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Multi-User Coverage Probability of Uplink Cellular
Systems: a Stochastic Geometry Approach

F. Javier Martin-Vega, F. Javier Lopez-Martinez, Gerardo Gomez and Mari Carmen Aguayo-Torres

Abstract—We analyze the coverage probability of multi-user
uplink cellular networks with fractional power control. We use
a stochastic geometry approach where the mobile users are
distributed as a Poisson Point Process (PPP), whereas the serving
base station (BS) is placed at the origin. Using conditional
thinning, we are able to calculate the coverage probabilityof k
users which are allocated a set of orthogonal resources in the cell
of interest, obtaining analytical expressions for this probability
considering their respective distances to the serving BS. These
expressions give useful insights on the interplay between the
power control policy, the interference level and the degreeof
fairness among different users in the system.

I. I NTRODUCTION

Aiming to satisfy the ever-increasing demand for higher
data rates, modern cellular technologies like Long Term Evolu-
tion (LTE) use aggressive frequency reuse policies, which have
accentuated the problem of inter-cell interference compared to
previous standards [1]. This interference is highly dependent
on the transmitted power of the different users, whose random
positions and mobility affects the ability of the base stations
(BS) to mitigate this problem. This causes huge differences
on the received Signal to Interference plus Noise Ratio (SINR)
due to path loss, being specially critical for cell-edge users, that
tend to have a poorer performance compared to users located
closer to the BS.

Each BS must also ensure a certain Quality of Service
(QoS) for every user; hence, power control becomes a funda-
mental mechanism in the uplink (UL), as it impacts on the
fairness among the users in the serving cell as well as on the
level of interference caused to neighbor cells. Compared tothe
downlink (DL), the UL poses additional challenges since: (1)
users positions are coupled with its serving BS, and (2) when
power control is used, the interference level coming from a
certain user depends not only on the distance of the BS to this
user, but also on the distance between this interfering userand
its serving BS. Additionally, even without power control, the
interference behavior in the UL and DL is rather dissimilar.
In the DL, those transmissions intended for cell-edge users
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tend to have stronger interference than for cell-interior ones,
whereas in the UL all transmissions from the users inside the
cell experience an interference with the same statistics.

Stochastic geometry has emerged as a promising tool to an-
alyze the performance of cellular systems, being an alternative
to traditional approaches based on Wyner-type interference [2]
and hexagonal grid models [3], whose accuracy is known to be
limited in different circumstances [4]. This approach typically
considers the positions of transmitting nodes as a Poisson Point
Process (PPP) where the receiver is placed at the origin [5] of
a 2-D spatial grid. Despite being originally considered forad-
hoc and sensor networks due to the arbitrary positions of the
nodes in such networks, the irregular cell patterns in modern
cellular networks makes it the perfect technique to analyze
their performance [6].

While most works based on random spatial models have
focused on DL scenarios, their adequacy for modeling UL
cellular networks has recently been addressed in [7]. In this
work, the authors provided the first known analytical results
for the coverage probability of a typical user in a UL set-
up, where fractional power control was implemented. As main
assumptions, validated with realistic simulation models,they
considered that the distances between interfering users and its
serving BS are independent and identically distributed (i.i.d.),
and that the BS falls in the Voronoi tessellation of each
user. Based on this new approach, new analyses have been
conducted in other UL scenarios involving fractional frequency
reuse [8] or multi-tier cellular networks [9].

Previous works in the literature are usually focused on only
one active link between the transmitter and receiver nodes.
Specifically, in [7] their analysis considers the link between the
serving BS of interest (placed at the origin) and a typical user.
Since this randomly selected user can be located anywhere
in the cell (cell interior, cell-edge, etc.), results are averaged
over all spatial positions inside the cell. Although these results
yield interesting insights on the performance of a typical user,
they do not provide a clear understanding about the fairness
among the users, or the performance of cell-edge users. Results
concerning the coverage probability of UL cellular networks
with multiple users are not available in the literature to the
best of our knowledge.

In this paper, we present an analytical framework for the
analysis of multi-user UL cellular systems with fractional
power control, based on conditional thinning [10], [11]. This
technique has been used to model non-uniform user location
distributions in DL transmissions [10] and different traffic load
of each tier in heterogeneous networks [11]. In our work,
conditional thinning is used to obtain the set of interfering
users for an arbitrary UL transmission allocated over one out
of k orthogonal resource groups.
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Using this new approach, the coverage probability of the
lth user is obtained and ordered according to the distance
from the user to the serving BS, which allocatesk orthogonal
resource groups to users (1 ≤ l ≤ k). The joint distribution of
the distances between thelth andkth users to the serving BS
is also derived. Results give useful insights on the relation
between power control and fairness among users.

The rest of the paper is structured as follows. In Section
II, we describe the system model and introduce our analytical
framework based on conditional thinning. The main mathe-
matical results are presented in Section III, namely the joint
distribution of the distances between thelth and kth users
to the serving BS, and the multi-user coverage probability.
Numerical results are given in Section IV, whereas main
conclusions are drawn in section V.

Notation: Throughout this paper,|·| stands for the Lebesgue
measure,E[·] for the expectation operator andP[·] for a prob-
ability measure. Random Variables (RV) are represented with
capital lettersX whereas deterministic variables are associated
with lower case lettersx. The conditional expectation ofX
conditioned onY = y is denoted asEX|y[X |y]. B(o, r)
represents the closed ball centered at the origino being
r = ‖x‖ the distance fromx ∈ R

2 to o.

II. SYSTEM MODEL

A. System Model Description

In this paper we propose a system model that allows for
a tractable analysis of multi-user UL scenarios with fractional
power control, assuming one antenna at both transmitter and
receiver sides. This model is illustrated in Fig. 1.
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Fig. 1. System model of multi-user UL cellular system. BS arerepresented
by triangles (blue: serving BS), users inside the serving cell are represented
by blue dots, interfering users for thelth user transmission are depicted with
a red cross. The distance from one interfering user to its serving BS (Rx) and
to the target BS (Dx) are represented as an example.

The target BS is considered to be placed at the origin,
giving service tok active users ink orthogonal resource
groups. Cells are assumed to be fully loaded, thus all avail-
able resource groups are used in the target and interfering
cells and users are allocated a single resource group. These
users, represented with blue dots, are ordered according to
their distance to its serving BS, i.e. the origin. We focus
on the lth user placed at distanceRl from the origin with

0 ≤ R1 ≤ · · · ≤ Rl ≤ · · · ≤ Rk. The BS positions of the in-
terfering cells are indicated by red triangles, whereas theinter-
fering users for thelth user data transmission are represented
by red crosses.

Since fractional power control is considered, the transmit-
ted power depends on the distance between the user and its
serving BS. This distance is represented asRx for an inter-
fering user placed atx ∈ Φi,l, whereΦi,l denotes the random
set of interfering user locations forlth user data transmission.
Similarly, the distance between the interfering user located at
x and the target BS (i.e. the origin) is represented asDx.

Power loss due to propagation is modeled using a standard
path loss model withα > 2, whereas a Rayleigh model is
assumed for small-scale fading. Fractional power control with
parameterǫ is assumed, hence the received signal power at
distanceDx from a user placed at distanceRx from its BS
is given byGxR

αǫ
x D−α

x , whereGx is the fading coefficient
that follows an exponential distribution with mean1/µ. Thus,
the SINR for thelth user data transmission follows the next
expression

SINRl =
GlR

α(ǫ−1)
l

Il + σ2
(1)

whereσ2 is the AWGN noise power andIl accounts for the
interference experienced by thelth user transmission, given by

Il =
∑

x∈Φi,l

GxR
αǫ
x D−α

x (2)

It is important to note that in the UL, the interference suffered
by all k users transmission has the same statistics since
interfering users positions scheduled at each resource group
are expected to have the same distribution. Hence, from now
on we will omit the sub-indexl in Φi for notation simplicity.

B. Proposed Analytical Model

The proposed model for multi-user uplink analysis is
illustrated in Fig. 2. This model usesconditional thinning
in order to deal with multiple active links within the cell of
interest.

Rk

Rl

λuλi=pλu

Fig. 2. Multi-User UL set-up based on conditional thinning for k = 11.
Interfering users for thelth user transmission are represented with red crosses.

Let us consider the target BS to be placed at the origin and
an uniform PPPΦ of intensityλ overR2 that represents the
set of active users. We use conditional thinning as follows:

First, thek nearest points ofΦ to the origin are selected.
These points represent the locations ofk users scheduled ink



orthogonal resource groups. Then, thinning with probability p
is performed to all points except thosek inside the closed ball
B(o, rk), beingrk the distance to thekth point.

The resulting set of points outside the ballB(o, rk) is a
non-uniform PPPΦi of intensity measureΛi(A) = pλ|A \
B(o, rk)| [12]. Such random set of points represents the
interfering user locations for thelth user data transmission.
Since these interfering users are using one ofk available
resources, we choose the thinning probability to bep = 1/k.
As the model considers that there is only one user scheduled
per orthogonal resource group per cell, the intensity of BS
is exactly the same as the intensity of interfering users. The
random set ofk points around the originΦd has an intensity
measureΛd(A) = λ|A∩B(o, rk)|. Hence, the complete set of
user locationsΦu is given by the set of user locations within
the target cell (using all available resource groups) and the
set of interfering users scheduled in one resource group, i.e.
Φu = Φd +Φi.

As in [7] distances{Rx} from each interfering user to its
serving BS are assumed to be i.i.d. RV following Rayleigh
distributions with

fRx
(rx) = 2πpλrxe

−pλπr2x , rx ≥ 0 (3)

Hence, notice that the proposed model is equivalent to the
model presented in [7] forp = 1, andk = l = 1.

C. Simulation Model

In order to asses the validity of the proposed analysis
model, we also introduce a more realistic model for simulation.
A uniform PPP of intensityλb representing the BS locations
is first considered. Since in the analysis model the intensity of
BS is the same as that of interfering users, we useλb = λ/k
aiming to compare the results of both models.

The association between user and BS is based on dis-
tance, hence the Voronoi tessellation is performed where
one randomly chosen point is the target BS. Then,k points
representing thek active users are placed randomly inside the
target cell, whereas only one user is placed in each interfering
cell. Notice that both sets of points, active users inside the
target cell and interfering users, are not a PPP. To explain that,
recall that the number of points falling in a Voronoi cell tends
to be higher as the cell is bigger; in our case, one interfering
user falls in any cell independently of its size.

III. M ATHEMATICAL RESULTS

After presenting the analytical framework for the analysis
of multi-user UL cellular networks, we now present the main
mathematical contributions of this paper. First, we derivethe
joint distribution of the distances between thelth andkth users
and the serving BS. Then, we use this result to calculate the
coverage probability of thelth user in the investigated scenario.

A. Joint Distribution of Distances

In the analytical model, thek users of interest are ordered
according to their distances to the serving BS (i.e., the origin),
and the interfering users are located at a distance greater than
Rk. This interdependence affects the distribution of the SINR
for the lth user transmission, due to the inherent correlation

betweenRl andRk. In the next lemma, we calculate their joint
pdf.

Lemma 1: The joint pdf ofRl andRk with 0 < l < k is

fRl,Rk
(rl, rk) =

4e−πr2kλ(λπ)krkr
2l−1
l (r2k − r2l )

k−l−1

(k − l − 1)!(l − 1)!
(4)

where0 ≤ rl ≤ rk.

Proof: The calculation of the joint pdf follows a similar
procedure as in [10]. Hence, we define disjoint sets in order
to use the independence property of the PPP. Let us consider
the next disjoint sets

Ψ1 = {x ∈ R
2 : ‖x‖ ≤ rl}

Ψ2 = {x ∈ R
2 : rl < ‖x‖ ≤ rl + drl}

Ψ3 = {x ∈ R
2 : rl + drl < ‖x‖ ≤ rk}

Ψ4 = {x ∈ R
2 : rk < ‖x‖ ≤ rk + drk} (5)

The joint pdf ofRl andRk with 0 < l < k is by definition

fRl,Rk
(rl, rk) = lim

drl→0

drk→0

P{Rl ∈ Ψ2, Rk ∈ Ψ4}

drldrk
(6)

Notice that the numerator can be expressed as follows:

P{Rl ∈ Ψ2, Rk ∈ Ψ4} =

P{Φ(Ψ1) = l− 1} · P{Φ(Ψ2) = 1}·

P{Φ(Ψ3) = k − l − 1} · P{Φ(Ψ4) = 1} (7)

beingΦ(Ψ) a random counting measure of a Borel setΨ. Since
Φ is a uniform PPP,Φ(Ψ) follows Poisson distribution with
meanλ|Ψ| [12]. Substituting the probability of each event in
(7) and calculating the limits in (6) yields the desired pdf.

Figs. 3 and 4 illustrate the joint pdf of the distances for the
second and thekth user, whenk = 4 andk = 50, respectively.
The correlation is more noticeable whenl andk have similar
values.
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Fig. 3. Joint pdf forl = 2 andk = 4 with λ = 0.24

B. Multi-User Coverage Probability

The coverage probability represents the probability for a
user to have a SINR higher than certain thresholdt. The
main result is stated in Theorem 1, which corresponds to the
coverage probability of the thelth user.
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Fig. 4. Joint pdf forl = 2 andk = 50 with λ = 0.24

Theorem 1 (Multi-user coverage probability): The cover-
age probability of thelth user considering a system withk
orthogonal resource groups that are distributed amongk active
users withl < k is given by:

pc(l, k, t, λ,p, α, ǫ, µ, σ
2)

= ERl,Rk
[ξ(rl, rk)]

=

∫ ∞

0

∫ ∞

rl

ξ(rl, rk)fRl,Rk
(rl, rk)drkdrl (8)

wherefRl,Rk
(rl, rk) is the joint pdf of distances and

ξ(rl, rk) = e−µtσ2r
α(1−ǫ)
l LIl|rl,rk(µtr

α(1−ǫ)
l ) (9)

being LIl|rl,rk(s) the Laplace transform of the interference

conditioned onrl andrk. This term evaluated ats = µtr
α(1−ǫ)
l

has the following expression

LIl|rl,rk(µtr
α(1−ǫ)
l ) =

exp

(

−2πpλ

∫ ∞

rk

(

1−

∫ ∞

0

πpλe−pλπq

1 + tr
α(1−ǫ)
l qαǫ/2v−α

dq

)

vdv

)

(10)

Proof: The coverage probability for thelth user can be
expressed as

pc(l, k, t, λ, p, α, ǫ, µ, σ
2) = P [SINRl > t]

(a)
=

∫ ∞

0

P [SINRl > t|rl] fRl
(rl)drl

=

∫ ∞

0

P

[

Gl > t(Il + σ2)r
α(ǫ−1)
l |rl

]

fRl
(rl)drl

(b)
=

∫ ∞

0

EIl

[

P

[

Gl > t(il + σ2)r
α(ǫ−1)
l |rl, il

]]

fRl
(rl)drl

(c)
=

∫ ∞

0

e−µtσ2r
α(ǫ−1)
l EIl|rl

[

e−µtIlr
α(ǫ−1)
l |rl

]

fRl
(rl)drl

(11)

where (a) and (b) follow from the total probability theorem
[13], while (c) follows from the fact thatGl has an exponential
distribution with mean1/µ.

The termLIl|rl(s) = EIl|rl

[

eIl |rl
]

represents the Laplace
transform of the interference conditioned onrl. The RV Rl

andRk are correlated asRl ≤ Rk. SinceIl depends onRk

due to the fact that the interfering users are placed fartherthan
Rk, the RVIl also depends onRl. Hence we have to deal with
such dependence as follows

LIl|rl(s) = EIl|rl,rk

[

ERk

[

e−sIl |rl, rk
]]

= EIl|rl,rk

[
∫ ∞

rl

e−sIlfRk|rl(rk)drk|rl, rk

]

=

∫ ∞

rl

EIl|rl,rk

[

e−sIl |rl, rk
]

fRk|rl(rk)drk (12)

where the total probability theorem and linearity of expectation
operator have been used.

The termLIl|rl,rk(s) = EIl|rl,rk

[

e−sIl |rl, rk
]

stands for
the Laplace transform of the interference conditioned onrl
andrk and can be expressed as

LIl|rl,rk(s) = EΦi,{Gx}

[

e−s
∑

x∈Φi
GxR

αǫ
x D−α

x

]

(a)
= ERx,Dx

[

∏

x∈Φi

EGx

[

e−sGxR
αǫ
x D−α

x

]

]

(b)
= EDx

[

∏

x∈Φi

ERx

[

µ

µ+ sRαǫ
x D−α

x

]

]

(c)
= exp

(

−2πλp

∫ ∞

rk

(

1−

∫ ∞

0

πpλe−pλπqdq

1 + tr
α(1−ǫ)
l q

αǫ
2 v−α

)

vdv

)

(13)

where the dependence withRl and Rk resides in the non-
uniform PPPΦi since its intensity isΛi(A) = pλ|A\B(o, rk)|.
Step(a) comes from the fact that the fading is independent of
the PPP,(b) comes from the independence assumption between
Rx andDx and(c) from the Probability Generating Functional
(PGFL) [12] and the assumption ofRx following a Rayleigh
distribution as in [7].

Substituting (13) and (12) withs = µtr
α(1−ǫ)
l in (11) and

taking into account that the conditional pdffRk|rl(rk) can be
obtained from the joint pdf and the marginal pdf ofRl as
fRk|rl(rk) = fRl,Rk

(rl, rk)/fRl
(rl), the proof is completed.

Theorem 1 provides the coverage probability of thelth user
with l < k. The following lemma gives the coverage proba-
bility for the cell-edge user.

Lemma 2: The coverage probability of thekth user follows
the next expression

pc(k, t, λ, p, α, ǫ, µ, σ
2) =

∫ ∞

0

ξ(rk)fRk
(rk)drk (14)

where fRk
(rk) is the marginal pdf distribution of thekth

nearest point [14] given by

fRk
(rk) = 2

(λπ)k

(k − 1)!
r2k−1
k e−λπr2k (15)

and

ξ(rk) = e−µtσ2r
α(1−ǫ)
k LIk|rk(µtr

α(1−ǫ)
k ) (16)



whereLIk|rk(µtr
α(1−ǫ)
k ) the Laplace transform of the inter-

ference affecting thekth user transmission conditioned onrk,
given by

LIk|rk(µtr
α(1−ǫ)
k ) =

exp

(

−2πpλ

∫ ∞

rk

(

1−

∫ ∞

0

πpλe−pλπq

1 + tr
α(1−ǫ)
k qαǫ/2v−α

dq

)

vdv

)

(17)

Proof: The proof is analogous to Theorem 1 except from
the fact that the SINR of thekth user transmission only
depends on the distance to the origin of one particular user;
note that whenl < k the SINR depends both onRl andRk.
Hence, the Laplace transform of the interference only depends
on Rk and only the marginal pdf ofRk is necessary.

IV. N UMERICAL RESULTS

A. Coverage probability

We now evaluate the expressions for the coverage proba-
bility previously derived, and compare these results with our
simulation model. Different values of the power control factor
ǫ are used so as to provide a clear understanding of the relation
between power control and fairness among users.

Fig. 5 shows the coverage probability considering different
numbers of orthogonal resources per cell, i.e.k = {10, 25, 50},
assuming a full power control policy (ǫ = 1). We see how the
coverage probability is the same for allk scheduled users,
i.e. it does not depend onl for both analytical and simulation
models. This is coherent with the fact that full compensation
of path loss makes all user transmissions to have the same
average received power. Since the interference experienced
by all user transmissions is the same, the coverage is also
the same. Hence, in this case the fairness between users is
maximal. We also observe how the analytical model provides
slightly more pessimistic results than the simulation model.
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Fig. 5. Coverage probability fork = {10, 25, 50} with full power control
(ǫ = 1), without noise,α = 2.5, λb = 0.24

Fig. 6 illustrates the coverage probability for cell-interior
(l = 1) and cell-edge (l = k) users withk = 25 and a power
control factorǫ = 0.75. We observe how both analytical and
simulation models still behave quite close to each other. In
both models, since the compensation of path loss is not total,

transmissions from users closer to the BS are associated to
higher SINR values than those in the cell-edge, so there exists
a difference in coverage between users.
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Fig. 6. Coverage probability for cell-interiorl = 1 and cell-edgel = k

with k = 25, ǫ = 0.75, without noise,α = 2.5, λb = 0.24

Fig. 7 shows the coverage probability in the absence
of power control, which corresponds to the worse case in
terms of fairness. Hence, we observe that the difference in
coverage between cell-interiorl = 1 and cell-edgel = k
users is maximal. We also see how for the cell-edge user
the analytical model yields a coverage significantly greater
than the simulation model. The reason behind that is related
to the different distribution of points used to model active
user locations in both models. As mentioned in section II,
in the analytical model user locations form a PPP, whereas
in the simulation model this does not hold. This issue has
a significant impact on the pdf of the distancesRl specially
for cell-edge users, and is addressed in detail in the next
subsection.
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Fig. 7. Coverage probability for cell-interiorl = 1 and cell-edgel = k with
k = 25, without power controlǫ = 0, without noise,α = 2.5, λb = 0.24

B. Marginal distributions of distances

One of the assumptions of the proposed model follows
from [7] and states thatRx with x ∈ Φi are i.i.d. Rayleigh



distributed RVs. Fig. 8 shows the theoretical (Rayleigh) dis-
tribution used in the analytical model and the empirical distri-
bution obtained from the simulation model. We observed that
both pdfs are quite similar, so it is expected that the statistics
of the transmitted power of the interfering users are also close
to each other.
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Fig. 8. Empirical and theoretical pdf ofRx.

Fig. 9 shows the marginal pdfs ofRl for the closest
and the farthest user to the target BS. For the cell-interior
user (l = 1) we see that both the empirical and theoretical
pdfs are rather similar; hence, we may expect that coverage
results from both models are also similar (as illustrated in
the previous figures). However, for cell-edge users both pdfs
have different shapes. Specifically, we notice that the distances
of cell-edge users in the analytical model tend to be lower
than the distances in the simulation model. This explains the
difference in coverage probability, specially in the absence of
power control as exhibited in Fig. 7. Since the distance for the
cell-edge user tends to be lower in the analytical model when
power control is not used, the desired signal tends to be higher
and so the coverage probability grows. This is mitigated by
using power control, since this technique aims to obtain equal
received power from all users independently of their positions.
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Fig. 9. Empirical and theoretical pdfs ofRl, (l = 1, k = 11) and (l = k =

11)

V. CONCLUSIONS

We proposed a tractable analysis model for multi-user
uplink cellular networks based on conditional thinning. Assu-
ming that there arek active users scheduled onk orthogonal
resources, the joint distribution of the distances from thetarget
BS to the lth user and to the farthestkth user have been
obtained. Thinning outside the target cell with probability
1/k is used to obtain the actual set of interfering users. A
more realistic model with BS distributed as PPP and one
interfering user within its Voronoi cell has been simulated
as well. Results show that fractional power control permits
to increase fairness among users, at the expense of reducing
the coverage probability of cell-interior users asǫ grows. The
coverage results provided by the analysis model are close tothe
simulation models when power control is used; the difference
of behavior in the absence of power control is also discussed
by studying the marginal distributions of the distances of the
users to the serving BS.
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