2.3], which utilizes
the orthogonal transformation with high complexity to obtain
the convergence proof, while our method directly exploits the
definition of eigenvalue, which is simpler than the existing
method [14].

C. Computational complexity analysis

The computational complexity in terms of required number
of multiplications is analyzed in this part. It can be found from
(11) that the computational complexity of theith iteration
of the proposed signal detection algorithm originates from
solving the linear equation. Considering the definition ofD,
L, andLT , the solution can be presented as

s(i+1)
m = (1 − w)s(i)m

+
w

Wm,m

(ŷm −
∑

k<m

Wm,ks
(i+1)
k −

∑

k>m

Wm,ks
(i)
k ),

m, k = 1, 2, · · ·2K,

(21)

where s
(i)
m , s

(i+1)
m , and ŷm denote themth element of

s(i), s(i+1), and ŷ in (4), respectively, andWm,k denotes



the mth row and kth column entry ofW. The required
number of multiplications in the computation of(1 − w)s

(i)
m

and w
Wm,m

(ŷm −
∑

k<m

Wm,ks
(i+1)
k −

∑

k>m

Wm,ks
(i)
k ) is 1 and

2K + 1, respectively. Therefore the computation of each ele-
ment ofs(i+1) requires2K + 2 times of multiplications. Since
there are2K elements ins(i+1), the overall required number
of multiplications is4K2 + 4K.

TABLE I
COMPUTATIONAL COMPLEXITY

Conventional Neumann series
approximation algorithm [10]

Proposed signal detection
algorithm

i = 2 12K2
− 4K 8K2 + 8K

i = 3 8K3 + 4K2
− 2K 12K2 + 12K

i = 4 16K3
− 4K2 16K2 + 16K

i = 5 24K3
− 12K2 + 2K 20K2 + 20K

Table I compares the complexity of the conventional Neu-
mann series approximation algorithm [10] and the proposed al-
gorithm based on the SOR method. Since the complexity of the
classical MMSE algorithm isO(K3), we can conclude from
Table I that the conventional Neumann series approximation
algorithm can reduce the complexity fromO(K3) to O(K2)
when the number of iterations isi = 2, but the complexity is
still O(K3) when i ≥ 3. To ensure the approximation perfor-
mance, usually a large value ofi is required to approach the
final MMSE solution̂s as will be verified later in Section IV.
So the overall complexity is almost the same as the MMSE
algorithm, which means only marginal reduction in complexity
can be achieved. However, we can observe that the complexity
of the proposed algorithm isO(K2) for arbitrary number of
iterations. And even fori = 2, the proposed algorithm enjoys
a lower complexity than the conventional one [10].

Additionally, we can observe from (21) that the computation
of s(i+1)

m utilizes s
(i+1)
k for k = 1, 2, · · ·,m− 1 and s

(i)
l for

l = m,m+ 1, · · ·, 2K, which is similar to the Gauss-Seidel
method [11]. Then, two another benefits can be expected.
Firstly, after s(i+1)

m has been obtained, we can use it to
overwrite s

(i)
m which is useless in the next computation of

s
(i+1)
m+1 . Consequently, only one storage vector of size2K × 1

is required; secondly, wheni increases, the solution to (11)
becomes closer to the final MMSE solution̂s. Thus s

(i+1)
m

can exploits the elements ofs(i+1)
k for k = 1, 2, · · ·,m− 1 that

have already been computed in the current iteration to produce
more reliable result than the conventional algorithm [10] only
utilizing all the elements ofs(i) in the previous iteration. Thus,
a faster convergence rate can be expected, and the required
number of iterations to achieve a certain estimation accuracy
becomes smaller. Based on these two special advantages of the
SOR method, the overall complexity of the proposed algorithm
can be reduced further.

IV. SIMULATION RESULTS

To verify the performance of the proposed signal detection
algorithm, we provide the BER simulation results compared
with the recently proposed Neumann series approximation
algorithm [10]. The BER performance of the classical MMSE
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Fig. 1. BER performance of the proposed SOR-based signal detection
algorithm against the relaxation parameterw, where SNR = 4 dB andi = 3.
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Fig. 2. BER performance comparison whenN ×K = 64× 8.

algorithm with complicated but exact matrix inversion is
included as the benchmark for comparison. Besides, to verify
the near-optimal performance of the MMSE algorithm, the
performance of the optimal ML detection algorithm is also
provided. We consider two large-scale MIMO systems with
N ×K = 64× 8 and N ×K = 128× 16, respectively. The
modulation scheme of 64 QAM is adopted. The rate-1/2 in-
dustry standard convolutional code with generator polynomials
[133o 171o] is employed, and a random interleaver is also
used to combat the burst error. The Rayleigh fading channel
model is considered. After multi-user signal detection, the
estimated signal vector is used to extract the soft information
(by calculate the log-likelihood ratios (LLRs)) for soft-input
Viterbi decoder for channel decoding.

Fig. 1 shows the BER performance of the proposed SOR-
based signal detection algorithm against the relaxation param-
eterw, where the signal-to-noise ratio (SNR) is 4 dB, and the
number of iterations isi = 3. As shown in Fig. 1, BERs of the
MMSE algorithm are2.8854× 10−3 for N ×K = 64× 8,
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Fig. 3. BER performance comparison whenN ×K = 128 × 16.

and 2.7656× 10−3 for N ×K = 128× 16, respectively,
which are the targets to be approached by selecting the optimal
relaxation parameters. We can observe that the BER curve
againstw looks like a parabola, and fortunately the optimal
w for both systems is 1.05. Furthermore, we have conducted
intensive simulations of different large-scale MIMO system
configurations and found that the systems with fixedN/K
(e.g.,N/K = 8 in Fig. 1) will share the same optimal selection
of w, which indicates that we can easily obtain the optimalw
after the system dimensionsN andK have been fixed.

The BER performance comparison between the conven-
tional Neumann series approximation algorithm [10] and
the proposed SOR-based signal detection algorithm when
N ×K = 64× 8 andN ×K = 128× 16 are shown in Fig.
2 and Fig. 3, respectively, wherei denotes the number of
iterations. It is clear that the BER performance of both
algorithms improves with the increased number of iterations.
However, when the same iteration numberi is used, the
proposed algorithm outperforms the conventional one for both
systems. Moreover, as we can observe from Fig. 2, the BER
performance of the proposed algorithm wheni = 3 is almost
the same as that of the conventional one wheni = 5, which
indicates that a faster convergence rate can be achieved by
the proposed SOR-based signal detection algorithm. As we
have addressed in Section III-C, a faster convergence rate
means smaller number of iterations is required to achieve a
certain estimation accuracy, so the complexity of the proposed
algorithm can be reduced further.

Meanwhile, we can observe from Fig. 2 and Fig. 3 that
the MMSE algorithm is near-optimal compared to the optimal
ML detection algorithm, and the proposed algorithm without
the complicated matrix inversion can achieve the near-optimal
BER performance of the MMSE algorithm when the number
of iterations is large (e.g.,i = 3 in Fig. 2 and Fig. 3).

V. CONCLUSIONS

In this paper, by fully exploiting a special channel prop-
erty of the large-scale MIMO systems, we propose a low-

complexity near-optimal signal detection algorithm basedon
the SOR method in the uplink. The SOR-based algorithm
can iteratively realize the MMSE solution without compli-
cated matrix inversion, which can reduce the complexity from
O(K3) to O(K2). We also prove the convergence of the
proposed algorithm, and simulation results show that it can
achieve the near-optimal performance of the classical MMSE
algorithm with a small number of iterations. Moreover, the
idea of utilizing the SOR method to efficiently realize matrix
inversion with low complexity can be extended to other signal
processing problems in wireless communications, such as the
precoding in the large-scale MIMO systems.
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