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Abstract—In this paper, we consider the design of robust
linear precoders for MU-MISO systems where users have perfect
Channel State Information (CSI) while the BS has partial CSI. In
particular, the BS has access to imperfect estimates of the channel
vectors, in addition to the covariance matrices of the estimation
error vectors. A closed-form expression for the Average Minimum
Mean Square Error (AMMSE) is obtained using the second order
Taylor Expansion. This approximation is used to formulate two
fairness-based robust design problems: a maximum AMMSE-
constrained problem and a power-constrained problem. We
propose an algorithm based on convex optimization techniques
to address the first problem, while the second problem is tackled
by exploiting the close relationship between the two problems, in
addition to their monotonic natures.

Index Terms—AMMSE, Robust Design, Imperfect CSIT.

I. I NTRODUCTION

The utilization of multiple antennas at the Base Station
(BS) combined with simple single-antenna mobile devices
could tremendously increase the spectral efficiencies of wire-
less networks [1]. However, higher restrictions are imposed,
particularly in the Downlink (DL) mode where highly accu-
rate Channel State Information (CSI) is required at the BS.
While the ability to provide accurate CSI at the Transmitter
(CSIT) remains questionable, considerable work has been done
to increase the robustness of transmission schemes initially
designed assuming perfect CSI [2]–[6]. The robust design
problem formulation is highly influenced by the nature of the
CSI uncertainty, that varies depending on the context in which
it occurs. Two main models have emerged to quantify this
uncertainty: the stochastic-uncertainty model [2]–[5] and the
bounded-uncertainty model [2], [6]. In this paper, we consider
robust linear precoding design for Multiuser (MU) Multiple-
Input Single-Output (MISO) systems where CSIT uncertainty
is modeled stochastically. Particularly, the channel estimation
error vectors are assumed to have Gaussian distributed entries.
The performance metric considered is the Average Mean
Square Error (AMSE), i.e. the expectation of the MSE over
the distribution of the channel estimation error.

A similar setup was considered in [2] where the sum AMSE
was minimized subject to a total BS power constraint. While
this yields an improved overall performance across users,
it does not guarantee fairness. In [3], AMSE fairness-based
designs for MU Multiple-Input Multiple-Output (MIMO) sys-
tems were proposed. However, it is assumed in both [2] and [3]
that CSIT and CSIR have identical uncertainties. While this

assumption simplifies the AMSE based transceiver design, it
ignores the fact that CSIR is likely to have higher quality.
An AMSE UL-DL duality assuming imperfect CSIT and
perfect CSIR was established in [4]. Based on this duality, an
algorithm was proposed to minimize the sum AMSE, where
Monte-Carlo integration was applied to calculate expectations
that depend on perfect CSI. A similar problem was addressed
in [7], where various approximations were used instead of
Monte-Carlo integration.

Contribution: For MU-MISO systems with imperfect CSIT
and perfect CSIR, we derive a closed-form expression for a
Taylor approximation of the Average Minimum Mean Square
Error (AMMSE), i.e. the AMSE obtained when MMSE re-
ceivers are applied. This approximation is used to formulate
two fairness-based robust design problems:

1) The maximum AMMSE-constrained power minimiza-
tion problem referred to asP .

2) The power-constrained maximum AMMSE minimiza-
tion problem referred to asA.

We propose a fast-converging algorithm based on recursive
convex optimization, that solves the non-convex problemP .
Furthermore,A is solved by exploiting its relationship with
P ; an approach inspired by the work in [8].

ProblemP was addressed in [5] where the authors pro-
pose an algorithm based on the ideas in [4]. However, this
algorithm inherits the shortcoming of the approach in [4], i.e.
expectations are calculated in each iteration via Monte-Carlo
integration. Furthermore, convergence could be very slow due
to random initialization and limited per-iteration improvement.
Results comparing the algorithm propose in this paper to the
algorithm in [5] are given in Section V. The rest of the paper
is organized as follows: the system model is introduced in
Section II. The AMMSE approximation is derived in Section
III. Algorithms that solveP andA are proposed in Section
IV. Simulation results are presented in Section V and Section
VI concludes the paper

Notation: Boldface uppercase letters denote matrices, bold-
face lowercase letters denote column vectors and standard
letters denote scalars. The superscrips(·)T and (·)H denote
transpose and conjugate-transpose (Hermitian) operators, re-
spectively. tr(·), rank(·) and ‖ · ‖ are the trace, rank and
Euclidian norm operators, respectively.Ex{·} denotes the
expectation w.r.t the random variablex. Finally, X � 0
denotes thatX is a Hermitian positive semidefinite matrix.
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II. SYSTEM MODEL

We consider a BS equipped withNt ≥ K antennas
serving K active single-antenna users. The vector of zero-
mean mutually uncorrelated complex data symbols intended
for the K receivers is given ass = [s1, . . . , sK ]T ∈ CK

whereE{ssH} = I. s is linearly precoded into the transmit
vectorx ∈ C

Nt given as

x = Ps =

K
∑

i=1

pisi (1)

whereP = [p1, . . . ,pK ] is the precoding matrix andpi ∈
CNt is the precoding vector consisting of the beamforming
weights for theith user. The total transmit power is denoted as
Pt from which the transmit power constraint could be written
asE{xHx} = tr(PHP) ≤ Pt. For thekth user, the received
signal denoted byyk can be written as

yk = hH
k x+ nk (2)

wherehk ∈ CNt is the narrow-band channel impulse response
vector between thekth user and the BS.nk ∼ CN (0, σ2

nk
)

is the Additive White Gaussian Noise (AWGN) at thekth
user receiver with varianceσ2

nk
. Throughout the paper, it is

assumed that the noise variance is equal across all users i.e.
σ2
nk

= σ2
n, ∀k. To obtain an estimate of the intended symbol,

each user applies a scalar equalizergk to its received signal
such thatŝk = gkyk. The Mean Square Error (MSE) at the
output of thekth receiver is given as

εk = Es,nk
{|ŝk − sk|

2} (3)

= |gk|
2Tk − pH

k hkg
H
k − gkh

H
k pk + 1 (4)

whereTk =
∑K

i=1 p
H
i hkh

H
k pi + σ2

n. The Minimum Mean
Square Error (MMSE) receiver can be calculated by setting
the first derivative ofεk, with respect togk, to zero. This
yields: gk(hk) = pH

k hkT
−1
k . The notationgk(hk) is used to

emphasise the dependency on the channel statehk. In a block-
fading channel (which stays constant over a frame of symbols),
the kth user can calculateTk empirically as the average
received signal plus noise power i.e.Tk = Es,nk

{|yk|2}.
Furthermore, the scalar effective channelpH

k hk could be
estimated via DL training, from whichgk(hk) is calculated.
Plugginggk(hk) into (4), the MMSE can be written as

εMMSE
k = 1− T−1

k Rk (5)

whereRk = pH
k hkh

H
k pk.

A. CSIT Uncertainty

The channel vector of thekth user can be written as

hk = ĥk + h̃k (6)

whereĥk andh̃k denote the transmitter-side channel estimate
and the channel estimation error, respectively. In this work,
the channel estimation error is described statistically, i.e. the
entries ofh̃k are i.i.d Zero-Mean Circularly Symmetric Com-
plex Gaussian (ZMCSCG) withE{h̃kh̃

H
k } = σ2

ek
I. {σ2

ek
}Kk=1

and {ĥk}Kk=1 are assumed to be known by the transmitter,
i.e. the BS has first and second order statistics of the channel

wherehk ∼ CN
(

ĥk,Rek

)

andRek = σ2
ek
I. Furthermore, it

is important to note that all derivations in this paper can be
extended to arbitrary{Rek}

K
k=1.

III. AMMSE AND ITS APPROXIMATION

Given the statistical nature of the partial CSIT, the optimiza-
tion of the precoding vectors{pk}Kk=1 at the BS is carried out
in terms of the AMMSE. The AMMSE for thekth user is
denoted bȳεMMSE

k and can be written as

ε̄MMSE
k = 1− E

hk|ĥk
{T−1

k Rk}. (7)

For notational brevity,̄εMMSE
k will be referred to as̄εk in

the rest of the paper where the use of MMSE receivers is
implicit. Furthermore,E

hk|ĥk
{·} will be referred to asE{·}.

The MMSE and the Signal to Interference plus Noise Ratio
(SINR) are related such thatγk = 1−εk

εk
, whereγk denotes the

kth user’s SINR. This implies that guaranteeing an AMMSE
ensures a minimum average rate [5], and minimizing AMMSE
is equivalent to maximizing a lowerbound of the average
rate, i.e.E{log2(1 + γk)} = E{− log2(εk)} ≥ − log2(ε̄k).
Unfortunately, finding an exact closed-form expressions for (7)
is not easy. This difficulty can be addressed by following the
assumption in [2], i.e. ignoring the better quality of CSIR and
assuming that it is identical to CSIT. A closed-form expression
for AMMSE could be obtained and applied to formulateP and
A. However, ignoring CSIR yields a degraded performance
as we demonstrate in the next subsection. To account for
perfect CSIR, we propose a close-form expression for an
approximation of (7).

A. The Ignorant Approach

Using the available CSIT, both precoders and receivers
are optimized at the BS, which informs each user of its
corresponding receiver [2]. In this case, thekth receiver is
given asĝk(ĥk, σ

2
ek
) = pH

k ĥkT̄
−1
k where

T̄k = E{Tk} =
K
∑

i=1

pH
i (ĥkĥ

H
k + σ2

ek
I)pi + σ2

n. (8)

ĝk(ĥk, σ
2
ek
), which is clearly a function of imperfect CSI, is

obtained by minimizing the expectation of (4), i.e.E{εk}. The
resulting ignorant AMMSE can be written in closed-form as

ε̂k = 1− T̄−1
k (pH

k ĥkĥ
H
k pk). (9)

Remark 1. For any given{pk}
K
k=1, we could write

ε̄k = 1− E
{

T−1
k pH

k (ĥkĥ
H
k + h̃kh̃

H
k + ĥkh̃

H
k + h̃kĥ

H
k )pk

}

≤ 1− E
{

T−1
k

}

pH
k ĥkĥ

H
k pk (10)

≤ 1− T̄−1
k pH

k ĥkĥ
H
k pk (11)

= ε̂k

where (10) follows from the non-negativity of the termsT−1
k ,

pH
k h̃kh̃

H
k pk and pH

k (ĥkh̃
H
k + h̃kĥ

H
k )pk, and (11) follows

from Jensen’s inequality. Equality in (11) holds forσ2
ek

= 0.

Remark 2. For a set of precoding vectors{cpk}Kk=1 where
c is a positive power-scaling factor,{ε̄k}Kk and {ε̂k}Kk are



monotonically non-increasing inc. This is evident from plug-
ging {cpk}Kk=1 into (7) and (9).

Corollary 1. The ignorant approach yields a degraded per-
formance (higher AMMSEs or power) compared to the an
aware approach, that takes into account the perfect CSIR.
For a power-constrained problem (e.g.A), (11) holds even
if {pk}Kk=1 were ignorant precoders, i.e. optimally designed
w.r.t {ε̂k}Kk=1. For an AMMSE constrained problem (e.g.
P), Remark 2 implies that aware-optimization could achieve
the same AMMSEs for less power compared to ignorant-
optimization by using a down-scaled version of the optimum
ignorant precoders. Moreover, even if we assume that perfect
CSIR is utilized by users and ignorant AMMSEs are only used
as optimization metric at the BS, this corresponds to using
upperbounds of the AMMSEs which can be very loose under
certain channel conditions [7].

B. AMMSE Taylor Approximation

The expectation of a ratio of two random variables could
be approximated using the Taylor expansion [9]:
Lemma 1. For two random variablesx and y with expecta-
tions E{x} = x̄ and E{y} = ȳ, and y 6= 0, we could write

E

{

x

y

}

≈
x̄

ȳ
+

2(N−1)
∑

i=1

(−1)i
x̄µ0,i + µ1,i

ȳi+1
(12)

whereN is the order of the Taylor expansion and

µm,n = E{(x− x̄)m(y − ȳ)n}. (13)

The accuracy of the approximation in (12) increases asN
grows larger whereN → ∞ yields infinite accuracy. An
approximation of (7) is denoted bȳε(N)

k , where N is the
order of the Taylor expansion ofE{T−1

k Rk}. To maintain
tractability, we consider the second-order Taylor expansion
which could be written as [10]

ε̄
(2)
k =1−

(

R̄k

T̄k

−
cov{Rk, Tk}

T̄ 2
k

+
R̄kvar{Tk}

T̄ 3
k

)

=1−
R̄k

T̄k

+
E{RkTk}−R̄kT̄k

T̄ 2
k

−
R̄k(E{T

2
k}−T̄

2
k )

T̄ 3
k

(14)

where

R̄k = E{Rk} = pH
k (ĥkĥ

H
k + σ2

ek
I)pk. (15)

Each of the termsE{RkTk} and E{T 2
k} in (14) is an

expectation of a product of two quadratic forms in a random
vectorhk ∼ CN

(

ĥk, σ
2
ek
I
)

. Closed-form expressions can be
obtained using the following lemma:

Lemma 2. For a complex gaussian vectorx ∼ CN (x̂,C)
given asx = x̂+ x̃ wherex̂ is the mean and̃x has ZMCSCG
entries, and two quadratic forms defined asQ1 = xHAx and
Q2 = xHBx whereA,B � 0, we have

E{Q1Q2} = x̂HACBx̂+ x̂HBCAx̂+ tr(ACBC)

+ (tr(AC) + x̂HAx̂)(tr(BC) + x̂HBx̂). (16)

A sketch of the proof is provided in the Appendix. Using
Lemma 2, we could write

E{RkTk} = σ2
ek
ĥH
k QkQĥk + σ2

ek
ĥH
k QQkĥk

+ (σ2
ek
)2tr(QkQ) + R̄kT̄k (17)

E{T 2
k} = 2σ2

ek
ĥH
k Q2ĥk + (σ2

ek
)2tr(Q2) + T̄ 2

k (18)

whereQk = pkp
H
k andQ =

∑K
i=1 pip

H
i . Before plugging

(17) and (18) back into (14), we defineak andbk as follows

ak = ĥH
k (QkQ+QQk)ĥk + σ2

ek
tr(QkQ), ∀k (19)

bk = 2ĥH
k Q2ĥk + σ2

ek
tr(Q2), ∀k (20)

from which (14) could be written as

ε̄
(2)
k = 1−

R̄k

T̄k

+ ak
σ2
ek

T̄ 2
k

− bk
σ2
ek
R̄k

T̄ 3
k

(21)

= 1− αk

R̄k

T̄k

(22)

whereαk is given as
αk = 1−

σ2
ek

T̄ 2
k R̄k

(akT̄k − bkR̄k). (23)

It is clear that (22) reduces tōε(1)k if αk was replaced by1,
while ε̂k will be obtained if it was replaced by

(

|ĥH
k pk|2/R̄k

)

.

IV. AMMSE BASED ROBUST BEAMFORMING

In this section, the AMMSE approximation in (22) is used to
formulate the robust design problemsP andA. The approach
followed to solve those problems is based on the one proposed
in [8]. Particularly, the solution of the former problem is based
on conic optimization, where the later problem is solved by
exploiting the relationship between the two problems, and the
monotonic nature of their objective functions.

A. Power Minimization

The power minimization problem is denoted byP(ε̄0)
where 0 < ε̄0 < 1 is the given worst AMMSE constraint.
P(ε̄0) could be formulated as

P(ε̄0) : min
p1,...,pK

K
∑

i=1

‖pi‖
2

s.t. 1− αk

R̄k

T̄k

≤ ε̄0, ∀k ∈ {1, . . . ,K}. (24)

Introducing the non-negative real-valued slack variableP0,
and transforming the objective and constraints into the Linear
Matrix Inequality (LMI) form, (24) could be rewritten as

P(ε̄0) : min
P0,Q1,...,QK

P0

s.t.
K
∑

i=1

tr(Qi) 6 P0,

K
∑

i=1

tr
(

Qi

(

ĥkĥ
H
k +σ2

ek
I
)

)

+σ2
n≤

αk

1−ε̄0
tr
(

Qk

(

ĥkĥ
H
k +σ2

ek
I
)

)

,

Qk � 0,

rank(Qk) = 1, ∀k ∈ {1, . . . ,K}. (25)

Assuming thatP(ε̄0) is feasible, finding the optimalP0 in
(25) could be very challenging. This is mainly because the
second set of constraints are non-linear due to the presence



of αk, and the rank constraints are non-convex. To make
the problem less complicated, the non-linearity in the second
set of constraints could be eliminated by replacing{αk}Kk=1

with fixed, real and non-negative values denoted by{ᾱk}
K
k=1;

e.g. ᾱk could be set to1 where the AMMSE constraints
will be defined in terms of the first-order approximation of
{ε̄k}Kk=1, i.e. {ε̄(1)k }

K
k=1. The linearized problem is denoted by

Pl(ε̄0, {ᾱk}Kk=1) and takes1+K input arguments.Pl could be
made tractable by relaxing the rank constraints. The new lin-
earized and relaxed problem, referred to asPlr(ε̄0, {ᾱk}Kk=1),
is convex as it is composed of a linear objective function
and a combination of linear and semidefinite constraints. In
particular,Plr is a Semidefinite Program (SDP) which could
be solved efficiently using Interior-Point methods [11].

Due to the rank relaxation, theK matrices {Qk}Kk=1

obtained by solvingPlr will not be rank-1 in general. If they
are all rank-1, then the optimum solutions forPlr andPl co-
incide and{pk}Kk=1 could be obtained directly through eigen
decomposition. Otherwise, the power obtained by solvingPlr

is a lowerbound for the the optimum objective value ofPl.
This is due to the fact that relaxation extends the domain of
feasible{Qk}Kk=1 bearing the possibility of a solution with a
lower objective compared to the non-relaxed problem.

For eachk, if rank(Qk) > 1, thenpk could be chosen as the
principal eigenvector ofQk or generated using randomization
[12]. However, it is likely that the resulting beamforming
vectors will fail to satisfy the AMMSE constraints. In this
case, further optimization is required for power reallocation.
In the simulations carried out for this paper, it has been ob-
served that solvingPlr always gives rank-1 solutions. Further
investigations regarding this observation is left for future work.

Algorithm 1 Power Minimization

1: Initialize : n← 0, P (n)
0 ← 0, ᾱ(n)

k ← 1 ∀k
2: repeat
3: n← n+ 1
4: P

(n)
0 ← Plr(ε̄0, {ᾱ

(n−1)
k }Kk=1)

5: {Q
(n)
k }

K
k=1 ← argPlr(ε̄0, {ᾱ

(n−1)
k }Kk=1)

6: Q(n) ←
∑i=K

i=1 Q
(n)
i

7: update{ᾱ(n)
k }

K
k=1 using (23)

8: until |P (n)
0 − P

(n−1)
0 | < ǫP or n = nmax

Going back to the original power optimization problemP ,
a solution is proposed which involves solvingPlr recursively
over multiple iterations where the values of{ᾱk}Kk=1 are
updated in each iteration. Particularly, in thenth iteration,
Plr(ε̄0, {ᾱ

(n−1)
k }Kk=1) is optimally solved where{ᾱ(n−1)

k }Kk=1

are obtained using the solution ofPlr in the(n−1)th iteration.
This is carried out until a desired accuracy (specified byǫP ) is
achieved or a maximum number of iterationsnmax is reached.
The pseudo-code for this method is shown in Algorithm 1.
Although Algorithm 1 is not guaranteed to reach a global
optimum, simulations show that quick convergence with good
performance is achieved.

It is important to highlight that the presence of CSIT
uncertainty may impose a feasibility bound onε̄0. For perfect

CSI i.e.σ2
ek

= 0 ∀k, any ε̄0 ≥ 0 is feasible. This is directly
concluded fromγ0 ≤ ∞ in [8] where γ0 denotes the target
SINR. Feasibility for the case where CSIT is imperfect has
been addressed in [13]. Although no closed-form expression
has been derived (a QoS region could be obtained through
Monte-Carlo integration), it has been observed thatε̄0 is
lowerbounded above0. This could be confirmed by plugging
the scaled precoding vectors{cpk}Kk=1 into ε̄

(2)
k and driving

the transmit power up to infinity, i.e.c → ∞. Regardless of
the structure of{pk}Kk=1, for non-zero fixed{σ2

ek
}Kk=1 that

do not scale down with increased power, residual interference
terms will boundε̄(2)k above0.

B. Maximum AMMSE Minimization

The minimization of the maximum AMMSE problem is
referred to asA(Pt) wherePt denotes the total transmission
power constraint. This could be written as

A(Pt) : min
p1,...,pK

max
k

1− αk

R̄k

T̄k

s.t.
K
∑

i=1

‖pi‖
2 ≤ Pt. (26)

By introducing the non-negative real-valued slack variable
t0 and adding the constraints1 − αkT̄

−1
k R̄k ≤ t0 ∀k, the

objective in (26) could be written as:min t0. Following the
formulation of (25), (26) could be rewritten as

A(Pt) : min
t0,Q1,...,QK

t0

s.t.
K
∑

i=1

tr(Qi) 6 Pt,

K
∑

i=1

tr
(

Qi

(

ĥkĥ
H
k +σ2

ek
I
)

)

+σ2
n≤

αk

1−t0
tr
(

Qk

(

ĥkĥ
H
k +σ2

ek
I
)

)

,

Qk � 0,

rank(Qk) = 1, ∀k ∈ {1, . . . ,K}. (27)

At a first glance, (27) looks similar to (25). However, after
careful consideration one could see thatt0 in the second set
of constraints in (27) is an optimization variable, contrary to
ε̄0 in (25) which is a given input parameter. Same applies
to Pt and P0 where the former is a power constraint input
parameter in (27) while the later is the objective variable in
(25).Alr(Pt, {ᾱk}Kk=1) denotes a semi-linearized and relaxed
version ofA obtained by fixing{αk}Kk=1 to {ᾱk}Kk=1 and
relaxing the rank constraints. However, non-linearity is still
present in the constraints ofAlr due to the presence of the
objective variablet0. This could be tackled by exploiting the
relationship betweenPlr andAlr, and their monotonic nature.

Proposition 1. Plr andAlr are inverse problems such that:

Alr

(

P(ε̄0, {ᾱk}
K
k=1), {ᾱk}

K
k=1

)

= ε̄0 (28)

Plr

(

A(Pt, {ᾱk}
K
k=1), {ᾱk}

K
k=1

)

= Pt. (29)

In addition, the optimum objective ofPlr andAlr are mono-
tonic such that:

Plr(ε̄0, {ᾱk}
K
k=1) > Plr(ε̄

o
0, {ᾱk}

K
k=1)⇒ ε̄0 < ε̄o0 (30)



Alr(Pt, {ᾱk}
K
k=1) ≤ Alr(P

o
t , {ᾱk}

K
k=1)⇒ Pt > P o

t (31)

where ε̄0 and ε̄o0 are assumed to be feasible.

Proof of Proposition 1: This could be proved by con-
tradiction [8]. Due to the lack of space, the reader is referred
to the proof of [8, Theorem 3]. Contrary to [8, (67)], the left-
hand side inequality in (31) is not strict. This is due to the
possibility that1 − ᾱkT̄

−1
k R̄k will hit a floor at high SNRs,

as shown in Section IV-A, causing looseness to the power
constraint inAlr .

Corollary 2. Propositions 1 implies thatAlr(P0, {ᾱk}Kk=1)
could be optimally solved by carrying out a one-dimensional
bisections search over̄ε0 until the minimumε̄0 that satisfies
Plr(ε̄0, {ᾱk}

K
k=1) ≤ P0 is found.

The pseudo-code for the bisections search method is given
in Algorithm 2 where the value ofǫ0 determines the accuracy
of the solution. The stopping criteria in the bisection search

Algorithm 2 Max. AMMSE Minimization, fixed{ᾱk}Kk=1
1: Initialize : ε̄min ← 0, ε̄max ← 1
2: repeat
3: ε̄0 ← (ε̄min + ε̄max)/2
4: P̄0 ← Plr(ε̄0, {ᾱk}Kk=1)
5: if P̄0 > P0 or Plr(ε̄0, {ᾱk}Kk=1) is infeasiblethen
6: ε̄min ← ε̄0
7: else
8: ε̄max ← ε̄0
9: end if

10: until ε̄max − ε̄min ≤ ǫ0
11: t0 ← ε̄max

12: {Qk}Kk=1 ← argPlr(ε̄max, {ᾱk}Kk=1)

is expressed in terms of̄εmin and ε̄max rather thanP0 (as
in [8]) due to the possibility of power constraint looseness.
Furthermore,t0 is set to ε̄max and the solution is given by
argPlr(ε̄max, {ᾱk}Kk=1), as ε̄min could be infeasible. Follow-
ing the same recursive approach used to find a solution forP ,
a solution for problemA could be obtained using Algorithm 3.
As for Algorithm 1, quick convergence and good performance
could be achieved by Algorithm 3 despite unguaranteed global
optimality.

Algorithm 3 Max. AMMSE Minimization

1: Initialize : n← 0, t(n)0 ← 0, ᾱ(n)
k ← 1 ∀k

2: repeat
3: n← n+ 1
4: t

(n)
0 ← Alr(P0, {ᾱ

(n−1)
k }Kk=1)

5: {Q
(n)
k }

K
k=1 ← argAlr(P0, {ᾱ

(n−1)
k }Kk=1)

6: Q(n) ←
∑i=K

i=1 Q
(n)
i

7: update{ᾱ(n)
k }

K
k=1 using (23)

8: until |t(n)0 − t
(n−1)
0 | < ǫt or n = nmax

V. NUMERICAL RESULTS

We consider a BS equipped withNt = 4 antennas
serving K = 4 single-antenna users. Thekth user’s CSIT

consists of the first and second order statistics ofhk, i.e.
ĥk = σck [1, e

jϕk , . . . , ej(Nt−1)ϕk ]T with ϕk ∼ U(0, 2π), and
Rek = σ2

ek
I. The per-antenna average path gain is defined

asσ2
k = σ2

ck
+ σ2

ek
. This is similar to the model in [5] with

an added feature of controlling individual CSIT qualities,e.g.
σ2
ek

= 0 and σ2
ck

= 0 correspond to perfect and completely
random CSITs for userk, respectively. The average noise
variance across users is given asσ2

av =
1
K
ΣK

k=1
σ2

n

σ2

k

from which

the SNR is defined asPt

Kσ2
av

[3]. Throughout the simulations,
all users are assumed to have unity path gains except for user-
4 whose path gain is3 dB lower, i.e.σ2

1 = σ2
2 = σ2

3 = 1 and
σ2
4 = 0.5. This is reflected in the CSIT quality (by influencing

the UL pilot SNR or the feedback link capacity) yielding
σ2
e1

= σ2
e2

= σ2
e3

= 0.05 and σ2
e4

= 0.1. Therefore, user-4
is deemed theleast fortunate. σ2

n is fixed to1 where the SNR
would only vary withPt. For all simulation,{ĥk}Kk are kept
fixed where averaging is carried out over several independent
realizations of{h̃k}Kk=1. This corresponds to a scenario where
the CSIT (and the optimized transmitter) remain unchanged
over multiple (time or frequency) channel uses in which the
channel response changes. Similar performances are observed
for different realizations of{ĥk}Kk .

A. Power Minimization

The results obtained from solvingP(0.25) andP(0.4) using
Algorithm 1 (SDP-Algorithm) are compared to those obtained
using the AO-Algorithm [5, Algorithm 1]. The AO-Algorithm
uses4000 Monte-Carlo realization andǫP = 10−4 [5] is used
for both algorithms. The AMMSE of theleast fortunateuser
and the total required SNR are plotted against the number
of iterations in Fig. 1a and Fig. 1b, respectively. Since the
SDP-Algorithm does not involve Monte-Carlo integration, its
AMMSE is obtained by averaging over the same realizations
used for the AO-Algorithm. Fig. 1a shows that both algorithms
meet the AMMSE targets with high accuracy (the AMMSE
approximation yields an error less than0.5% for the SDP-
Algorithm). Furthermore, it is evident from Fig. 1b that both
algorithms yield similar minimized powers. However, the
SDP-Algorithm takes significantly less iterations to converge
compared to the AO-Algorithm (4 vs. 36 for P(0.4), and 6
vs. 91 for P(0.25)). Contrary to the AO-Algorithm (which is
randomly initialized), the first iteration of the SDP-Algorithm
solves the problem using the first-order Taylor approximation
of AMMSE yielding a good starting point for later iterations
and consequently, reducing the total number of iterations.

For each iteration, the SDP-Algorithm has to solve a SDP
with a linear objective function,K positive-semidefinite matrix
variables of sizeNt×Nt andK linear inequality constraints.
Such problems can be efficiently solved using SDP solvers
that apply Interior-Point methods (e.g. [14]) at a worst-case
complexity cost that scales withO(K3.5N6.5

t ) [15], [16].
However, the actual runtime complexity scales far slower with
K and Nt. On the other hand, the complexity of the AO-
Algorithm mainly comes from the numerical Monte-Carlo
integration. In each iteration, multiple operations that scale
with O(N2

t KM), O(NtK
2M) and O(NtKM) are carried
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out, whereM is the number of Monte-Carlo realizations. For
a practical system (e.g.Nt ≤ 8), the per-iteration complexity
of both algorithms is comparable and the actual runtime
complexity for the SDP-Algorithm is significantly smaller.

B. Maximum AMMSE Minimizations

The robust CSIR-aware optimization proposed in Algorithm
3 is compared to the ignorant optimization where the BS uses
the available CSIT to jointly design the precoding vectors and
the receivers which are forwarded to their corresponding users.
Results for the ignorant scheme are obtained using a slightly
modified version of Algorithm 2. Particularly, in step 4, the
AMMSE constraints ofPlr are changed tôεk ≤ ε̄0 ∀k, and
other changes are made accordingly. The two schemes are
compared in terms of the AMMSE and the Average Rate of
the least fortunateuser in Fig. 2a and Fig. 2b, respectively.
The gain from the utilization of perfect CSIR grows with SNR
as the channel estimation error becomes significant.

VI. CONCLUSION

In this paper, we proposed an AMMSE second order Tay-
lor approximation for linearly-precoded MU-MISO systems
with imperfect CSIT and perfect CSIR. This approximation
was used to formulate the two fairness-based robust design
problems: a power minimization problem (P) and an AMMSE
minimization problem (A). ProblemP was solved using a fast-
converging algorithm based on recursive convex optimization.
On the other hand, problemA was solved by combining

the recursive optimization approach with methods from [8].
This CSIR-aware robust design was shown to have better
performance compared to the ignorant design.

APPENDIX

Proof of Lemma 2:E{Q1Q2} could be written as the sum
of 16 terms consisting of linear, quadratic, cubic and quartic
forms of x̃. By extending some of the identities in [17, Ch.
8.2] (given for real Gaussian vectors) to ZMCSCG vectors,
each term could be found individually and the expression in
(16) is obtained.
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