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Abstract—In this paper, we consider the design of robust assumption simplifies the AMSE based transceiver design, it
linear precoders for MU-MISO systems where users have perf#  jgnores the fact that CSIR is likely to have higher quality.
Channel State Information (CSI) while the BS has partial CSl In An AMSE UL-DL duality assuming imperfect CSIT and

particular, the BS has access to imperfect estimates of thdannel . . .
vectors, in addition to the covariance matrices of the estimtion perfect CSIR was established In [4]. Based on this duality, a

error vectors. A closed-form expression for the Average Mitmum ~ @lgorithm was proposed to minimize the sum AMSE, where
Mean Square Error (AMMSE) is obtained using the second order Monte-Carlo integration was applied to calculate expémtat

Taylor Expansion. This approximation is used to formulate o  that depend on perfect CSI. A similar problem was addressed

faimess-based robust design problems: a maximum AMMSE- i, 71 \where various approximations were used instead of
constrained problem and a power-constrained problem. We . .
Monte-Carlo integration.

propose an algorithm based on convex optimization techniogs - o
to address the first problem, while the second problem is tadkd Contribution For MU-MISO systems with imperfect CSIT

by exploiting the close relationship between the two probles, in and perfect CSIR, we derive a closed-form expression for a
addition to their monotonic natures. Taylor approximation of the Average Minimum Mean Square
Index Terms—AMMSE, Robust Design, Imperfect CSIT. Error (AMMSE), i.e. the AMSE obtained when MMSE re-
ceivers are applied. This approximation is used to forneulat

two fairness-based robust design problems:
The utilization of multiple antennas at the Base Station 1) The maximum AMMSE-constrained power minimiza-
(BS) combined with simple single-antenna mobile devices tion problem referred to a®.
could tremendously increase the spectral efficiencies oé-wi  2) The power-constrained maximum AMMSE minimiza-
less networks[]1]. However, higher restrictions are implpse tion problem referred to agl.
particularly in the Downlink (DL) mode where highly accu\We propose a fast-converging algorithm based on recursive
rate Channel State Information (CSI) is required at the B8onvex optimization, that solves the non-convex problem
While the ability to provide accurate CSI at the Transmittedfurthermore, A is solved by exploiting its relationship with
(CSIT) remains questionable, considerable work has beee d@; an approach inspired by the work inl [8].
to increase the robustness of transmission schemes linitial Problem? was addressed in|[5] where the authors pro-
designed assuming perfect CSl [2]-[6]. The robust desigmse an algorithm based on the ideas[inh [4]. However, this
problem formulation is highly influenced by the nature of thalgorithm inherits the shortcoming of the approach’in [4, i
CSl uncertainty, that varies depending on the context ircivhiexpectations are calculated in each iteration via MontdeCa
it occurs. Two main models have emerged to quantify thistegration. Furthermore, convergence could be very sloa d
uncertainty: the stochastic-uncertainty model [2]-[5§lahe to random initialization and limited per-iteration impemwment.
bounded-uncertainty modell[2]./[6]. In this paper, we cdesi Results comparing the algorithm propose in this paper to the
robust linear precoding design for Multiuser (MU) Multiple algorithm in [5] are given in Sectidn]V. The rest of the paper
Input Single-Output (MISO) systems where CSIT uncertainiy organized as follows: the system model is introduced in
is modeled stochastically. Particularly, the channelhestion Sectior(Il. The AMMSE approximation is derived in Section
error vectors are assumed to have Gaussian distributadsentflll] Algorithms that solve? and A are proposed in Section
The performance metric considered is the Average Me@d Simulation results are presented in Secfidn V and Sactio
Square Error (AMSE), i.e. the expectation of the MSE ov@fllconcludes the paper
the distribution of the channel estimation error. Notation Boldface uppercase letters denote matrices, bold-
A similar setup was considered in [2] where the sum AMSface lowercase letters denote column vectors and standard
was minimized subject to a total BS power constraint. Whiletters denote scalars. The supersciip$ and (-) denote
this yields an improved overall performance across usetgnspose and conjugate-transpose (Hermitian) operatrs
it does not guarantee fairness. [ [3], AMSE fairness-basspectively.tr(-), rank(-) and || - || are the trace, rank and
designs for MU Multiple-Input Multiple-Output (MIMO) sys- Euclidian norm operators, respectivelli,.{-} denotes the
tems were proposed. However, it is assumed in hoth [2][and B{pectation w.r.t the random variable Finally, X = 0
that CSIT and CSIR have identical uncertainties. While thidenotes thaK is a Hermitian positive semidefinite matrix.

|I. INTRODUCTION
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Il. SYSTEM MODEL whereh;, ~ CN(Bk,Rek) andR., = o7 L. Furthermore, it
We consider a BS equipped with; > K antennas is important to r_lote that all derivations in this paper can be
serving K active single-antenna users. The vector of zer§Xtended to arbitraryRe, }i_ ;.
mean mutually uncorrelated complex data symbols intended
for the K receivers is given as = [s1,...,sx]7 € CK
whereE{ss’} = L. s is linearly precoded into the transmit
vectorx € CN¢ given as

Ill. AMMSE AND ITS APPROXIMATION

Given the statistical nature of the partial CSIT, the optani
tion of the precoding vectorgp,, } £, at the BS is carried out

K in terms of the AMMSE. The AMMSE for théth user is
x=Ps= Zpisi (1) denoted bye}MSE and can be written as
=1 ~MMSE -1
5 =1-E, « {T, 'Ry} @)
whereP = [py,...,px] is the precoding matrix ang, € g hilhy 174

C™+ is the precoding vector consisting of the beamformingFor notational brevityzMMSE will be referred to assy, in
weights for theith user. The total transmit power is denoted dke rest of the paper where the use of MMSE receivers is
P, from which the transmit power constraint could be writtermplicit. Furthermore,‘Ehkmk{-} will be referred to a¥{-}.
asE{xx} = tr(P#P) < P,. For thekth user, the received The MMSE and the Signal to Interference plus Noise Ratio
signal denoted by, can be written as (SINR) are related such that, = 1;% wherevy; denotes the
vk = i x + 1y @) kth user’'s SINR. This implies that guaranteeing an AMMSE
b ensures a minimum average rate [5], and minimizing AMMSE
whereh;, € CMt is the narrow-band channel impulse responsg equivalent to maximizing a lowerbound of the average
vector between théth user and the BSu, ~ CN(0,07) rate, i.e.E{logy(1 + vx)} = E{—logy(ex)} > —log, (k).
is the Additive White Gaussian Noise (AWGN) at thig¢h Unfortunately, finding an exact closed-form expression{Zp
user receiver with variance;,, . Throughout the paper, it is is not easy. This difficulty can be addressed by following the
assumed that the noise variance is equal across all usersasgumption in[[2], i.e. ignoring the better quality of CSIRda
on, = on, Vk. To obtain an estimate of the intended symbohssuming that it is identical to CSIT. A closed-form expiess
each user applies a scalar equaliggrto its received signal for AMMSE could be obtained and applied to formul@end
such thats, = gryr. The Mean Square Error (MSE) at the4. However, ignoring CSIR yields a degraded performance
output of thekth receiver is given as as we demonstrate in the next subsection. To account for
ek = Bsn,{[5k — skl*} (3) Perfect CSIR, we propose a close-form expression for an

approximation of[{I7).
= |gl*Tr — pi iy’ — grhi'pi +1 4

K g H ) . A. The Ignorant Approach
whereT;, = >.°, pi' hihp; + o7. The Minimum Mean . . .
Square Error (MMSE) receiver can be calculated by settingUSing the available CSIT, both precoders and receivers
the first derivative ofsj, with respect tog, to zero. This &€ opt|m|z_ed at tr_\e BS, Wh'Ch_ informs each user (?f Its
yields: gj.(hy) = pthka—1' The notationg (hy,) is used to corresponding receivel |[2]. In this case, thth receiver is

i ps 2\ _ oHp, 71
emphasise the dependency on the channel btattn a block- 9'Ven asgr(hy, o¢,) = py hyT)~ where

fading channel (which stays constant over a frame of symbols B K - ) )
the kth user can calculatd), empirically as the average Tp = E{Tx} = Y _p/ (hih{f + o2 I)p; + 07 (8)
received signal plus noise power i.8; = Es.,,{|lvx|*}. i=1

Furthermore, the scalar effective channgl'h, could be g (hy,, 02 ), which is clearly a function of imperfect CSI, is
estimated via DL training, from whicly(hy) is calculated. ghtained by minimizing the expectation bf (4), i{c;}. The

Plugginggy (hy) into @), the MMSE can be written as resulting ignorant AMMSE can be written in closed-form as
ek = 1T Ry 5) & = 1— T ' (p hehfpy). (9)
where Ry, = pj’hyh{/py. Remark 1. For any given{p;}X_,, we could write
A. CSIT Uncertainty &, = 1 — E{T; 'pt (hyhf! + hyhf’ + hyhf’ + hyhi)p,}
The channel vector of thith user can be written as <1- E{Tgl}pfﬁkﬁfpk (10)
h;, = h; + hy, (6) <1-T;'phhip, (11)

Whereﬁk andh; denote the transmitter-side channel estimate = €k

and the channel estimation error, respectively. In thiskwor - 1
the channel estimation error is described statisticaly, the where (1) follows from the non-negativity of the terffis ",

~ Hy, wWH Hm WH L WH
entries ofhy, are i.i.d Zero-Mean Circularly Symmetric Com—?k h’“;lk Pi and py; (}ll.’;thJr hlkthkgil ar?dld%foﬂo(\)/vs
plex Gaussian (ZMCSCG) with{h;h/'} = 02 I. {02 }i", rom Jensens inequality. Equaity 1 ) holds ief, = 0.

and {flk}szl are assumed to be known by the transmitteRemark 2. For a set of precoding vectofsp; }&_ , where
i.e. the BS has first and second order statistics of the chanads a positive power-scaling factofz,} and {£,}F are



monotonically non-increasing ia This is evident from plug- E{RcT:} = o— hk Qthk + Gekhk QQkhk

ging {cpx};—, into (@) and [9). + (02 )*tr(QrQ) + Ry Ty, (17)
Corollary 1. The ignorant approach yields a degraded per- E{T2} = 252 R Q%M + (02 )2tr(Q2) + T2 18

formance (higher AMMSESs or power) compared to the an {Tic} Te b Q7 + (0,) (Q ) S
aware approach, that takes into account the perfect CSihereQ;, = prp? and Q = Zl 1 Pip; . Before plugging
For a power-constrained problem (e.d), (I1) holds even (1) and [IB) back intd(14), we deflm andbk as follows

if {px}{<, were ignorant precoders, i.e. optimally designed ap = flf(QkQ + QQk)flk + o2 tr(QkQ), Vi (19)
w.rt {35 ,. For an AMMSE constrained problem (e.g. N ) oo

P), Remarl{® implies that aware-optimization could achieve b = 2hy; Q7hy + o, tr(Q7), ¥ (20)
the same AMMSEs for less power compared to ignoranfrom which [13) could be written as

optimization by using a down-scaled version of the optimum 2 Ry o? o2 Ry,
& =1- =4 ar= —bp—= (21)
ignorant precoders. Moreover, even if we assume that gerfec k Ty T2 T3
CSIR is utilized by users and ignorant AMMSESs are only used R k b
as optimization metric at the BS, this corresponds to using =1- akT’“ (22)
upperbounds of the AMMSESs which can be very loose under o T
certain channel conditions![7]. whereay, is given as 02
) . o = 1-— ) (aka — kak) (23)
B. AMMSE Taylor Approximation T? Ry
The expectation of a ratio of two random variables could is clear that[[2R) reduces @E) if a;, was replaced by,
be approximated using the Taylor expansion [9]: while £;, will be obtained if it was replaced bfh} py|2/Ry).

Lemma 1. For two random variables: and y with expecta-
tions E{z} = 7 and E{y} — 5, andy # 0, we could write IV. AMMSE BASED ROBUST BEAMFORMING
In this section, the AMMSE approximation in(22) is used to

f late the robust desi bl dA. Th h
E{ } z Z M (12) ormulate the robust design problerRsand.A. The approac

gt followed to solve those problems is based on the one proposed
in [8]. Particularly, the solution of the former problem iaded
where N is the order of the Taylor expansion and on conic optimization, where the later problem is solved by
fimn = E{(z — )™ (y — )" }. (13) exploiting the relationship between the two problems, dved t

The accuracy of the approximation in{12) increasesvas monotonic nature of their objective functions.

grows larger whereN — oo vyields infinite accuracy. An A. Power Minimization

L2 . _(N) :
approximation of [(7) is denoted by, ", where N is the The power minimization problem is denoted (&)

. 71 . .
order of the Taylor expansion dE{T; " Rx}. To maintain yhere( < 2, < 1 is the given worst AMMSE constraint.
tractability, we consider the second-order Taylor expamS|P( ») could be formulated as

which could be written as [10]

5(2) 1 @ B co{ Rk, Tx} Rkvar{Tk} P& Z leHQ
N 7 72 ™) e
72 Ri _ _
1 +E{Rka}2 R, Rk(E{T}? 13) (14) st 1— ak? <&, Vke{l,...,K}. (24)
T, 7 T; k
Introducing the non-negative real-valued slack variablg
where : o S .
" ) and transforming the objective and constraints into thesain
Ry = E{Ri} = p{/ (hsh} + o7 DPk (15)  Mmatrix Inequality (LMI) form, {24) could be rewritten as
Each of the termsE{R,T;} and E{7?} in (@4) is an P(5): min P
expectation of a product of two quadratlc forms in a random Po,Qu,- Qe
vectorhy, ~ CN(hk,aek I). Closed-form expressions can be
obtained using the following lemma: S.t. Ztr(Qi) < Fo,
Lemma 2. For a complex gaussian vector ~ CN(x,C) K -

. Y ~ ~A n A A 07 PPN

given asx = x +x Where_x is the mean and hasHZMCSCG Ztr(Qi(hkth‘Fng )+U721 < 1_kf tr(Qk(hkth+cr§k )’
entries, and two quadratic forms defined@s = x* Ax and €o

Q2 = x"Bx whereA, B > 0, we have Q. - 0,

E{Q:1Q2} = x" ACBx + x”"BCAx + tr((ACBC) rank(Qg) =1, Vke {l,...,K}. (25)

~H A~ ~HpA
+ (tr(AC) + X" AX)(r(BC) +x"Bx).  (16)  aAssuming thatP(c,) is feasible, finding the optimaPy in
A sketch of the proof is provided in the Appendix. Usind28) could be very challenging. This is mainly because the
Lemmal2, we could write second set of constraints are non-linear due to the presence



of ax, and the rank constraints are non-convex. To makeSl i.e.ogk = 0 Vk, any &y > 0 is feasible. This is directly
the problem less complicated, the non-linearity in the sdcoconcluded fromy, < oo in [8] where~y, denotes the target
set of constraints could be eliminated by replacfag.}X_, SINR. Feasibility for the case where CSIT is imperfect has
with fixed, real and non-negative values denoted by}% ; been addressed in [13]. Although no closed-form expression
e.g. a; could be set tol where the AMMSE constraints has been derived (a QoS region could be obtained through
will be defined in terms of the first-order approximation oMonte-Carlo integration), it has been observed thatis
{ex}1<,, i.e. {e\"}X . The linearized problem is denoted bylowerbounded above. This could be confirmed by plugging
Pi(20, {ax HE ) and taked + K input argumentsP; could be the scaled precoding vectofspy } X, into 5,(62) and driving
made tractable by relaxing the rank constraints. The new lithe transmit power up to infinity, i.e: — oco. Regardless of
earized and relaxed problem, referred toFas(zo, {a }f—,), the structure of{p.};—,, for non-zero fixed{c? }/—, that

is convex as it is composed of a linear objective functiotio not scale down with increased power, residual interfaen
and a combination of linear and semidefinite constraints. {erms will bounde‘f) above0.

particular,P;,. is a Semidefinite Program (SDP) which Coul%_ Maximum AMMSE Minimization

be solved efficiently using Interior-Point methods|[11]. T ) _
Due to the rank relaxation, théd matrices {Qx}X The minimization of the maximum AMMSE problem is

obtained by solvingP;, will not be rank-1 in general. If they referred to asA(F;) where P, denotes the total transmission
are all rank-1, then the optimum solutions 8, and P, co- Power constraint. This could be written as

incide and{p}%_, could be obtained directly through eigen A(P,): min max 1-— akﬁ

decomposition. Otherwise, the power obtained by solVing Pi-Pr K Tk

is a lowerbound for the the optimum objective value7at K )

This is due to the fact that relaxation extends the domain of S.t. Z lpill” < B (26)
feasible{Qx}_, bearing the possibility of a solution with a _ _ =1 _
lower objective compared to the non-relaxed problem. By introducing the non-negative real-valued slack vagabl

For eactk, if rank(Qy) > 1, thenpy, could be chosen as thefo and adding the constraints — a;. T, 'Ry < to Yk, the
principal eigenvector 0€);, or generated using randomizatiorPPiective in [26) could be written asuin . Following the
[12]. However, it is likely that the resulting beamformingormulation of [25), [(ZB) could be rewritten as
vectors will fail to satisfy the AMMSE constraints. In thisA(FP;) : min g
case, further optimization is required for power reall@amat fo Qe Qe
In the simulations carried out for this paper, it has been ob-

K
. . . S.t. t ) < P,
served that solving;, always gives rank-1 solutions. Further ; HQi) < P

investigations regarding this observation is left for fetwork. %
CLH 2 2 Ok P LH 2
Algorithm 1 Power Minimization Etr(gi(hkhk T )+0n§ 1_t0tr( (b +Uek1))’
1: Initialize : n « 0, P{™ « 0, a\™ « 1 vk Q. - 0,
2: repeat _
3 nntl rank(Qg) =1, Vke {l,...,K}. (27)
P0(”> — Pi (8o, {dl(c”*”}kK:l) At a first glance, [(27) looks similar t¢_(P5). However, after
{ngn)}szl = arg P, (5o, {ainfl)}kle) careful consideration one could see thatin the second set

4
5: (n) i=K ~(n) of constraints in[(27) is an optimization variable, confraw
60 QW31 Q; - o . ) .
Tk _ & in (28) which is a given input parameter. Same applies
! _upda(lie)z{ak (ik—:ﬁ using [23) to P, and P, where the former is a power constraint input
g until |[Fy™ — Fy" | < ep OF n = Timax parameter in[{27) while the later is the objective varialle i
Going back to the original power optimization probléty @3). Ai(P:, {au } i, ) denotes a semi-linearized and relaxed
a solution is proposed which involves solvifRy. recursively version of A obtained by fixing{ax}i—, to {ax}/—, and
over multiple iterations where the values éfy}X , are relaxing the rank constraints. However, non-linearity il s
updated in each iteration. Particularly, in the¢h iteration, present in the constraints of;. due to the presence of the
Pi(20, {a\" "V }E ) is optimally solved wherda\" "}/ | objective variablet. This could be tackled by exploiting the
are obtained using the solution B, in the (n—1)th iteration. relationship betwee®;, and.4;., and their monotonic nature.
This is carried out until a desired accuracy (specifiedbyis Proposition 1. P;,. and A;, are inverse problems such that:
achieved or a maximum number of iterations, is reached. o _ _
The pseudo-code for this method is shown in Algorithim 1. Aur (P(eo, {an}izn) {ar}iz) = 2o (28)
Although Algorithm[1 is not guaranteed to reach a global Pur (AP, {aw} o)), {antiey) = P (29)
optimum, simulations show that quick convergence with go
performance is achieved.
It is important to highlight that the presence of CSI
uncertainty may impose a feasibility bound an For perfect P (8o, {ar}rey) > P (85, {ar}ie,) = &0 < &5 (30)

‘iﬁ addition, the optimum objective &, and A;,. are mono-
.Itonic such that:



A (P {ar i) < A (PP {a}i,) = P, > P (31) consists of the first and second order statisticshef i.e.
whereé, and ¢j are assumed to be feasible. by = Uck[l 7%, ..., MDA with oy ~ U(0, 2m), and
R., = I The per antenna average path gain is defined
Proof of ProposmorEll This could be proved by con-asg2 = 52 + o2 . This is similar to the model in_[5] with
tradiction [8]. Due to the lack of space, the reader is refrr o, added feature of controlling individual CSIT qualitiesy.
to the proof of [8, Theorem 3]. Contrary tol [8, (67)], the left 2k -0 andcr = 0 correspond to perfect and completely
hand side inequality in(31) is not strict. This is due to theandom CSITs for usek, respectively. The _average noise

possibility that1 — a, 7, ' R will hit a floor at high SNRS, \,41iance across users is glvencés 1yK %% from which

as shown in Sectiobh TIVIA, causing looseness to the power
constraint inAj,.. the SNR is defined a = [3]. Throughout the simulations,

. o B all users are assumed to *have unity path galns except for user
Corollary 2. Propositiond1l implies that,, (P, {ax}& ) 4 whose path gain i8 dB lower, i.e.0? = 02 = 0% = 1 and
could be optimally solved by carrying out a one-dimension b — 0.5. This is reflected in the CSIT quality (by influencing
bisections search ovey until the minimumé, that satisfies the UL pilot SNR or the feedback link capacity) yielding
Pir (€0, {ar}iz,) < Po is found. 02 =02 =02 =005 ando? = 0.1. Therefore, user-4
The pseudo-code for the bisections search method is givérdeemed théeast fortunates? is fixed to1 where the SNR
in Algorithm[2 where the value of, determines the accuracywould only vary with P,. For aII simulation {hk}k are kept
of the solution. The stopping criteria in the bisection skar fixed where averaging is carried out over several independen
- —— . — realizations of{h; } X .. This corresponds to a scenario where
Algorlthrh 2 h/tax. AMMﬁE Minimization, fixed{ay };, the CSIT (anf(g th}ek olptimized transmitter) remain unchanged
1: Initialize : Emin < 0, Emax < 1

over multiple (time or frequency) channel uses in which the

2: repeat B channel response changes. Similar performances are edserv
& Zo ¢ (Emin + Emax)/2 for different realizations ofhy }X.

4 Py Pi(Eo {ar}i,) o

5. if Py > Py or Pp.(&o, {ax},) is infeasiblethen A. Power Minimization

6: Emin < €0 The results obtained from solvirfg(0.25) andP(0.4) using

7 else Algorithm[1 (SDP-Algorithm) are compared to those obtained
8: Emax < &0 using the AO-Algorithm[[5, Algorithm 1]. The AO-Algorithm

9: end if uses4000 Monte-Carlo realization andp = 10~* [5] is used

10: until &pax — Emin < €0 for both algorithms. The AMMSE of thieast fortunateuser

11: 1o ¢ Emax and the total required SNR are plotted against the number
12: {Qr}E, + arg P (Emax, {0k ) of iterations in Fig[lla and Fid._1b, respectively. Since the

SDP-Algorithm does not involve Monte-Carlo integratiots, i

is expressed in terms af,;n and énax rather thanP, (as AMMSE is obtained by averaging over the same realizations
in [8]) due to the possibility of power constraint loosenessised for the AO-Algorithm. Fid, 1a shows that both algorithm
Furthermore, is set toé,.x and the solution is given by meet the AMMSE targets with high accuracy (the AMMSE
arg Pu-(Emax, {0k 1 ,), asémin could be infeasible. Follow- approximation yields an error less tharb% for the SDP-

ing the same recursive approach used to find a solutiof®for Algorithm). Furthermore, it is evident from Fifg. 11b that hot

a solution for problem# could be obtained using Algorithinh 3. algorithms yield similar minimized powers. However, the
As for Algorithm[d, quick convergence and good performan@DP-Algorithm takes significantly less iterations to cagee
could be achieved by Algorithid 3 despite unguaranteed ¢lolmmmpared to the AO-Algorithm4(vs. 36 for P(0.4), and 6
optimality. vs. 91 for P(0.25)). Contrary to the AO-Algorithm (which is

Algorithm 3 Max. AMMSE Minimization randomly initialized), the first iteration of the SDP-Algim
: solves the problem using the first-order Taylor approxiorati

1: Initialize : n « 0, ¢ + 0, Oé(") «~ 1Vk of AMMSE vyielding a good starting point for later iterations
2: repeat and consequently, reducing the total number of iterations.

3 n<n+1 For each iteration, the SDP-Algorithm has to solve a SDP
4 t(n) <— A (P, {a" 1) with a linear objective functiork positive-semidefinite matrix

5 {Q }k L argAlr(Po, {a )}kK:l) variables of sizeV; x N; and K linear inequality constraints.

6: QM Z; fQ Such problems can be efficiently solved using SDP solvers
7 update{a!™}£_ using [ZB) that apply Interior-Point methods (e.%.s_léé]g at a worsteca

8 until |té") _tOn_l)l < € OF 11 = Nyyan complexity cost that scales witld(K=-°NP-°) [15], [16].

However, the actual runtime complexity scales far slowehwi
K and N;. On the other hand, the complexity of the AO-
V. NUMERICAL RESULTS Algorithm mainly comes from the numerical Monte-Carlo
We consider a BS equipped witlv; = 4 antennas integration. In each iteration, multiple operations thesle
serving K = 4 single-antenna users. Thah user's CSIT with O(N?KM), O(N;K2>M) and O(N;K M) are carried
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out, whereM is the number of Monte-Carlo realizations. For

a practical system (e.gV; < 8), the per-iteration complexity 7
of both algorithms is comparable and the actual runtimé
complexity for the SDP-Algorithm is significantly smaller.

B. Maximum AMMSE Minimizations (8]

The robust CSIR-aware optimization proposed in Algorithm
is compared to the ignorant optimization where the BS usdg]
the available CSIT to jointly design the precoding vectard a

) ) ) . [10]
the receivers which are forwarded to their correspondimgais
Results for the ignorant scheme are obtained using a sfightl
modified version of Algorithnil2. Particularly, in stép 4, thé'l]
AMMSE constraints ofP;, are changed t@, < & Vk, and [12

the recursive optimization approach with methods fror [8].
This CSIR-aware robust design was shown to have better
performance compared to the ignorant design.

APPENDIX
Proof of Lemm&l2:E{Q1Q-} could be written as the sum

of 16 terms consisting of linear, quadratic, cubic and dqoart
forms of x. By extending some of the identities in_[17, Ch.
8.2] (given for real Gaussian vectors) to ZMCSCG vectors,
each term could be found individually and the expression in
(18) is obtained.
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