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Abstract—This paper studies higher-order statistics based on
nested sampling. We propose multilevel nested sampling (MNS)
algorithm to obtain higher-order statistics (HOS), and analyze
the computational complexity of the MNS-HOS algorithm for
both parametric and nonparametric methods. Compared to the
existing HOS algorithms, the proposed algorithm vastly reduces
the complexity by several orders in terms of the length of segmen-
tation window. We also apply MNS-HOS algorithm to estimate
the coefficients of a simplified LTE spatial channel model blindly
without using any training sequences. Our simulations show that
compared with pairwise coprime sampling HOS algorithm, MNS-
HOS produces less variance and converges faster in estimating
higher-order cumulants, and achieves 17% performance gain for
channel estimation. The proposed MNS-HOS algorithm is also
able to reduce computational complexity by 98% with a trade-
off of 22% performance loss in contrast with the HOS algorithm
without sparse sampling.

I. INTRODUCTION

Accurate channel estimation can be used in orthogonal
frequency division multiplexing systems to improve the per-
formance by allowing coherent demodulation, which possesses
a 3-to-4 dB gain in signal-to-noise ratio (SNR) compared
with differential modulation [1]. Besides, systems are able to
take advantage of receiver diversity for optimum combining
via channel estimators. In general, channel estimation can
be conducted by either inserting pilot segments into OFDM
subcarriers [2], or estimating channel only based on the
received signal. But it is not efficient for repeated transmitting
a known sequence to train the equalizer at the receiver, and
it is difficult to establish data transmission over the channels
suffered from unavoidable presence of multipath fading. The-
oretically speaking, the blind channel estimation is preferable.

There are two kinds of approaches to implement the blind
channel estimation. The linear methods are based on the fact
that the cyclostationary characteristics of modulated signals
permit the recovery of both amplitude and phase responses of
a communication channel only using second-order statistics
[3]. The nonlinear methods are based on the calculation of
higher-order statistics (HOS), and could be further divided into
direct or indirect approaches. The direct algorithm calculate
HOS and their discrete Fourier transforms with further matrix
manipulation [4]. Although its computation is more complex,
the advantages include more straightforward for theoretical
derivation, free from minimizing cost functions so as to avoid
local minimum problem, and insensitivity to time jitter. On the
other hand, one of the typical indirect algorithms is Bussgang

algorithm [5], in which the deconvoluted signal implicitly
exploit the HOS via Bussgang statistics. This kind of methods
is simpler to implement and generally capable of delivering a
good performance.

In general, HOS approaches are favorable to preserve both
phase and amplitude information of the signal, and to deal
with non-Gaussian sequences and nonlinear non-minimum
phase system. Its estimates can be calculated from either
conventional nonparametric methods of Fourier transform [6],
or parametric methods based on moving average (MA), au-
toregressive (AR), or autoregressive moving average (ARMA)
models [7]. The paper [6] provides further details about both
kins of methods. It is worth noting that both of them have
high variance and require a large number of records to obtain
smooth estimates [8], but increasing the number of segments
is demanding on computation, and may increase bias and
introduce non-stationarity. Although there are preliminary re-
searches [7], [9] providing a sparse sampling scheme, pairwise
coprime sequences (PCS), as a possible solution, how to
accelerate speed of convergence and to leverage the trade-off
between complexity and performance are still open questions.

This is our motivation to design an algorithm estimating
HOS based on nested sampling. This concept is first intro-
duced to conduct economic and sociological surveys [10].
Later researches extend it to array signal processing [11],
astronomical data analysis [12], and estimating the directions
of arrivals [13]–[15]. But nested sampling has never been
considered to derive HOS in previous literatures.

The main purpose of this paper is to develop a HOS
algorithm based on multilevel nested sampling (MNS). The
direct merits of implementing nested sampling are to greatly
reduce the computational expense and to produce posterior
inferences at the same time. By using this sampling scheme,
the proposed algorithm improves the PCS performances in
terms of estimation variance and speed of convergence with
the same delay and a even lower computational complexity.

In Section II, we discuss theoretical background about both
higher-order statistics and nested sampling. Then, we describe
the MNS-HOS algorithm, and analyze its complexity and
complexity in Section III. The performance of the proposed
algorithm is simulated in Section IV. Finally, we draw the
conclusions in Section V.
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Figure 1: Nested sampling with N1 = 3, N2 = 5.

probabilistic graphical models and co-prime and nested samplers and arrays to sensor fusion.
Since probabilistic graphical models use statistical information, and Co-prime and Nested
Arrays could preserve the statistical knowledge, so it is very very promising.

3 Technical Approaches

3.1 Co-Prime and Nested Samplers for Radar Waveform Design

Waveform diversity is the technology that will allow one or more sensors on board a platform
to automatically change operating parameters, e.g., frequency, gain pattern, and pulse repetition
frequency (PRF) to meet the varying environments. It has long been recognized that judicious use
of properly designed waveforms, coupled with advanced receiver strategies, is fundamental to fully
utilizing the capacity of the electromagnetic spectrum. However, it is only relatively recent advances
in hardware technology that are enabling a much wider range of design freedoms to be explored. As
a result, there are emerging and compelling changes in system requirements such as more efficient
spectrum usage, higher sensitivities, greater information content, improved robustness to errors,
reduced interference emissions, etc. The combination of these is fuelling a worldwide interest in the
subject of waveform design and the use of waveform diversity techniques.

3.1.1 Preliminary Works on Nested Samplers for Waveform Design

Based on our preliminary works on nested samplers for waveform design, we observed that much
more spectrum efficient waveform could be designed. In the simplest form, the nested array [14]
has two levels of sampling density, with the level 1 samples at the N1 locations and the level 2
samples at the N2 locations.

1 ≤ l ≤ N1, for level 1

(N1 + 1)m, 1 ≤ m ≤ N2, for level 2

Fig. 1 shows an example of periodic sparse sampling using nested sampling structure with N1 = 3
and N2 = 5.

We used QPSK modulated signal with carrier frequency fc = 400Hz, which could be expressed
as

sQPSK(t) =

√
2Es

Ts
cos[2πfct + (i − 1)

π

2
] (1)

3
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Fig. 1: Nested Sampling with N1=3, N2=5

II. PRELIMINARIES

In this section, we provide an overview of higher-order
statistics and nested sampling, and demonstrate their relation-
ship based on the estimation of second-order moment.

Assuming x(t) is a zero-mean random process with at least
kth-order stationary, the kth-order cumulant of this process is
defined as the first k−1 coefficients of Taylor series expansion
of the data set. The expectations of second-order, third-order,
and fourth-order cumulant are [6]

c2x(τ) =E[x(n)x(n+ τ)], (1)
c3x(τ1, τ2) =E[x(n)x(n+ τ1)x(n+ τ2)], (2)

c4x(τ1, τ2, τ3) =E[x(n)x(n+ τ1)x(n+ τ2)x(n+ τ3)]

− c2x(τ1)c2,x(τ2 − τ3)
− c2x(τ2)c2,x(τ3 − τ1)
− c2x(τ3)c2,x(τ1 − τ2). (3)

The kth-order spectrum is defined as the Fourier transform
of its kth-order cumulant:

Skx(ω1, ω2, . . . , ωk−1) =

+∞∑

τ1=−∞
· · ·

+∞∑

τk−1=−∞

ckx(τ1, τ2, . . . , τk−1) · exp
(
−j

k−1∑

i=1

ωiτi

)
. (4)

Specifically, the third-order spectrum is also called bispectrum,
and the fourth-order spectrum is trispectrum.

Nested sampling is a non-uniform sampling scheme, using
two different samplers in each of given period. Given sampling
interval Ts, although the signal is sparsely and non-uniformly
sampled at 1 ≤ l ≤ N1Ts and (N1+1)mTs, for 1 ≤ m ≤ N2,
in one sampling period, the autocorrelation c2x(τ) is able to be
estimated at all lags τ = kTs, where k, l, and m are integers.

In the simplest form, the nested array has two levels of
sampling density, with the level 1 samples at the N1 locations
and the level 2 samples at the N2 locations:

Linner = {mTs, m = 1, 2, . . . , N1},
Louter = {n(N1 + 1)Ts, n = 1, 2, . . . , N2}.

As a result, the sampling interval for the inner layer is t1 = Ts,
while the outer layer is t2 = (N1 + 1)Ts.

Figure 1 shows an example of periodic sparse sampling
using nested sampling structure with N1=3 and N2=5. The

cross-difference between two levels is

k = (N1 + 1)m− l, 1 ≤ m ≤ N2, 1 ≤ l ≤ N1, (5)

and its range is given by

k ∈ [−(N1 + 1)N2 − 1, (N1 + 1)N2 − 1] . (6)

Note that there are missing values symmetric through zero
within the range in (6). The positive part includes (N1 +
1), 2(N1 + 1), . . . , (N2 − 1)(N1 + 1). Take the Figure 1 as
an example, the cross-difference will achieve the indexes

1, 2, 3, (), 5, 6, 7, (), 9, 10, 11, (), 13, 14, 15,

where the values with indexes in parentheses are left unknown.
Then, we can use the self-difference among points from the
second level to calculate for the missing indexes, which are 4,
8, and 12 in this example. The calculation is generalized as

(N1 + 1)(m1 −m2), 1 ≤ m1,m2 ≤ N2. (7)

With this method, we are able to calculate the second-order
statistics without the constraint about the lowest permitted
sampling rate.

III. MNS-HOS ALGORITHM AND ITS COMPLEXITY
ANALYSIS

In this Section, we propose the MNS-HOS algorithm and
make the nested sampling according to the instantaneous vari-
ance of the input signal for better HOS estimation. Besides, we
also demonstrate how this algorithm reduces the computational
complexity by several orders. In the following content, MNS
y0(n), y1(n), . . . , yk(n) denote the sampled sequences from
output signal related with the nested level N0, N1, . . . , Nk,
respectively. In addition, we have the following assumptions
to modeling the system:

S.1 The driving signal {w(t)} is non-Gaussian, zero-mean,
and independent and identically distributed (i.i.d.). Be-
sides, it only has finite moments, which are estimated
via expectations, and denoted as E[w2(t)] = σ2

w,
E[w3(t)] = γ3w, and E[w6(t)] < +∞.

S.2 The measurement noise {v(t)} is assumed to be zero-
mean, and to have either white or color Gaussian distri-
bution. It is also i.i.d. and independent of {w(t)} with
E[v2(t)] = σ2

v .
S.3 The channel is regarded as a linear, time-invariant, and

non-minimum phase moving average (MA) system, and
its order q + 1 has known beforehand.

Based on these assumptions, we derive a procedure for
estimating the covariances of the sampled cumulants, and
model the output of the channel and the received signal as

x(n) =

q∑

i=0

hiw(n− i), (8)

y(n) = x(n) + v(n). (9)

Globecom 2014 - Wireless Communications Symposium

3556



Then, we have

E[ĉky(s1, . . . , sk), ĉky(t1, . . . , tk)]

= E


 1

N2

N−1∑

m=0

N−1∑

n=0

k−1∏

i=0

yi(m+ si)

k−1∏

j=0

yj(n+ tj)




= E


 1

N2

N−1∑

m=0

N−1∑

n=0

k−1∏

i=0

yi(si)

k−1∏

j=0

yj(n−m+ tj)




=
1

N

N−1∑

n=−(N−1)

(
1− |n|

N

)
E



k−1∏

i=0

yi(si)

k−1∏

j=0

yj(n+ tj)


 ,

(10)

where s0 = t0 = 0. Hence,

cov[ĉky(s1, . . . , sk), ĉky(t1, . . . , tk)]

=
1

N

N−1∑

n=−(N−1)

(
1− |n|

N

)
E [G(y, k, 0, s)G(y, k, n, t)] .

(11)

Since {y(n)} is a MA(q) process, the product from y(0) to
y(sk) is statistically independent of the product form y(n) to
y(n + tk) for n > s1 + q and n < −(t1 + q). Therefore, the
(11) can be written as

cov[ĉky(s1, . . . , sk), ĉky(t1, . . . , tk)]

=
1

N

s1+q∑

n=−(t1+q)

(
1− |n|

N

)
E [G(y, k, 0, s)G(y, k, n, t)]

≈ 1

N2

s1+q∑

n=−(t1+q)

(
1− |n|

N

)
Ĝ(y, k, 0, s)Ĝ(y, k, n, t), (12)

where

G(y, k, n, t) =

k−1∏

j=0

yj(n+ tj)− cky(t1, . . . , tk)

Ĝ(y, k, n, t) =

k−1∏

j=0

yj(n+ tj)− ĉky(t1, . . . , tk).

The approximation in the second step of (12) is based on
the stationary and ergodicity properties of the given process,
which provides the consistent estimation of the expectation in
its first step.

Specifically, for the third-order cumulant, we can derive the
variance of estimation based on its covariance, and let τ1 =
s1 = t1 and τ2 = s2 = t2, we have the variance of sampled
third-order cumulants

σ̂2[ĉ3y(m,n)] ≈
1

N2

N∑

n=1

q+τ1∑

m=−q+τ2

(
1− |j|

N

)

· [y0(n)y1(n+ τ1)y2(n+ τ2)− ĉ3y(τ1, τ2)]
· [y0(m+ n)y1(m+ n+ τ1)y2(m+ n+ τ2)− ĉ3y(τ1, τ2)].

(13)

The multi-level nested sampling (MNS) is derived from the
two-levels nested sampling, and can be easily related with the
calculation of HOS.

L1 = {nTs, n = 1, 2, . . . , N1} ,

Li =



nTs

i−1∏

j=1

(Nj + 1), n = 1, 2, . . . , Ni



 , i = 2, . . . ,K,

where K is the number of levels, and {Ni}Ki=1 are number of
samples for the ith layer.

Compared with the basic coprime sampling and the pair-
wise coprime sampling for HOS [7], the MNS has no con-
straint on the choice of downsampling factor Ni. Furthermore,
given the sample points are independent and i.i.d., the sam-
pling scheme is able to take advantage of less noisy segments
for better estimation.

Based on the analysis of variance, we can summarize the
MNS-HOS algorithm as follow:

Algorithm 1 MNS-HOS Algorithm

Require: Ni > 0,∀i ∈ [0,K], {y(n)}Nn , for N ≥∏K−1
i=0 Ni

Initialize signal average µ̂ based on previous segment
for i = 1 to N do

Update average µ̂
Calculate variance for every segment with length N1+1.
if i ≡ 0 mod Nj , ∀j = 2, . . . , k − 1 then

Average Nj variances with interval
∏j−1
l=1 Nl

end if
end for
for i = k to 1 do

Nested range ← range with the smallest variance
end for
Conduct multilevel nested calculation

The following content shows that the complexity improve-
ment is nontrivial via estimating the HOS based on MNS.
To quantify the complexity, we use the “Big O” notation
to denote the asymptotic limitation of a function when the
argument increases towards infinity. Both the parametric and
nonparametric method have to estimate cumulant based on
expectation, which is the first part of the complexity. It mainly
comes from multiplication traversal in (1), (2), and (3). The
operations must be performed record by record which in turn
causes the complexity to increase exponentially. To estimate
kth-order cumulant, the computation complexity is O(Nk)
where N is the length of segment.

The nonparametric method further requires frequency aver-
aging which makes it more impractical for longer sequences.
The classical FFT algorithm achieves computational complex-
ity O(NlogN) for second-order spectrum and O(Nr−1logN)
for the rth-order Fourier transform [16]. Including the calcu-
lation of cumulants, the overall complexity achieves as high
as O(N2k−1logN).

On the other hand, MNS is able to decrease the calculation
of cumulant by at least one order. Suppose the length of
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segment is 2N . The complexity to calculate the third-order
cumulant is

2N

N1
× 2N

N2
× 2N

N3
∼ O(N2), (14)

where N =
∏3
i=1Ni. Note that the variance estimation

produce the overhead O(N) to the calculation, but it is trivial
compared with the HOS procedure and can be ignored in the
complexity analysis.

For nonparametric approach, the optimization is more sig-
nificant by making the Fourier transform in-place without
complicated index mapping. The following analysis is inspired
by the structure of prime-factor FFT in [17]. For the kth-order
spectrum, we consider (4) to be a series of two-dimensional
Fourier transform. Then, the formula is rewritten as

Skx(ω1, ω2, . . . , ωk−1) =

1

L

L∑

l=1

N∑

τk−1=−N

[
. . .

[
N∑

τ1=−N
ckx(τ1, τ2, . . . , τk−1)

exp

(−j2πω1τ1
N

)]
. . .

]
exp

(−j2πωk−1τk−1
N

)
. (15)

Specifically, we can simplify the bispectrum as

S3x(ω1, ω2) =

N∑

(a1−a3)=−N




N∑

(a1−a2)=−N

x1(a1)exp

(−j2πa1(ω1 + ω2)

N

)

x2(a2)exp

(−j2πa2ω1

N

)]
x3(a3)exp

(−j2πa3ω2

N

)
.

(16)

The averaging among L segments is deliberately omitted
for simpler formula abstraction. It can be easily restored
in the implementation. Because L increases linearly along
with the length of signal, it is negligible compared with the
exponentially increased asymptotic property of N . In (15),
complex multiplications are in-place calculated, which only
change a constant factor of the asymptotic limitation. Hence,
the calculation procedure decreased from O(N5logN) of the
existing HOS to quadratic form O(N2) for MNS-HOS.

The fundamental difference between (16) and (4) is that
without MNS, ckx is calculated by the exhausted multiplying
among N records for k times, which cannot be decomposed.

It is also worth mentioning that the MNS-HOS algorithm
has the same order of complexity as another sparse sampling
scheme PCS-HOS [7]. Compared with PCS-HOS, MNS-HOS
uses an iteration for estimating the variance of the signal, keeps
updating the sample average, and requires an extra memory
with the length of window size to record the variances. As
a result, MNS-HOS is able to better explore the statistical
characteristics of the signal. The detailed improvement is
provided in the following section.
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Fig. 2: Comparison of cumulant convergence for y1[n]

IV. SIMULATION RESULTS

In order to fully explore properties of MNS, we apply it to
estimate the simplified LTE spacial channel model [18] where
the channel is assumed to be a MA model with six paths.
Furthermore, we simplify each path to be only one sub-path,
and assume the channel characteristics remain invariant over
the processed data symbols, which means the channel is slow
fading for the very high signaling rates. MA(2) and MA(5)
are simulated according to the system model in (8) and (9):

x1(n) =w(n)− 2.333w(n− 1) + 0.667w(n− 2) (17)
x2(n) =w(n) + 0.1w(n− 1)− 1.87w(n− 2)

+ 3.02w(n− 3)− 1.435w(n− 4)

+ 0.49w(n− 5) (18)
y1(n) =x1(n) + v1(n) (19)
y2(n) =x2(n) + v2(n). (20)

In both models, we assume v1(n) and v2(n) are addi-
tive white Gaussian noise (AWGN). The driven signal w(n)
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Fig. 3: Ratios of variances between MNS and PCS

is a zero-mean exponential random deviate process with
E[w2(n)] = 1, E[w3(n)] = 2, and E[w4(n)] = 9. We
generate signal sequence with 700000 sample points for a
single run and average the results from 50 times of Monte
Carlo simulations for each setting. There is no filter used for
preprocessing the input signal, and the overlap percentage is
set to be zero. We select the coefficients N1=4, N2=3, and
N3=4 for MNS-HOS, which makes it decrease the complexity
to 2.1% of the original HOS algorithm. As comparison, the
PCS-HOS uses N1=2, N2=3, and N3=5, which decreases the
complexity to 3.3%.

Because the absolute value of MA coefficients vary from
0.1 to 3.02, the variance itself cannot fully reveal how well
the estimation is. We use the ratio between standard deviation
and its expectation as vertical axis to indicate the convergence.

Figures 2 shows the comparison between third-order MNS
and PCS for estimating cumulants with 2 taps. The ratio
between the standard deviation of MNS and its expectation
falls below 40% of the expected value after 100K samples,
and below 20% after 400k samples, while the ratio of PCS
falls below 40% at after receiving 170K samples, and the
c3y(2, 0) falls below 20% after 600K samples.

Figure 3 visualizes the comparison of each taps, in which
the percentages in the y axis stand for the ratios between MNS
and PCS from Figure 2, and the tap number is labeled at
the left side of the figure. We can see that the most obvious
improvement of MNS upon PCS is for the 0 and ±1 taps.

Figures 4 indicates the convergence of both algorithm for
MA(5) model. Compared with Figures 2, the estimates of both
algorithms suffer from increased variance and decreased speed
of convergence. However, MNS also performs much better
than PCS. As fitting both curves into the same scale for y
axis, most of the MNS ratios are overlapped within 100%
area, while PCS has a much scattered curves indicating larger
variance and more inferior convergence.

In Figure 5, the performances of HOS algorithms for MA
system identification [19] are quantified via root-mean square

Fig. 4: Comparison of cumulant convergence for y2[n]

error (RMSE). Three candidates in the comparison are grouped
by the RMSE for each tap, including PCS-HOS in the left side
(blue), MNS-HOS in the middle (green), and existing HOS in
the right side (red). The left vertical axis indicates the values
of RMSE. The order of performances from best to worst is
HOS, MNS-HOS, and PCS-HOS.

The broken line using the right vertical axis indicates the
performance improvement of MNS-HOS relative to PCS-HOS.
Generally speaking, MNS-PCS consistently performs better
than PCS-HOS. For MA(2) model, the improvement is not
significant because all the algorithms have a relative low
RMSE in short MA systems. The performance gain becomes
remarkable in MA(5) model. MNS-HOS outperforms PCS-
HOS by 16.9% less RMSE on average. Specifically, it has
17.9% less RMSE in MA(2) model and 8.8% less RMSE in
MA(5) model. It is also desireable to observe that the last
three taps of MA(5) system do not deteriorate the estimates
of MNS-HOS. It can be explained by the good convergence
of c3y(±5, 0) and c3y(±4, 0) in the upper figure of Figure
4, because large variation for the cumulants of longer delay
is the major factor undermining the performance of corre-
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Fig. 5: Performance comparison among PCS-HOS,
MNS-HOS and original HOS

sponding MA coefficients. Concerning the MNS-HOS in this
comparison has lower complexity (2.1% of the HOS without
sparse sampling) than the PCS-HOS has (3.3%), it is favorable
to involve MNS-HOS in the calculation of HOS when we
leverage the trade-off between performance and complexity.

Nevertheless, it is worth mentioning that the performance
gain and complexity simplification are acquired at the expense
of increasing the delay of the system to average longer
sequence, which is the case for both MNS-HOS and PCS-HOS
algorithms. For the same length of signal sequences, existing
HOS has about fifty times more computation. MNS-HOS has
about 21.6% performance loss on average–generating 15.4%
more RMSE in MA(2) and 22.5% more in MA(5).

V. CONCLUSION

In order to use the nested sampling to calculate HOS,
we use multilevel nested sampling to develop the MNS-
HOS algorithm. This algorithm take advantage of the second-
order statistics during calculating HOS via sparse sampling,
which significantly reduces the computational demands for
calculating HOS while still maintains the statistical properties.

In the simulation, MNS-HOS is first compared with PCS-
HOS algorithm. It produces less variance and converges faster
for estimating HOS cumulants. As the taps of MA prolong
from two to five, these advantages become more obvious. We
further apply it to channel estimation where MA models are
assumed, and compare its performance with both original HOS
algorithm and PCS-HOS. The MNS-HOS is able to achieve
16.9% performance gain relative to PCS-HOS, and has 21.6%
loss of performance as opposed to the HOS without sparse
sampling, but only uses its 2.1% complexity cost.

Although MNS-HOS is superior in the context of sparse
sampling, we observe that it still converges much slower
than the original HOS does. It only handles the problem of
computational complexity in HOS calculation. Further im-
provement could be attained by introducing Newton-Raphson

method or Gauss-Newton algorithm. Besides, this paper only
discusses the third-order HOS. Extending the algorithm to
even higher moments is meaningful and nontrivial. There
are also other aspects worth further exploring, such as the
influence of filter in preprocessing, adaptively changing the
choices of nested factors, and implementation of MNS with
nonparametric methods for channel estimation.
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