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Abstract—This work is devoted to the analysis of the perfor-
mance of energy detection based spectrum sensing in the presence
of enriched fading conditions which are distinct for the large
number of multipath components and the lack of a dominant
components. This type of fading conditions are characterized
efficiently by the well known Nakagami−q or Hoyt distribution
and the proposed analysis is carried out in the context of thearea
under the receiver operating characteristics (ROC) curve (AUC).
Unlike the widely used probability of detection metric, theAUC
is a single metric and has been shown to be rather capable of
evaluating the performance of a detector in applications relating
to cognitive radio, radar systems and biomedical engineering,
among others. Based on this, novel analytic expressions are
derived for the average AUC and its complementary metric,
average CAUC, for both integer and fractional values of the
involved time-bandwidth product. The derived expressionshave a
tractable algebraic representation which renders them convenient
to handle both analytically and numerically. Based on this,they
are employed in analyzing the behavior of energy detection based
spectrum sensing over enriched fading conditions for different
severity scenarios, which demonstrates that the performance of
energy detectors is, as expected, closely related to the value of
the fading parameter q.

I. I NTRODUCTION

The detection of unknown signals has been an important
research topic over the past decades. This has been largely
required in the context of radar systems and more recently in
cognitive radio based communications which have attracted
a significant interest by both academia and industry due
to the prominent ability to increase the utilization of the
currently scarce spectrum resources. The operational principle
of detecting unknown signals is typically based on spectrum
sensing (SS) with energy detection (ED) constituting the most
simple and widely adopted method. The ED is based on the
deployment of a radiometer, which is a non-coherent detection
device that measures the energy level of a received signal
waveform over an observation time window. The obtained
measure is then compared to a pre-defined energy threshold
and based on this it is determined whether an unknown signal
is present or absent [1]–[5].

Detection of unknown signals over a flat band-limited Gaus-
sian noise channel was firstly addressed in [6] where analytic
expressions were proposed for the probability of detection,
Pd, and probability of false alarm,Pf , measures. These
performance metrics are based on the statistical assumption
that the decision statistics follow the central chi-squareand
the non-central chi-square distributions, respectively.A few
decades later, this problem was revisited in [7], [8] assum-
ing quasi-deterministic signals over fading channels. To this
effect, numerous studies analyzed the performance of energy
detectors under different communication and fading scenarios.
Specifically, the authors in [8] derived closed-form expressions
for the average probability of detection over Rayleigh, Rice
and Nakagami−m fading channels for both single-channel
and multi-channel scenarios. The ED performance in the case
of equal gain combining over Nakagami−m multipath fading
was reported in [9] while the performance in collaborative
spectrum sensing and in relay-based cognitive radio networks
was thoroughly investigated in [10]–[14]. In the same context,
a semi-analytic method for analyzing the performance of en-
ergy detection of unknown deterministic signals was reported
in [15] and is based on the moment-generating function (MGF)
method. This method was utilized in diversity methods in the
presence of Rayleigh, Rice and Nakagami−m fading in [15]
as well as for the useful case of correlated Rayleigh and Rician
fading channels in [16]. Finally, the detection of unknown
signals in low signal-to-noise-ratio (SNR) overK−distributed
(K), generalizedK (KG) as well as in generalized multipath
fading channels was analyzed in [17]–[31].

It is noted here that nearly all analyses and investiga-
tions on the behavior of spectrum sensing techniques are
based exclusively on the probability of detection and the
probability of false alarm performance measures. However,
another performance measure that is capable of evaluating
adequately the performance of energy detectors exists, theso
called area under the receiver operating characteristic curve
(ROC). This performance measure is denoted as AUC and
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it has been widely used in several disciplines of sciences
and engineering [32], [33] and the reference therein. The
distinct feature of this measure is that, contrary toPd, it
constitutes a single parameter measure and thus, it accounts
for the overall performance of the detector in a more general
manner. For example, thePd measure is expressed as:i) a
function of the instantaneous SNR,γ, for the unfaded case
or the average SNR,γ, for the faded case with fixed values
of Pf ; ii) a function of Pf with fixed values ofγ or γ.
Contrary to that, the AUC is expressed as a function ofγ
for the unfaded case orγ for the faded case. Therefore, the
AUC provides a more general insight on the overall behavior
and performance of a detector as a function ofγ andγ. Based
on this, the authors in [34]–[36], [38], [39] addressed the AUC
under different communication and fading scenarios. In more
details, the authors in [34]–[36] analyzed AUC in different
diversity schemes and multipath fading channels. Likewise,
investigation of AUC in amplify-and-forward relay scenarios
were given in [38] while the complementary area under the
ROC curve measure was proposed in [39].

It is also widely known that the last decades witnessed
numerous advances in wireless channel characterization and
modeling. In this context, the Nakagami−q or Hoyt dis-
tribution has been shown to be an accurate fading model
for accounting for various multipath fading scenarios. The
distinct feature of Hoyt fading model is that it is capable
of accounting for enriched multipath fading conditions in the
absence of any dominant component [37], [40]–[48] - and the
references therein. Nevertheless, in spite of its usefulness it
has not been explicitly considered in the context of energy
detection. Motivated by this, the present work is devoted
in analyzing the effect of Hoyt distributed multipath fading
in the performance of energy detectors. To this end, novel
analytic expressions are derived for the corresponding AUC
and CAUC measures for both integer and fractional values of
the involved time-bandwidth product. These expressions have
a relatively simple algebraic representation which constitutes
them relatively convenient to handle both analytically and
numerically. With the aid of these expressions, it is shown that
the performance of energy detection based spectrum sensing
is rather sensitive at the severity of the fading conditions. This
is particularly the case for moderate SNR values as even slight
variations ofq create an immediate effect on the value of AUC
and CAUC.

The remainder of this paper is organized as follows: The
system and channel model are described in Section II. The
area under the ROC curve and complementary area under
the ROC curve of the energy detector over Hoyt fading
channels are analyzed in Section III. Numerical results for
various communication scenarios and discussions are provided
in Section IV while closing remarks are given in Section V.

II. SYSTEM AND CHANNEL MODEL

A. Energy Detection-Based Spectrum Sensing

The received signal waveform in narrowband energy detec-
tion follows the standard binary hypothesis [16, eq. (1)] (and

the references therein),

r(t) =

{

n(t) : H0

hs(t) + n(t) : H1

(1)

where s(t) is an unknown deterministic signal andh, n(t)
denote the complex gain of the channel coefficient and an
additive white Gaussian noise (AWGN) process, respectively.
The samples ofn(t) are assumed to be zero-mean Gaussian
random variables with varianceN0W with W andN0 denot-
ing the single-sided signal bandwidth and a single-sided noise
power spectral density, respectively [16]. The hypothesisH1

refers to the case that an information signal is present whereas
H0 refers to the case that an information signal is absent. The
received signal is subsequently filtered, squared and integrated
over the time intervalT in [8, eq. (2)], namely,

y ,
2

N0

∫ T

0

| r(t) |2 dt. (2)

The output of the integrator is a measure of the energy of
the received waveform which constitutes a test statistic that
determines whether the received energy measure corresponds
only to the energy of noise (H0) or to the energy of both the
unknown deterministic signal and noise (H1). By denoting
the observation time bandwidth product asu = TW , the
test statistic follows the central chi-square distribution with
2u degrees of freedom under theH0 hypothesis and the non
central chi-square distribution with2u degrees of freedom
under theH1 hypothesis [6]. To this effect, the corresponding
probability density function (PDF) in the presence of AWGN
is expressed according to [8, eq. (3)], namely,

pY (y) =







1
2uΓ(u)y

u−1e−
y

2 : H0

1
2

(

y
2γ

)

u−1
2

e−
y+2γ

2 Iu−1

(√
2yγ

)

: H1

(3)

where γ , |h|2Es/N0 is the corresponding instantaneous
SNR, Es is the signal energy andΓ (.), In (.) denote the
gamma function and the modified Bessel function of the first
kind, respectively, [49]–[51], [53].

As already mentioned, an energy detector is largely charac-
terized by a predefined energy threshold,λ. This threshold is
particularly critical in the decision process and is promptly
associated to three measures that overall evaluate the per-
formance of the detector: i) the probability of false alarm,
Pf = Pr(y > λ | H0); ii) the probability of detection,
Pd = Pr(y > λ | H1) and iii) the probability of missed
detection,Pm = 1−Pd. The first two measures are deduced by
integrating (3) over the interval between the energy threshold
to infinity, {λ, ∞}, yielding [8],

Pf =
Γ
(

u, λ
2

)

Γ(u)
(4)

and
Pd = Qu(

√

2γ,
√
λ) (5)

where Qm(a, b) and Γ (., .) denote the generalized
Marcum−Q function and the upper incomplete gamma
function, respectively [1], [53].



B. AUC and CAUC Performance Metrics

The area under the ROC curve is a single parameter measure
that can be used to evaluate the overall performance of energy
detectors and therefore of spectrum sensing in cognitive radio
and radar systems. The AUC is defined as,

AUC = A(γ) ,

∫ 1

0

Pd(γ, λ)dPf (λ) (6)

and can be equivalently expressed as follows,

AUC = A(γ) = −
∫

∞

0

Pd(γ, λ)
∂Pf (λ)

∂λ
dλ. (7)

For the case thatPf (λ) andPd(γ, λ) follow the central chi-
square and the non central chi-square distributions, respec-
tively, the AUC can be expressed by [34, eq. (9)], namely,

A(γ) = 1−
u−1
∑

l=0

γle−
γ

2

l!2l
+

u−1
∑

l=1−u

(u)l 1F1

(

u+ l, 1 + l, γ2
)

l! 2u+l
(8)

where

(a)n ,
Γ(a+ n)

Γ(a)

denotes the Pochhammer symbol [50]. In the same context,
the complementary area under the ROC curve is given by,

CAUC = A′(γ) =

∫ 0

1

Pm(γ, λ)dPf (λ). (9)

Equation (9) can be re-written as follows,
∫ 0

1

Pm(γ, λ)dPf (λ) = −
∫ 1

0

Pm(γ, λ)dPf (λ) (10)

which can be equivalently expressed as,
∫ 1

0

[1− Pd(γ, λ)] dPf (λ) =

∫ 1

0

dPf (λ)−
∫ 1

0

Pd(γ, λ)dPf (λ)

(11)
Based on this and with the aid of (6) and (7), it follows that
CAUC = 1−AUC, i.e.

A′(γ) = 1−A(γ). (12)

A closed-form expression for CAUC for integer values ofu
is deduced by substituting (8) in (12) yielding [39, eq. (7)],

A′(γ) =

u−1
∑

l=0

γle−
γ

2

l!2l
−

u−1
∑

l=1−u

(u)l 1F1

(

u+ l, 1 + l, γ2
)

l! 2u+l
. (13)

It is recalled that (8) and (13) hold for integer values ofu.

C. The Hoyt (Nakagami−q) Fading Distribution

As already mentioned, the Hoyt fading model has been
shown to represent effectively the small-scale variationsof
an information signal in non-line-of-sight (NLOS) communi-
cation scenarios. Physically, this fading model accounts for
the case of enriched multipath fading with no presence of a
dominant component. The PDF of the instantaneous SNR in
Hoyt fading channels is given by [37, eq. (2.11)], namely,

pγ(γ) =
1 + q2

2qγ
e
−

(1+q
2)2γ

4q2γ I0

(

(1 − q4)γ

4q2γ

)

(14)

whereγ is the average SNR andq denotes the Nakagami−q
fading parameter, which is valid in the range0 < q ≤ 1.
Likewise, the CDF of the Hoyt model is given by [44, eq. (9)]

Pγ(γ) = Q1

(
√

(1− q4)(1− q)γ

8q(1 + q)γ
,

√

(1 + q4)(1 + q)γ

8q(1− q)γ

)

−Q1

(
√

(1 + q4)(1 + q)γ

8q(1− q)γ
,

√

(1− q4)(1 − q)γ

8q(1 + q)γ

)

(15)

and the corresponding MGF is expressed as [37, eq. (2.12)],

Mγ(s) =
1

√

1− 2sγ +
(

2sγq
1+q2

)2 (16)

in a simple form that involves only elementary function.

III. AUC AND CAUC OVER HOYT FADING CHANNELS

A. AUC for the Special Case thatu is a Real Positive Integer

Theorem 1. For γ ∈ R
+, u ∈ N and 0 < q ≤ 1, the

following closed-form expression is valid for the AUC over
Hoyt (Nakagami−q) fading channels,

AHoyt = 1−
u−1
∑

l=0

l
∑

i=0

(

l + u− 1

l − i

)

q1+2i2i+1−l−u γ i

(2γq2 + (1 + q2)2)i+1

(17)

× 2F1

(

i+ 1

2
,
i

2
+ 1; 1;

(1− q4)2

[(1 + q2)2 + 2q2γ ]
2

)

where
(

a

b

)

,
a!

b!(a− b)!
(18)

denotes the binomial coefficient and

2F1(a, b; c;x) ,=
∞
∑

l=0

(a)l(b)l
(c)l

xl

l!
(19)

is the Gauss hypergeometric function [50]–[53].

Proof: Whenu ∈ N, the AUC can be expressed according
to (8). Importantly, it can be also expressed in terms of the
generalized Laguerre polynomial,La

n(x), as follows [38],

A(γ) = 1−
u−1
∑

l=0

Lu
l

(

− γ
2

)

2l+ue
γ

2

. (20)

As a result, the average AUC over fading channels can be
expressed as,

A = 1−
u−1
∑

l=0

1

2l+u

∫

∞

0

Lu
l

(

−γ

2

)

e−
γ

2 pγ(γ)dγ (21)

wherepγ(γ) denotes the SNR PDF of the fading statistics and
∫

∞

0
pγ(γ)dγ , 1. For the case of Hoyt fading channels, one



needs to substitute (14) in (21). To this effect and by expanding
La
n(x) according to [53, eq. (8.970.1)] one obtains,

AHoyt = 1−
u−1
∑

l=0

l
∑

i=0

(

l + u− 1

l − i

)

1 + q2

i!qγ2l+i+u+1

(22)

×
∫

∞

0

γie
−γ

(

(1+q
2)2

4q2γ
+ 1

2

)

I0

(

(1− q4)γ

4q2γ

)

dγ.

Notably, the class of
∫

∞

0 xaexp(−bx)I0(cx)dx integrals can
be expressed in closed-form with the aid of [53, eq. (6.621.1)]
and [53, eq. (8.406.3)]. Therefore, by performing the necessary
change of variables and substituting in (22), equation (17)is
deduced, which completes the proof.

B. AUC for the Case thatu is an Arbitrary Positive Real

Theorem 2. For γ, u ∈ R
+ and 0 < q ≤ 1, the follow-

ing closed-form expression is valid for the AUC over Hoyt
(Nakagami−q) fading channels,

AHoyt =
∞
∑

l=0

q1+2l(1 + q2)γ (l + u)u 2F1

(

1, l+ 2u; 1 + u; 12
)

u!22u−l−1 (4γq2 + (1 + q2)2)l+1

× 2F1

(

l + 1

2
,
l

2
+ 1; 1;

(1− q4)2

(4γq2 + (1 + q2)2)
2

)

.

(23)

Proof: When the value of the time-bandwidth product is
arbitrary real, the AUC can be expressed as follows [36],

A(γ) =

∞
∑

l=0

γi(l + u)u
l!u!2l+2ueγ

2F1

(

1, l+ 2u; 1 + u;
1

2

)

. (24)

Thus, by averaging (24) over the fading statistics in (14) yields,

AHoyt =

∞
∑

l=0

(l + u)u(1 + q2)

l!u!2l+2u+1qγ
2F1

(

1, l+ 2u; 1 + u;
1

2

)

(25)

×
∫

∞

0

γie
−γ

(

1+ (1+q
2)2

4q2γ

)

I0

(

(1 − q4)γ

4q2γ

)

dγ.

The integral in (25) has the same algebraic form as the integral
in (22). Therefore, by making the necessary change of vari-
ables in [53, eq. (6.621.1)] and [53, eq. (8.406.3)], substituting
in (25) and carrying out some algebraic manipulations, one
obtains (23) thus, completing the proof.

C. CAUC for Positive Integer and Arbitrary Real Values ofu

As already mentioned, the CAUC is a complementary
measure to the AUC.

Corollary 1. For γ, 0 < q ≤ 1 and for the cases thatu ∈
N, the following expressions hold for the CAUC over Hoyt
(Nakagami−q) fading channels,

A′
Hoyt =

u−1
∑

l=0

l
∑

i=0

(

l + u− 1

l − i

)

q1+2i2i+1−l−u γ i

(2γq2 + (1 + q2)2)i+1

(26)

× 2F1

(

i+ 1

2
,
i

2
+ 1; 1;

(1 − q4)2

[(1 + q2)2 + 2q2γ ]2

)

Proof: Given thatA′(γ) = 1 − A(γ), it follows that
A′

Hoyt = 1−A′
Hoyt. Based on this, the proof is immediately

completed by substituting (17) and (23).
In the same context, an analytic expression can be derived

for the case of arbitrary value ofu.

Corollary 2. For γ, 0 < q ≤ 1 and for the cases thatu ∈
R

+, the following expressions hold for the CAUC over Hoyt
(Nakagami−q) fading channels,

A′
Hoyt = 1−

∞
∑

l=0

(1 + q2)γ (l + u)u 2F1

(

1, l + 2u; 1 + u; 12
)

u!22u−l−1q−1−2l (4γq2 + (1 + q2)2)l+1

(27)

× 2F1

(

l + 1

2
,
l

2
+ 1; 1;

(1− q4)2

(4γq2 + (1 + q2)2)2

)

.

Proof: The proof follows immediately by Corollary1.
To the best of the authors knowledge, equations (17), (23),

(26) and (27) have not been previously reported in the open
technical literature.

IV. N UMERICAL RESULTS

Having derived new analytic expressions for the AUC and
CAUC measures, this section is devoted to the analysis of
the respective behaviour of energy detection-based spectrum
sensing over Hoyt fading channels. The corresponding perfor-
mance is evaluated for different communication scenarios by
means ofAHoyt vsγ andA′

Hoyt vs γ curves. To this end, Fig.
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Fig. 1. AHoyt vs γ for i.i.d Hoyt (Nakagami−q) fading channels with
u = 5 and different values ofq.

1 demonstrates the average AUC as a function of the average
SNR for u = 5 and different values of the Nakagami−q
fading parameter. The special caseq = 1, which corresponds
to Rayleigh fading, is also depicted for comparison. Evidently,
the performance of the detector is nearly excellent in the high
SNR regimeγ > 25dB irrespective of the severity of fading.
On the contrary, the overall performance is rather poor in the
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Fig. 2. A′
Hoyt vs γ for i.i.d Hoyt (Nakagami−q) fading channels with

u = 5 and different values ofq.

low SNR regimeγ < 0dB, which indicates that the number of
samples need to be increased. Regarding the moderate SNR
levels, it is shown that the value ofq affects the performance of
the detector as, for example, the difference ofAHoyt between
q = 0.1 and q = 0.3 is 6% for γ = 10dB and 5% for
γ = 20dB. In the same context, Fig.2 illustrates the behaviour
of the complementary area under ROC as a function of the
average SNR. As in Fig.1, the overall performance of the
behaviour increases as SNR increases while the effect of the
value of q is rather noticeable for moderate SNR values.
Indicatively, the difference ofAHoyt betweenq = 0.1 and
q = 1.0 is 80% for γ = 15dB and85% for γ = 25dB.

V. CONCLUSION

This work analyzed the performance of energy detection
over Hoyt (Nakagami−q) fading channels. This was carried
out by means of the area under the ROC curve and the
complementary area under the ROC curve metrics which
are single parameter performance measures. Novel analytic
expression were derived for the case of integer and arbitrary
values of the time bandwidth product. These expressions
have a relatively simple algebraic form which renders them
convenient to handle both analytically and numerically. To
this end, they were employed in quantifying the effect of
enriched multipath fading conditions in energy detection based
spectrum sensing in the context of cognitive radio and radar
systems and it was shown that the corresponding severity
of fading affects the detector’s performance, particularly for
moderate SNR values.

REFERENCES

[1] J. I. Marcum, “A statistical theory of target detection by pulsed radar:
Mathematical appendix,”RAND Corp., Santa Monica, Research memo-
randum, CA, 1948.

[2] P. Swerling, “Probability of detection for fluctuating targets,”IRE Trans.
on Inf. Theory, vol. IT-6, pp. 269−308, April 1960.

[3] S. Haykin, M. Moher,Modern Wireless Communications, Prentice-Hall,
Inc. Upper Saddle River, NJ, USA, 2004.

[4] S. Haykin, “Cognitive radio: Brain-empowered wirelesscommunica-
tions,” IEEE J. Select. Areas Commun.vol. 23, no. 2, pp. 201−220,
Feb. 2005.

[5] V. K. Bargava, E. Hossain,Cognitive Wireless Communication Networks,
Springer-Verlag, Berlin, Heidelberg 2009.

[6] H. Urkowitz, “Energy detection of unknown deterministic signals,”Proc.
IEEE, vol. 55, no. 4, pp. 523−531, 1967.

[7] V. I. Kostylev, “Energy detection of signal with random amplitude,” in
Proc. IEEE Int. Conf. on Commu. (ICC ’02), pp. 1606−1610, May 2002.

[8] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energydetection
of unknown signals over fading channels,”IEEE Trans. Commun., vol.
55, no. 1, pp. 21−24, Jan. 2007.

[9] S. P. Herath, N. Rajatheva, “Analysis of equal gain combining in energy
detection for cognitive radio over Nakagami channels,”in Proc. IEEE
Global Telecomm. Conf. (Globecom ’08), pp. 2972−2976, Dec. 2008.

[10] A. Ghasemi, E.S. Sousa, “Collaborative spectrum sensing for oppor-
tunistic access in fading environments,”in Proc. DySpan ’05, pp.
131−136, Nov. 2005.

[11] A. Ghasemi, E.S. Sousa, “Impact of user collaboration on the perfor-
mance of sensing-based opportunistic spectrum access,”in Proc. IEEE
Vehicular Tech. Conf. (VTC-fall ’06),pp. 1−6, Sep. 2006.

[12] A. Ghasemi, E.S. Sousa, “Asymptotic performance of collaborative
spectrum sensing under correlated log-normal shadowing,”IEEE Comm.
Lett., vol. 11, no. 1, pp. 34−36, Jan. 2007.

[13] S. Atapattu, C. Tellambura, H. Jiang, “Relay based cooperative spectrum
sensing in cognitive radio networks,”in Proc. IEEE Global Telecomm.
Conf. (Globecom ’09), pp. 4310−4314, Nov. 2009.

[14] S. Atapattu, C. Tellambura, H. Jiang, “Energy detection based coopera-
tive spectrum sensing in cognitive radio networks,”IEEE Trans. Wireless
Commun., vol. 10, no. 4, pp. 1232−1241, Apr. 2011.

[15] S. P. Herath, N. Rajatheva, C. Tellambura, “Energy detection of unknown
signals in fading and diversity reception,”IEEE Trans. Commun., vol.
59, no. 9, pp. 2443−2453, Sep. 2011.

[16] K. T. Hemachandra, N. C. Beaulieu, “Novel analysis for performance
evaluation of energy detection of unknown deterministic signals using
dual diversity,” in Proc. IEEE Vehicular Tech. Conf. (VTC-fall ’11),, pp.
1−5, Sep. 2011.

[17] S. Atapattu, C. Tellambura, H. Jiang, “Spectrum sensing via energy
detector in low SNR,”in Proc. IEEE Int. Conf. Commun. (ICC ’11, pp.
1−5, June 2011.

[18] K. Ruttik, K. Koufos and R. Jantti, “Detection of unknown signals in a
fading environment,”IEEE Comm. Lett., vol. 13, no. 7, pp. 498−500,
July 2009.

[19] S. Atapattu, C. Tellambura, H. Jiang, “Performance of an energy detector
over channels with both multipath fading and shadowing,”IEEE Trans.
Wireless Commun., vol. 9, no. 12, pp. 3662−3670, Dec. 2010.

[20] P. C. Sofotasios, S. Freear, “A Novel Representation for the Nuttall
Q−Function,” in Proc. IEEE Int. Conf. in Wirel. Inf. Technol. and
Systems (ICWITS ’10), Honolulu, HI, USA, Aug. 2010.

[21] S. Atapattu, C. Tellambura, H. Jiang, “Energy detection of primary
signals overη−µ fading channels,”in Proc.4th Ind. Inf. Systems (ICIIS
’09), pp. 1−5, Dec. 2009.

[22] P. C. Sofotasios, E. Rebeiz, L. Zhang, T. A. Tsiftsis, D.Cabric and S.
Freear, “Energy detection-based spectrum sensing overκ−µ andκ−µ
extreme fading channels,”IEEE Trans. Veh. Technol., vol. 63, no 3, pp.
1031−1040, Mar. 2013.

[23] K. Ho-Van, P. C. Sofotasios, “Exact bit-error-rate analysis of underlay
decode-and-forward multi-hop cognitive networks with estimation er-
rors,” IET Communications, vol. 7, no. 18, pp. 2122−2132, Dec. 2013.

[24] S. P. Herath, N. Rajatheva, C. Tellambura, “On the energy detection of
unknown deterministic signal over Nakagami channels with selection
combining,” in Proc. IEEE Canadian Conf. in Elec. and Comp. Eng.
(CCECE ’09), pp. 745−749, May 2009.

[25] K. Ho-Van, P. C. Sofotasios, “Outage Behaviour of Cooperative Under-
lay Cognitive Networks with Inaccurate Channel Estimation,” in Proc.
IEEE ICUFN ’13, pp. 501−505, Da Nang, Vietnam, July 2013.

[26] K. Ho-Van, P. C. Sofotasios, S. Freear, “Underlay cooperative cognitive
networks with imperfect Nakagami−m fading channel information and
strict transmit power constraint: Interference statistics and outage prob-
ability analysis,”IEEE/KICS Journal of Communication and Networks,
vol. 16, no. 1, pp. 10−17, Feb. 2014.

[27] A. Ghasemi, E. S. Sousa, “Spectrum sensing in cognitiveradio networks:
Requirements, challenges and design trade-offs,”IEEE Commun. Mag.,
pp. 32−39, Apr. 2008.



[28] K. Ho-Van, P. C. Sofotasios, S. V. Que, T. D. Anh, T. P. Quang, L. P.
Hong, “Analytic Performance Evaluation of Underlay Relay Cognitive
Networks with Channel Estimation Errors,”in Proc. IEEE Int. Conf. on
Advanced Technol. for Commun. (ATC ’13), pp. 631−636, HoChiMing
City, Vietnam, Oct. 2013.

[29] P. C. Sofotasios, M. K. Fikadu, K. Ho-Van, M. Valkama, “Energy
Detection Sensing of Unknown Signals over Weibull Fading Channels,”
in Proc. IEEE Int. Conf. on Advanced Technol. for Commun. (ATC ’13),
pp. 414−419, HoChiMing City, Vietnam, Oct. 2013.

[30] K. Ho-Van, P. C. Sofotasios, “Bit Error Rate of UnderlayMulti-hop
Cognitive Networks in the Presence of Multipath Fading,”in IEEE
ICUFN ’13, pp. 620−624, Da Nang, Vietnam, July 2013.

[31] P. C. Sofotasios, M. Valkama, T. A. Tsiftsis, Yu. A. Brychkov, S. Freear,
G. K. Karagiannidis, “Analytic solutions to a MarcumQ−function-
based integral and application in energy detection of unknown signals
over multipath fading channels,”in Proc. of 9th CROWNCOM ’14, pp.
260−265, Oulu, Finland, 2-4 June, 2014.

[32] J. A. Hanley, B. J. McNeil, “The Meaning and Use of the Area under a
Receiver Operating Characteristic (ROC) Curve,”Journal of Radiology,
vol. 143, no.1, pp. 29−36, Apr. 1982.

[33] D. Ciuonzo, G. Romano, and P. S. Rossi, “Performance Analysis
and Design of Maximum Ratio Combining in Channel-Aware MIMO
Decision Fusion,” IEEE Trans. Wirel. Commun.,vol. 12, no. 9, pp.
4716−4728, Sep. 2013.

[34] S. Atapattu, C. Tellambura, and Hai Jiang, “Analysis ofarea under the
ROC curve of energy detection,”IEEE Trans. Wirel. Commun., vol. 9,
no. 3, pp. 1216−1225, Mar. 2010.

[35] S. Atapattu, C. Tellambura, and H. Jiang, “MGF based analysis of area
under the ROC curve in energy detection,”IEEE Commun. Lett., vol.
15, no. 12, Dec. 2011.

[36] S. Alam and A. Annamalai, “Energy detector’s performance analysis
over the wireless channels with composite multipath fadingand shad-
owing effects using the AUC approach,”in Proc. IEEE CCNC ’12, Las
Vegas, NV, pp. 771−775, Jan. 2012.

[37] M. K. Simon and M.-S. Alouni,Digital Communication over Fading
Channels,2nd Edition, New York: Wiley, 2005.

[38] O. Olabiyi and A. Annamalai, “Closed-form evaluation of area under
the ROC of cooperative relay-based energy detection in cognitive radio
networks,”in Proc. IEEE ICNC ’12,Hawaii, pp. 1103−1107, Jan. 2012.

[39] S. Atapattu, C. Tellambura, and Hai Jiang, “Performance of energy
detection: A complementary AUC approach,”in Proc. IEEE Globecom
’10, Miami, FL, pp. 1−5, Dec. 2010.

[40] G. Fraidenraich, J.C. S. Santos Filho, and M. D. Yacoub,“Second-order
statistics of maximal-ratio and equal-gain combining in Hoyt fading,”
IEEE Commun. Lett., vol. 9, no. 1, pp. 19−21, Jan. 2005.

[41] D. A. Zogas, G. K. Karagiannidis, and S. A. Kotsopoulos,“Equal
gain combining over Nakagami−n (Rice) and Nakagami−q (Hoyt)
generalized fading channels,”IEEE Trans. Wirel. Commun., vol. 4, no.
2, pp. 374−379, Mar. 2005.

[42] C-D. Iskander, and P. T. Mathiopoulos, “Exact performance analysis of
dual-branch coherent equal-gain combining in Nakagami−m, Rician,
and Hoyt fading,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp.
921−931, Mar. 2008.

[43] R. M. Radaydeh, and M. M. Matalgah, “Average BER analysis for M-ary
FSK signals in Nakagami−q (Hoyt) fading with noncoherent diversity
combining,” IEEE Trans. Veh. Technol.vol. 57, no. 4, pp. 2257−2267,
July 2008.

[44] “Nakagami−q (Hoyt) distribution function with applications,”Electronic
Letters, vol. 45, no. 4, pp. 210−211, Feb. 2009.

[45] G.N. Tavares, “Efficient computation of Hoyt cumulative distribution
function,” Electronic Letters, vol. 46, no. 7, pp. 537−539, Apr. 2010.

[46] J. F. Paris, and David Morales-Jimenez, “Outage probability analysis
for Nakagami−q (Hoyt) fading channels under Rayleigh interference,”
IEEE Trans. Wirel. Commun., vol. 9, no. 4, Apr. 2010.

[47] K. T. Hemachandra, and N. C. Beaulieu, “Simple expressions for the
SER of dual MRC in correlated Nakagami−q (Hoyt) fading,” IEEE
Comm. Lett, vol. 14, no. 8, pp. 743−745, Aug. 2010.

[48] R. A. A. de Souza, M. D. Yacoub, and G. S. Rabelo, “Bivariate Hoyt
(Nakagami−q) distribution,” IEEE Trans. Commun., vol. 60, no. 3, pp.
714−723, Mar. 2012.

[49] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,Integrals
and Series, 3rd ed. New York: Gordon and Breach Science, vol. 1,
Elementary Functions, 1992.

[50] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev,Integrals and Series,
Gordon and Breach Science Publishers, vol. 2, Special Functions, 1992.

[51] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, “Integrals and Series”,
Gordon and Breach Science Publ., vol. 3, More Special Functions, 1990.

[52] P. C. Sofotasios,On special functions and composite statistical distri-
butions and their applications in digital communications over fading
channels, Ph.D. Dissertation, University of Leeds, UK, 2010.

[53] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, in 7

th ed. Academic, New York, 2007.


	I Introduction
	II System and Channel Model
	II-A Energy Detection-Based Spectrum Sensing
	II-B AUC and CAUC Performance Metrics 
	II-C The Hoyt (Nakagami-q) Fading Distribution

	III AUC and CAUC over Hoyt Fading Channels 
	III-A AUC for the Special Case that u is a Real Positive Integer
	III-B AUC for the Case that u is an Arbitrary Positive Real
	III-C CAUC for Positive Integer and Arbitrary Real Values of u

	IV Numerical Results
	V Conclusion
	References

