
Channel-based Physical Layer
Authentication

by

Chengcheng Pei

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Chengcheng Pei 2014



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The characteristics of the wireless physical layer can be exploited to complement and
enhance traditional security. In this thesis, we study the channel-based physical layer
authentication. The authentication problem is formulated as a sequence of hypothesis test
problems. By exploiting the time-of-arrivals, received signal strengths, and cyclic-features
of the channels, support vector machine (SVM) based authentication schemes, the linear
Fisher discriminant analysis (LFDA) based authentication scheme, and the combining
scheme are proposed to improve the detection probability and to reduce the false alarm
probability. These schemes can reliably authenticate the sender by identifying channels
from different users.

In SVM based schemes, the linear and nonlinear SVMs are used to generate classifiers
to solve the hypothesis test problems. Using the real channel data measured in a regular
office from Utah University, simulation is performed. Simulation results demonstrate that
SVM based schemes have lower misdetection probability and false alarm probability than
some existing schemes at a cost of extra time complexity and space complexity due to the
training stage.

To reduce the space complexity and time complexity during the training stage, LFDA
based authentication scheme is proposed. In LFDA based scheme, a linear combination
of the channel features is used as the test statistic, which is compared with a threshold
to perform authentication. LFDA is used to compute the weights based on some training
data. Furthermore, an adaptive threshold scheme (ATS) is proposed to set and adjust the
threshold. Simulation results demonstrate that the proposed LFDA based scheme performs
better in terms of the sum of misdetection probability and false alarm probability, and
the receiver operating characteristic curves, compared with several existing channel-based
authentication schemes. Moreover, the analysis of time complexity and space complexity
is provided, which shows that the LFDA based scheme is also better than SVM based
schemes in terms of space complexity, time complexity, misdetection probability, and false
alarm probability.

The misdetection probability and false alarm probability can be reduced greatly by
two-user cooperative authentication. The combining scheme is proposed to combine the
data from another legitimate user when cooperation is available. The combining scheme
is proven to have the capacity to improve the performance at cost of extra communication
and computation overhead. The time complexity, space complexity, and communication
overhead are analyzed.
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Chapter 1

Introduction

In this chapter, the background about the wireless security, especially physical layer secu-
rity, is reviewed. Our contribution and the outline of this thesis are presented too.

1.1 Background

In the past 20 years, there were a great number of developments in communication and
networking technologies. Nowadays, wireless networks play an important role in people’s
life. However, due to the broadcast nature of wireless communications, the information can
be easily eavesdropped or intercepted. That is why security is of paramount importance for
these wireless networks. Generally speaking, security means authenticity, non-repudiation,
confidentiality, integrity, and availability. These aspects of security are explained below.

• Authenticity, including entity authenticity and data origin authenticity, means mech-
anisms to establish identity. It is used to verify whether the information comes from
legitimate users or not [1]. Another associated concept, non-repudiation means that
the transmitter cannot deny having sent the information and the receiver cannot
deny having received the information.

• Confidentiality means concealment of information or resources. It guarantees that
the information is only disclosed to legitimate users.

• Integrity means trustworthiness of data or resources.
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• Availability means the ability of legitimate users to use the information or resource
which they want when they need.

Traditionally, the security of wireless networks is addressed through techniques at up-
per layers, such as cryptography. However, when the devices have limited computational
and bandwidth resources, it is complex to implement the cryptography [1]. In reality,
there are no absolutely secure cryptography protocols. There are many possible attacks
in realistic environments. Attacks on wireless networks can be classified into two main
categories: passive attacks and active attacks [1]. Passive attacks include traffic analysis
and eavesdropping. Active attacks include denial of service (DoS), Masquerade attack,
replay attack, information disclosure, message modification. Masquerade attack is always
the first step to conduct other active attacks. Below are some examples of realistic attacks.

• WiFi Protected Setup (WPS) personal identification number (PIN) is susceptible to
a brute force attack. A design flaw existing in the WPS specification significantly
reduces the time required to brute force the entire PIN. This design flaw is that it
is allowed for an attacker to know when the first half of the 8-digit PIN is correct.
The lack of a proper lock out policy after a certain number of failed attempts on
many wireless routers makes this brute force attack much more feasible. An attacker
within range of the wireless access point (AP) may be able to brute force the WPS
PIN and retrieve the password for the wireless network, change the configuration of
the access point, or cause a denial of service [2].

• Three attacks on the WiFi Protected Access Temporal Key Integrity Protocol (WPA-
TKIP) are described in [3]. The first attack is a DoS attack that can be executed by
injecting only two frames every minute. The second attack demonstrates how frag-
mentation of 802.11 frames can be used to inject an arbitrary amount of packets, and
it is shown that this can be used to perform a port-scan on any client [3]. The third
attack enables an attacker to reset the internal state of the Michael algorithm. It is
also shown that this can be used to efficiently decrypt arbitrary packets sent towards
a client [3]. Implementation vulnerabilities discovered in some wireless devices are
reported in [3].

As a complement to cryptography, physical layer security has drawn more and more
attentions in the research community currently [4]. The main idea of physical layer security
is to exploit the characteristics of the physical layer to provide security [5]. Compared with
the upper layer cryptography schemes [6], the physical layer security has the following
advantages: i) it does not rely on the computational hardness of certain problems, such as
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the hardness of factoring numbers [7], and ii) it can protect the transmitted signal from
being received or decoded in the first place. Note that the physical layer security can be
combined with the upper layer security techniques to provide higher security level.

1.2 Literature Review

At a very high level, existing physical layer security works as follows. Assume that a
sender and a receiver are interested in exchanging a secret message in the presence of
an eavesdropper. Physical layer security exploits that the wireless channel between the
sender and receiver experiences unpredictably variations that can only be measured by the
sender and the receiver. Thus, one can use these unpredictable variations to communicate
a secret message between the sender and the receiver even in the presence of eavesdropper.
In physical layer security, various topics have been investigated, including secrecy capacity
[8], channel-based key generation [7], and authentication [9], which are explained in detailed
below.

The first research issue is the secrecy capacity, which means the maximum rate sent
from a wireless node to its destination in the presence of eavesdroppers. More than 60
years ago, even before cryptography was introduced, Shannon introduced the concept of
physical layer security which enables two nodes to communicate securely in the presence
of eavesdropper without cryptography. The main idea is that if the eavesdropper channel
is a degraded version of the legitimate channel, the legitimate channel can exchange secure
messages at a nonzero rate. In Figure 1.1, the channel from Bob to Alice is the legitimate
channel, and the channel from Bob to Eve is the eavesdropper channel. The the channel
capacity from Bob to Alice is CA. The capacity from Bob to Eve is CE. If CA is larger
than CE. The secrecy capacity of Bob is CA − CE. Otherwise, it is zero. Nowadays, the
research in this area focuses on how to use friendly jammer to degrade the eavesdropper
channel [10], how to use cooperation and beam forming to increase the secrecy capacity
[11], and what is the secrecy capacity in the scenario of multiple users [12].

Another research topic is key generation. Traditional cryptographic techniques need to
distribute, refresh, and revoke keys. However, key distribution needs extra bandwidth and
infrastructure. For example, if you would like to use symmetrical cryptography to encrypt
and decrypt the message. At first, you need to exchange the private keys, which need
kind of secret channel. It may also cause key management problems in networks with high
number of nodes. So some researchers proposed to make use of the channel between legit-
imate users to generate keys [11]. This technique is based on two assumptions. The first
one is that wireless channel can be measured almost symmetrically between the legitimate

3



Eve

Bob

Alice

AC

EC

I can hear 

Bob, but not 

clear

Figure 1.1: Secrecy capacity

transmitter and receiver. In Figure 1.2, Alice and Bob both know the channel between
them. And it is nearly impossible for the attacker to measure the legitimate channel, which
is the second assumption. So the channel can be considered as a shared secret between the
legitimate users in nature. We can use this secret to generate private keys. Key generation
in physical layer brings us some advantages, such as less communication overhead. Also
because channels always change, the key is hard to be compromised. Nowadays, the re-
search of secret key generation mainly focus on improving the secret bit generation rate by
exploiting the characteristics of radio channels, such as temporal and spatial variations of
radio channels [13], multiple antenna diversity [14], and multiple frequencies [7]. Howev-
er, key generation among multiple wireless devices to ensure secure group communication
remains a challenge [7].

Also, wireless networks are vulnerable to identity-based attacks, including spoofing and
Sybil attacks. Faria and Cheriton (2006) pointed out that media access control (MAC) ad-
dress spoofing is a problem in wireless local area networks (WLANs) [15]. Malicious users
can easily launch by providing a fake MAC address or Internet Protocol (IP) address.
Identity-based attacks allows for many other forms of attacks on the wireless networks
[16]. Combined with other kinds of attacks, they can degrade the network performance
greatly. Although the identity of the user can be verified through cryptographic authen-
tication, cryptographic authentication is not always possible, because the cryptographic
authentication requires key management and additional infrastructure overhead [17]. For
example, existing 802.11 security techniques only provide authentication for data frames,
but not for control frames [18]. Traditional cryptography-based authentication may not
be efficient or suitable for some scenarios. It is ill suited for a less equipped distributed
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wireless networks due to high complexity and computational requirements [18]. Moreover,
traditional cryptographic methods are subject to node compromise. Physical layer authen-
tication can help combat identity-based attacks. The main idea is to consider the nodes
channel, device, and signal characteristics as their signatures. The primary users can be
identified at the signal level without relying on higher layer cryptographic means.

Beside these three aspects, some code approaches, such as error correction coding,
spread spectrum coding, are also considered as the physical layer security [1]. Also, research
on side channel can be considered as physical layer security [19].

In this paper, our focus is physical layer authentication, which exploits the uniqueness
of wireless channels to provide the entity authentication and data origin authentication.
The main purpose of authentication is to verify a claim of identity. It can effectively combat
the identity-based attacks. Compared with the traditional authentication, physical layer
authentication is more efficient in terms of authentication speed and computation overhead
to authenticate each message, which is more suitable for the scenarios where the devices
have limited communication and computational capacities, such as smart grid [20] [21] and
body area networks (BANs) [22].

In the literature, physical layer authentication techniques can be classified into three
main categories: software-based [23], hardware-based, embedding waveforms [24], and
channel-based [25][26][27] [28]. Software-based authentication are essentially based on the
unique characteristics and style of the software programs or protocols running on the de-
vices. For example, IEEE 802.11 standards have very large and complex specifications,
they are usually implemented in slightly different ways by different device manufactures
and driver developers. These variations in implementations can be exploited as a signature
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to identify different wireless devices. For example, the probe requests sent by wireless
nodes vary between manufactures. Frame sequence numbers can also be used to detect
present of multiple 802.11 devices using the same MAC address. The traffic pattern (such
as packet sizes and destination address) of the wireless users have be exploited to iden-
tify different users [23]. Hardware-based authentication is to exploit the characteristics
of hardware, such as clock skew [29], physical unclonable function [30], and radiometric
uniqueness to provide the authentication [29]. Embedded authentication is to embed the
tag waveform into the transmitted physical layer waveform, which can help to reduce the
bandwidth overload [24].

Different from them, channel-based authentication utilizes channel characteristics to
authenticate the sender, which has more advantages, as shown in Table 1.1. Channels are
estimated on most of existing systems, only the middleware should be changed slightly
to implement channel-based authentication. Channel-based authentication is of low com-
plexity, which means energy-effectiveness. Compared with hardware and software-based
methods, channels are hard to mimic, which guarantees the security. Compared with em-
bedded waveform, no extra transmit power is needed in channel-based authentication. Due
to those advantages, there is a flurry of research activities in this area [9] [25] [26] [27] [28]
[31]. In [9], the authors propose an authentication scheme based on Neyman-Pearson hy-
pothesis test (NPHT). In [27], two signal-carrier binary hypothesis test approaches using
time-domain training-based channel impulse responses are proposed. Also, in [27], it is as-
sumed that the underlying complex channel is a stationary, zero-mean, Gaussian random
process. In [28], two schemes are proposed by using refined multiple tone signature (RMT-
S) and complex temporal signature (CTS), respectively. RMTS in fact is the correlation
coefficient between the frequency-domain channel vectors, while CTS takes the phase shift
into the consideration. Based on the difference among noise-mitigated channel impulse
responses, a new test statistic is introduced for authentication in fading environments [31].
In most of existing work, how to set the threshold is not discussed. Only ROC curves are
given by varying the threshold.

1.3 Contributions

In this thesis, an overview about physical layer security, especially various kinds of non-
cryptographic authentication and identification methods using physical layer properties or
information in wireless networks is provided firstly. Their advantages and disadvantages
are discussed. After that, we study channel-based authentication to enhance security. The
authentication problem is formulated as a sequence of hypothesis test problems, where the
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Table 1.1: Comparison of physical layer authentication

Main categories Advantages Disadvantages

Hardware-based 1, Hard to spoof the sig-
nature by using off-the-shelf
devices;
2, No additional hardware is
necessary;
3, Hard to mimic.

1, Vulnerable to imperson-
ation and replay attacks, if
the attacker is more power-
ful [18];
2, If an attack is detected, it
is hard to change the signa-
ture.

Channel-based 1, Hard to mimic;
2, Easy to implement;
3, If attack detected, easy to
tune the signature;
4, No additional bandwidth;
5, No additional transmit
power.

Not suitable for highly dy-
namic environments.

Embedded waveform No additional bandwidth. High energy consumption.
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receiver can identify the sender when receiving frames. To better distinguish the legitimate
user and the malicious one, several features including cyclic features of channels are in-
troduced and leveraged. The idea is to compute the cyclic-feature vectors from estimated
channel samples and utilize this feature to identify and authenticate different users. Based
on these features, support vector machines are researched to provide some classifiers to
do authentication using the training data. Simulation demonstrates that when training
data is enough, low degree polynomial support vector machines can provide satisfacto-
ry performance. The time complexity and space complexity during training and testing
stages are analyzed. After that, Fisher discriminant analysis is used to give these features
different weights based on some training data to construct a linear classifier. To select the
threshold in the authentication scheme, an adaptive threshold scheme is proposed. Based
on the data from practical measurements, simulation results demonstrate that the pro-
posed scheme performs better in terms of detection probability and false alarm probability
compared with existing channel-based authentication schemes and support vector machine
based schemes. Lastly, a combining scheme is presented when several legitimate users
exist and one legitimate user can help the other legitimate user to do the authentication.
Performance and complexity are analyzed, too.

In sum, our work have the following contributions compared with existing work.

• The sum of false alarm probability and misdetection probability can be reduced to
less than 1.8% by our proposed schemes. Furthermore, this sum can be reduced
to less than 0.8% by our proposed combining scheme when two-user cooperation is
available. When the false alarm probability is 8%, the detection probability can reach
99.97% even without two-user cooperation.

• We address the channel-based authentication problem from the aspect of machine
learning. We do not make any assumptions that the statistics characteristics of
the channels are known, which are common in existing channel-based schemes. For
example, it is assumed that the underlying complex channel is a stationary, zero-
mean, Gaussian random process in [27]. Instead, we try to provide better performance
based on some training data, which can give our schemes more capacity to be used
in various kinds of environments. The kind of generality is gained at the cost of the
training stage.

• We address the problem of setting the threshold in our thesis, which makes our
proposed schemes more piratical.

8



1.4 Outline of the Thesis

The organization of the remainder of the thesis is as follows. In Chapter 1, the background
about wireless security and literature review in physical layer security are presented. In
Chapter 2, the system model is presented and the problem is formulated as a sequence
of hypothesis tests. The measurements of indoor channels are investigated and several
features used in the following chapters are introduced. Some metrics to compare differ-
ent schemes are also explained. In Chapter 3, the linear support vector machine (SVM)
and several nonlinear SVMs are used to get classifiers to solve the hypothesis test prob-
lems. Simulation demonstrates degree-3 polynomial SVM has good performance in terms
of misdetection probability and false alarm probability. The time complexity and space
complexity are analyzed. In Chapter 4, a linear combination of the channel features is
used as the test statistic, which is compared with a threshold to perform authentication.
Linear fisher discriminant analysis is used to compute the weights based on some training
data. An adaptive threshold scheme is also proposed to adjust the threshold. Using the
real channel data measured in a regular office from Utah University, simulation is per-
formed, which demonstrates that the proposed scheme performs better in terms of the
sum of misdetection probability and false alarm probability, and the receiver operating
characteristic curves, compared with existing channel-based authentication schemes. The
misdetection probability and false alarm probability can be reduced greatly with aid of
another legitimate user. Lastly, a combining scheme is proposed to combine the data from
different legitimate users, which is proven to have better performance than without combin-
ing scheme. Again, the time complexity, space complexity, and communication overhead
are analyzed. Conclusion and future work is given in the last chapter.
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Chapter 2

System Model and Problem
Formulation

In this chapter, the system model is introduced and the channel-based authentication is
formulated as a series of hypothesis test problems. In order to solve these hypothesis test
problems, we need to measure the “similarity” of two channel vectors. Some features to
measure the “similarity” are introduced. Lastly, some metrics are also presented to evaluate
the performance of our proposed schemes and the existing schemes. These features and
metrics will be used in the following chapters.

2.1 System Model

The system model, as shown in Figure 2.1, consists of three different parties: Alice, Bob,
and Eve. Alice and Bob are both legitimate users, while Eve is a malicious user. Alice is
transmitting frames to Bob. However, Eve tries to masquerade Alice and send frames to
Bob. Bob has to authenticate the coming frames. That is, Bob has to determine whether
the incoming frames are from the legitimate user, i.e., Alice, according to the channels
estimated.

Channels are widely sampled and estimated in deployed wireless communication net-
works to demodulate the received signal. We name the vector of samples of time-domain
channel impulse response (amplitude delay profile) sampled from one frame a channel vec-
tor. We assume that Bob first measures and stores the channel vector between him and
Alice as the shared secret at the beginning of the authentication process . Let ~hA denote
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Figure 2.1: System model

the stored channel vector, which can be represented as follows:

~hA = [hA,0, hA,1, hA,2, ..., hA,M−1] (2.1)

where the subscript A denotes “the channel is from Alice”, and M denotes the number of
samples sampled uniformly per frame.

When one frame is received, Bob estimates the channel ~ht(k) from this frame as follows:

~ht(k) = [ht,0(k), ht,1(k), ht,2(k), ..., ht,M−1(k)] (2.2)

where the subscript t denotes “transmitter to be identified and authenticated” and k de-
notes the frame index k = 1, 2, · · · . Bob needs to determine whether the first frame is from
Alice or not according to ~ht(1) and ~hA.

If Bob determines that the first frame is from Alice, Bob should keep authenticating
the second frame using the channel vector estimated in the first frame and the channel
vector estimated in the second frame. That is, Bob determines whether the second frame
is from Alice or not according to ~ht(1) and ~ht(2). Otherwise, an alarm should be given

out. Also, he needs to determine whether the third frame is from Alice according to ~ht(2)

and ~ht(3).

We have the following assumptions, which are common in the literature of physical layer
authenticaion[9][25]. These assumptions are supported by the well-known Jakes uniform
scattering model [32], which states that the signal rapidly de-correlates over a distance
of roughly half a wavelength, and that spatial separation of one to two wavelengths is
sufficient for assuming independent fading paths[25].
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• Eve cannot measure or create or precisely model the channels between Alice and
Bob, which means Eve cannot mimic the legitimate channels to masquerade Alice.
This assumption always holds when Bob and Eve are located in spatially separated
positions, especially when they are a wavelength away form the Eve in a richly
scattered multi-path environment (typical of indoor wireless environments)[25].

• Alice’s channel is different from Eve’s channel. Take the indoor WiFi scenario for
example. If Alice is more than 12.5cm away from Eve, which is larger than the WiFi
wavelength, the channel from Alice to Bob and the channel from Eve to Bob are
totally different.

• Channels for two successive frames from Alice are nearly the same. This assumption
always holds, especially when there are no dynamic movements of Bob and Alice. For
example, in the indoor WiFi scenario, where the human speed is about 1m/s, and the
physical layer frame duration is about 3.5 ms. During this duration, the movement
of Alice is about 3.5mm, which is less than the WiFi wavelength. Therefore, the
channel between Alice and Bob almost does not change [9] [27]. Since the factual
frame duration in our system model is larger than 3.5 ms, this assumption holds as
well.

Based on these assumptions above, the main objective of this thesis is to distinguish
the channels of Alice-Bob ~hA and the channels of Eve-Bob ~hE.

2.2 Problem Formulation

Generally speaking, the channel-based authentication can be considered as a classification
problem. All the incoming channel vectors can be classified into two categories. The first
category is those from Alice. The other category is those not from Alice. When a new
frame comes, we need to determine whether the new channel vector ~ht and ~hA belong to
the same category (the same transmitter) in Figure 2.1.

We use hypothesis tests to formulate the problem as in [26]. We formulate the channel-
based authentication problem as a sequence of hypothesis test problems as in [26]. The
first hypothesis test problem is given by

H0 : ~ht(1) is from Alice

H1 : ~ht(1) is not from Alice
(2.3)
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It can be also rewritten as:

H0 : ~ht(1) = ~hA

H1 : ~ht(1) 6= ~hA
(2.4)

The null hypothesis, H0, is that ~ht(1) is from Alice, other than Eve. The alternative

hypothesis, H1, is that ~ht(1) is from Eve, other than Alice. To determine whether ~ht(1) is

same as ~hA means to differentiate H0 and H1. We use the hypothesis testing to determine
which hypothesis to accept. That is, we need to construct some test statistics, responding
accept region, and rejection region.

Suppose that during the first hypothesis test, H0 is accepted. Bob continues authenti-
cating the subsequent frames. Otherwise, an alarm will be given. The second hypothesis
test is given by

H0 : ~ht(2) = ~hA(1)

H1 : ~ht(2) 6= ~hA(1)
(2.5)

In summary, the channel-based authentication can be formulated into a general hypoth-
esis problem: given a channel vector between legitimate users ~hA(i − 1), whether is the

successive channel vector ~ht(i) from Alice or not? It can be represented by the following
hypothesis test problem:

H0 : ~ht = ~hA

H1 : ~ht 6= ~hA
(2.6)

2.3 Selection of Features

Consider the scenario in Figure 2.2. When Alice moves from position P1 to position P2, the
estimated channel vector ~hA(1) is very similar to ~hA(2). But ~hE(1) is very different from
~hA(1). In order to detect the “would-be” intruder, we need some features to measure this
kind of “similarity” between any two channel vectors in Figure 2.3. These features, which
reflects the “similarity” between any two channel vectors, can be used to construct the test
statistic to solve (2.6). In (2.6), if the “similarity” is high, we accept H0. Otherwise, we
reject H0.
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2.3.1 RSS

Received signal strength (RSS) is a measurement of the power received at the receiver. It
reflects the length of the channel vector in Figure 2.3. In the past, RSS is usually invisible
to the users of the device, but is known to users of IEEE 802.11 protocol family now.
You can get the RSS of your Android phones using the application program interfaces
(APIs) provided by Google easily. RSS can be used in localization [33] and physical-layer
authentication [16], due to the existing relationship between RSS and the distance. RSS
is defined as ten times of the logarithm of the power of the received signal and a reference
power [33]. The power dissipates from a point source as it moves further out and the
relationship between power and distance is that power is inversely proportional to the
square of the distance traveled [33], which is shown in (2.8) [33]. RSS can be considered
as the square of the length of channel vectors.

RSS( ~HA) = log( ~HA
~HH
A )

= log(~hA~h
H
A)

(2.7)

where the superscript H denotes Hermitian Transpose, H denotes the frequency version of
channel vector, and log() denotes log10().

RSS = −KlogDis+ constant (2.8)

where K is the slope of the standard plot, Dis is the distance between receiver and trans-
mitter, and constant is a constant parameter.

We use the measured channel impulse response data set from Utah University [28] to
analyze the relationship between distance and RSS. The measurement was done in a 14
by 13 meters regular office with many small cubes in it. The result is shown in Figure 2.4,
which demonstrates that log(RSS) is inversely proportional to log(Dis). When Alice and
Eve are in different positions, we can use RSS as a feature to reflect the “similarity”.

2.3.2 TOA

Time of arrival (TOA) is the travel time of a radio signal from the transmitter to the
remote receiver. TOA can be used in localization [34] and physical-layer authentication
[35], due to the existing relationship between TOA and the distance. We can use TOA as
a feature to do authentication, which is shown in (2.9).

TOA =
Dis

speed
(2.9)
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where speed is the speed of signal.

We also use data set from Utah University [28] to analyze the relationship between
distance and TOA. The result is shown in Figure 2.5, which demonstrates that we can
use TOA as a feature to do reflect the “similarity” when Alice and Eve are in different
positions.

2.3.3 Correlation of Channel Vectors

λ′ is defined as the absolute value of the correlation of ~Ht and ~HA, denoted as Corr( ~Ht, ~HA),
which is shown in (2.10). Correlation can be written as a normalized inner product,
which measures how well the two vectors align linearly. Correlation can reflect the angle
between ~Ht and ~HA in Figure 2.3. The probability distribution function (PDF) of λ′

given that ~Ht and ~HA are both from Alice, as well as the PDF of λ′ given that ~Ht is not
from Alice is shown in Figure 2.6. Let f() denote PDF. In Figure 2.6, it is shown that
the correlation coefficients of channel vectors from the same user are close to one. The
correlation coefficients of channel vectors from different users are not close to one, when
they are a little far away. λ′ can be used to reflect the “similarity”.

λ′ = abs(Corr( ~Ht, ~HA))

= abs(Corr( ~HA, ~Ht))

= abs(
‖ ~Ht

~HH
A‖

‖ ~Ht‖‖ ~HA‖
)

(2.10)

where abs() denotes absolute value, and ‖‖ denotes the vector norm.

2.3.4 Correlation of Cyclic Feature Vectors

λ is in fact a highly dimensional version of λ′. Let HA(z) and Ht(z) denote their z-

transforms of ~hA and ~ht, respectively, which can be given as follows:

HA(z) =
M−1∑
i=0

hA,iz
−i (2.11)

Ht(z) =
M−1∑
i=0

ht,iz
−i (2.12)
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Define the γ − z transforms SA(γ, z) and St(γ, z) of ~hA and ~ht, respectively, which are
similar to the cyclic spectrum of cyclostationary signals[36]. SA(γ, z) and St(γ, z) can be
given as follows:

SA(γ, z) = H?
A(z?)HA(z−1ejγ) (2.13)

St(γ, z) = H?
t (z?)Ht(z

−1ejγ) (2.14)

where ? denotes conjugate operation, and j denotes unit imaginary number.

Sample the γ−z plane and gain the feature matrix of channels. For example, when z =
ej

2π
N
n (n = 0, 1, · · · , N−1) and γ = 2π

Q
q (q = 0, 1, · · · , N−1), we can get an N×Q matrix.

To reduce the complexity, we can just use the information at several cyclic-frequencies.
For example, pick up P cyclic frequencies from the set {γ = 2π

Q
q : q = 0, 1, · · · , Q− 1} and

compute an N × P matrix. We name this kind of matrixes as the cyclic feature matrix of
channels and reshape them into a cyclic feature vector. Let ~SA(q, n) and ~St(q, n) denote

the cyclic feature vectors of ~hA and ~ht. λ is defined as the absolute value of the correlation
of the cyclic feature vectors, which is shown in Figure 2.7.

In Figure 2.8, it is shown that λ has more power than λ′ to do authentication. The P
in case 1 doubles the P in case 3. The P in case 3 doubles the P in case 5. When P is
increased, the peak of the PDF of λ moves to the left, which makes authentication easier.

λ = abs(CycCorr( ~Ht, ~HA))

= abs(
‖~St(q, n)~SA(q, n)H‖
‖~St(q, n)‖‖~SA(q, n)‖

)
(2.15)
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The computation of λ and λ′ involve the fast Fourier transform (FFT) of channel
vectors. The N-point FFT computation involves N

2
log2N complex multiplications and

Nlog2N complex additions [37]. Let O denote O-notation. The complexity comparison of
computing these features is shown in Table 2.1.

Table 2.1: Complexity comparison of computing λ and λ′

Features Number of Complex Multiplications Number of Complex Additions

λ N
2
log2N +NP Nlog2N +NP

λ′ N
2
log2N +N Nlog2N +N
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Figure 2.7: f(λ| ~Ht 6= ~HA) and f(λ| ~Ht = ~HA)

2.3.5 Another Two Features (β and θ)

In order to make the setting of thresholds easier, we do some transformation on TOA and
RSS. β and θ are defined as following:

β =
min(RSS(~hA), RSS(~ht))

max(RSS(~ht), RSS(~hA))
(2.16)

θ =
min(TOA(~hA), TOA(~ht))

max(TOA(~ht), TOA(~hA))
(2.17)
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It is shown that β ∈ [0, 1] and θ ∈ [0, 1]. So, the threshold should be in [0, 1]. In
the following chapters, it is shown that this kind of normalization makes the setting of
threshold convenient.

In the following chapters, we use λ, β and θ to construct one vector, which is called
feature vector. We use the feature vector in (2.18) to measure the “similarity”. All the
schemes proposed in this thesis are based on this kind of feature vectors.

~x = [θ, λ, β]T (2.18)

2.4 Metrics

In this section, some metrics for evaluating the performance of our proposed schemes are
presented. We are interested in the statistical characterization of the attack-detection
over all the possible attacks. To evaluate the performance, PD is defined as the detection
probability, which is the percentage of attack attempts that are are determined to be under
attack. An successful identity-based attack will cause the hypothesis test to reject H0. PF
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is defined as the false alarm probability, which is the percentage of legitimate attempts
that are are determined to be under attack. PD and PF can be given as follows:

PD = Prob(H0 is rejected|~ht is from Eve) (2.19)

where Prob() denotes probability.

PF = Prob(H0 is rejected|~ht is from Alice) (2.20)

Let PM denote the misdetection probability, which is defined by

PM = Prob(H0 is accepted|~ht is from Eve) (2.21)

The relationship between PD and PM is as following:

PD = 1− PM (2.22)

A good scheme should have low PF and high PD, which means that it has a low false
alarm probability and a high detection probability. Always, detection probability and
false alarm probability vary under different thresholds. Receiver operating characteristic
(ROC) curve can be used to study both the detection probability PD and false alarm
probability PF . The ROC curve is a plot of detection probability compared to the false
alarm probability. The ROC curve is a direct means of measuring the tradeoff between
detection probability and false alarm probability. It can be gained by varying thresholds.

Also, we are interested in the sum of PM and PF , which reflects the accuracy of our
proposed schemes. In most cases, we need to minimize this sum. So, PM + PF is also a
metric to evaluate the performance of the schemes.

The measurements and estimates of channel vectors can be considered free of measure-
ment noise in simulation. But in reality, measurements always involves noise. As a result,
we need to consider the sensitiveness of our proposed schemes and existing schemes to this
measurement noise. Considering the measurement noise, we define the signal-to-noise ratio
(SNR) as the channel power to the measurement noise power. ROC curves and PM + PF
should be researched under different SNRs.

In most cases, our proposed schemes need some training samples in training phase to
adjust the parameters. We need to study the performance of our proposed schemes with
varied sample size. In this case, we can plot the sum of the misdetection probability PM
and the false alarm probability PF compared with sample size.
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Chapter 3

Support Vector Machine Based
Authentication Schemes

As explained in the last chapter, if the feature vector of two channel vectors reflects high
“similarity”, H0 is accepted. Otherwise, H1 is accepted. In other words, the hypothesis
testing problem in (2.6) is a classification problem, too. There are two classes. If the
two channel vectors are from Alice, their feature vector belongs to class -1. If the two
channel vectors are from Alice and Eve, their feature vector belongs to class 1. In this
thesis, we fucus on the two-class Support Vector Machines (SVMs) to solve the hypothesis
testing problem in (2.6). SVMs are supervised learning models with associated learning
algorithms and are used for classification and regression analysis [38]. An SVM model is a
representation of the feature vectors as points in space, mapped so that the feature vectors
of the two categories are divided by a clear gap that is as wide as possible. New feature
vectors are then mapped into that same space and predicted to belong to a category based
on which side of the gap they fall on. A good separation is achieved by the hyperplane
that has the largest distance to the nearest training data points of the the two classes.
That is, each feature vector is a point in the space, SVM can be used to find the optimal
hyper-plane to classify two classes of points. The distance is called functional margin.
Always, a set of training feature vectors is necessary for an SVM training algorithm to
build a model that assigns new feature vectors (~xi) into one category or the other.

In addition to performing linear classification, SVMs can efficiently perform a non-
linear classification using what is called the kernel trick, implicitly mapping their inputs
into high-dimensional feature spaces.

Our proposed SVM based authentication scheme: Training sets are used to train SVM
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machines, which outputs the maximum-margin hyper-plane which can distinguish the fea-
ture vectors of two classes. These hyper-planes are linear or nonlinear classifiers, which
can be used to solve hypothesis test problems in (2.6).

3.1 SVMs

The labeled training set Dtr with Itr feature vectors is given by (3.1). yi is the label of ~xi.

Dtr = {~xi|~xi ∈ R3, yi ∈ {−1, 1}}Itri=1 (3.1)

Each feature vector ~xi is 3-dimensional real vector of the form (3.2).

~xi = [βi, λi, θi]
T (3.2)

Our goal is to find the maximum margin hyperplane that divides these feature vectors
with yi = +1 from those with yi = −1. Any hyperplane can be written as the set of feature
vectors ~x satisfying

~wT · ~x− b = 0 (3.3)

where · denotes the dot product, and ~w is the normal vector to the hyperplane. b/‖~w‖ is
the offset of the hyperplane from the origin along ~w. If ~wT~xi + b > 0, yi is labeled as 1,
otherwise yi is labeled as -1.

~wT~xi + b

{
< 0 for yi = −1

> 0 for yi = +1
(3.4)

Assume that the training points are linearly separable, no training points are on the
hyperplane ~wT~x + b = 0. Thus, in order to control separability, the following inequalities
is considered.

~wT~xi + b

{
< −1 for yi = −1

> +1 for yi = +1
(3.5)

(3.5) is equivalent to
yi(~w

T~xi + b) ≥ 1,∀~xi ∈ Dtr (3.6)

The hyperplane ~wT~x+ b = c(−1 < c < 1) form separating hyperplanes. If the training
data Dtr are linearly separable, two hyper-planes can be selected so that all the feature
vectors are separated by the two hyper-planes and no feature vectors are between them,
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and then try to maximize their distance. The region bounded by them is called “margin”.
The hyperplanes with the maximum margin are so-called optimal separating hyperplanes.
Our goal is to determine the optimal separating hyperplanes. The Euclidean distance from
a training datum ~x to the separating hyperplane is |~wT~x + b|/‖~w‖ [39]. The line going
through ~x and orthogonal to the separating hyperplane is a~w/‖~w‖ + ~x, where |a| is the
Euclidean distance from ~x to the hyperplane [39].

Then all the training data must satisfy

yi(~w
T~xi + b)/‖~w‖ ≥ δ, ∀~xi ∈ Dtr (3.7)

where δ is the margin. We impose the constraint in (3.8).

δ‖~w‖ = 1 (3.8)

From (3.7) and (3.8), we can get the optimal separating hyperplane. The problem of
finding the optimal separating hyperplane becomes (3.9).

(~w, b) = arg min~w,b 1/2‖~w‖2

s.t. yi(~w
T~xi + b) ≥ 1,∀~xi ∈ Dtr

(3.9)

The dual problem is therefore:

max
∑
i=1

αi − 1/2
∑

i=1,j=1

αiαjyiyj~x
T
i ~xj

s.t. αi ≥ 0,
∑
i=1

αiyi = 0
(3.10)

This is a quadratic programming (QP) problem. Because it is assumed that the training
data are separable, there must be feasible solutions for yi(~w

T~xi + b) ≥ 1(∀~xi ∈ Dtr). The
support vectors are those points satisfying yi(~w

T~xi + b) = 1(∀~xi ∈ Dtr). S is called the set
of the support vectors [39].

~w =
∑
~xi∈S

αiyi~xi (3.11)

∑
i=1

αiyi = 0 (3.12)

where αi > 0 if ~xi is a support vector, otherwise αi = 0.

b = 1/|S|
∑
~xi∈S

(yi − ~wT~xi) (3.13)
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where || here denotes the number of elements in the set.

Always, many of αi are zero. ~w is a linear combination of a small number of data points
~xi. For testing with new data ~z, if ~wT~z + b =

∑
~xi∈S αiyi(~x

T
i ~z) + b > 0, ~z belongs to class

1, otherwise, it belongs to class -1, which is given in (3.14).

~wT~z + b

=
∑
~xi∈S

αiyi(~x
T
i ~z) + b

= (
∑
~xi∈S

αiyi~x
T
i )~z + b

H1

Q

H0

0

(3.14)

In fact, the training data are always not separable. If “error” ξi is allowed, we need to
solve the following problem:

(~w, b) = arg min~w,b 1/2‖~w‖2 + C
∑
i=1

ξi

s.t. yi(~w
T~xi + b) ≥ 1− ξi ∀~xi ∈ Dtr, ξi ≥ 0

(3.15)

where ξi is the “slack variables” in optimization [40]. ξi = 0 means that there is no error
for xi. C is the tradeoff parameters between error and margin.

Its dual program is

max
∑
i=1

αi − 1/2
∑

i=1,j=1

αiαjyiyj~x
T
i ~xj

s.t. C ≥ αi ≥ 0,
∑
i=1

αiyi = 0
(3.16)

The dual optimization problem can be solved using QP solver [41]. ~w is recovered as
~w =

∑
xi∈S αiyi~xi. For testing with new data ~z, if ~wT~z + b =

∑
~xi∈S αiyi(~x

T
i ~z) + b > 0, ~z

belongs to class 1, otherwise, it belongs to class -1.

Nonlinear SVMs can be used by aid of some “kernel tricks” [42]. Assume that the
kernel function is defined by K(~xi, ~xj) = φ(~xi)

Tφ(~xj). The problem becomes:

max
∑
i=1

αi − 1/2
∑

i=1,j=1

αiαjyiyjK(~xi, ~xj)

s.t. C ≥ αi ≥ 0,
∑
i=1

αiyi = 0
(3.17)
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~w is recovered as ~w =
∑

xi∈S αiyiφ(~xi). For testing with new data ~z, if
∑

~xi∈S αiyiK(~xi, ~z)+
b > 0, ~z belongs to class 1, otherwise, it belongs to class -1.

In sum, the idea of SVM based authentication scheme is to gain the classifiers
∑

~xi∈S αiyi(~x
T
i ~z)+

b or
∑

~xi∈S αiyiK(~xi, ~z) + b using Dtr.

3.2 Simulation of SVM Based Schemes

In this section, we use the measured channel impulse response data set from Utah University
[43] to evaluate the performance of our proposed SVM based authentication schemes.
Firstly, we introduce how to use this data set to do the simulation. Then, we present the
simulation results.

3.2.1 Experimental Channel Measurements

To evaluate the performance of our proposed schemes we use the measured channel impulse
response data set from Utah University [43]. The measurement was done in a 14 by 13
meters regular office with many small cubes in it. There are 44 locations in this office, as
shown in Figure 3.1. The small circles in Figure 3.1 are the locations used for measurements.

A 40 MHz chip rate signal generator was placed at one location and a software ra-
dio (Sigtek model ST-515) designed to receive the signal was placed at another location
[43]. This is a typical channel measurement. The transmitter and receiver were closely
synchronized to within 1-2 nanoseconds of each other [43]. The channels between them
were estimated for several times using high-bandwidth estimate of the (complex) channel
impulse response and then averaged. For example, when the transmitter is at location 1,
and the receiver is at location 13, the channel measurement is shown in Figure 3.2. The
data obtained from this experiment thus present the actual propagation delay of the radio
frequency (RF) signal. 0 nanoseconds, in Figure 3.2, denotes the time when the trans-
mitter starts to transmit the signal. We use the data set to verify the performance of the
proposed scheme and the existing schemes.

For any two channel measurements ~hi and ~hi−1 (the subscript i denotes the frame
index), we compute its feature vector ~xi as following:

xi,0 = βi =
min(RSS(~hi−1), RSS(~hi))

max(RSS(~hi), RSS(~hi−1))
(3.18)
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xi,1 = θi =
min(TOA(~hi−1), TOA(~hi))

max(TOA(~hi), TOA(~hi−1))
(3.19)

xi,2 = λi = abs(
‖~Si~SH

i−1‖
‖~St‖‖~Si−1‖

) (3.20)

~xi = [xi,0, xi,1, xi,2]
T = [βi, θi, λi]

T (3.21)

where ~h0 = ~hA.

Each channel vector has 50 elements. And we use all the 50 elements for simulation.
yi is the label of ~xi. In other words, yi denotes whether the channel measurements ~hi and
~hi−1 are from the same user or not. If it is, yi = −1. Otherwise, yi = 1. Let D denote the
whole data set.

D = {~xi|~xi ∈ R3, yi ∈ {−1, 1}}Ii=1 (3.22)

where I denote the total number of the feature vectors in the set D. ~xi is a 3-dimensional
real feature vector and yi can be either 1 or -1, indicating which class the data point ~xi
belongs to.

We use the data set to evaluate the performance of our proposed schemes and the
existing schemes. We use one subset of D (denoted as Dtr) as the training data, and use
the complement set of Dtr as the test set, denoted as Dtest. That is, we select one location as
the AP location randomly, several other locations for training, and the remaining locations
for testing. The channel vectors from the training locations to AP are used to compute
Dtr. The channel vectors from the testing locations to AP are used to compute Dtest.
In this case, beside yi of Dtest, we know all the remaining information. To evaluate the
performance of our proposed schemes means to predict yi of Dtest based on Dtr, yi of Dtr,
and Dtest.

It is obvious that D is the union of Dtest and Dtr, which is shown in (3.23).

D = Dtr ∪Dtest (3.23)

Let DE,tr denote the set of all the training feature vectors, which are computed from
pairs of channel vectors from different users. Let DA,tr denote the set of all the training
feature vectors, which are computed from pairs of channel vectors from the same user.

DE,tr = {~xi|~xi ∈ Dtr, yi = +1} (3.24)

DA,tr = {~xi|~xi ∈ Dtr, yi = −1} (3.25)
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Dtr is the union of DA,tr and DE,tr.

Dtr = DE,tr ∪DA,tr (3.26)

Let DE,test denote the set of all the testing feature vectors, which are computed from
pairs of channel vectors from different users. Let DA,test denote the set of all the testing
feature vectors, which are computed from pairs of channel vectors from the same user.

DE,test = {~xi|~xi ∈ Dtest, yi = +1} (3.27)

DA,test = {~xi|~xi ∈ Dtest, yi = −1} (3.28)

Dtest is the union of DE,test and DA,test.

Dtest = DE,test ∪DA,test (3.29)

Let DE denote the set of all the feature vectors, which are computed from pairs of
channel vectors from different users. Let DA denote the set of all the feature vectors,
which are computed from pairs of channel vectors from the same user.

DE = {~xi|~xi ∈ D, yi = +1} (3.30)

DA = {~xi|~xi ∈ D, yi = −1} (3.31)

D is the union of DA and DE.
D = DE ∪DA (3.32)

3.2.2 Simulation Results of SVM Based Schemes

In this section, we do the simulation according to the process in Figure 3.3. There are
44 points representing 44 measurement locations in Figure 3.4. Each round, AP is picked
randomly. After that, we pick several points as the the training locations from the re-
maining locations in Figure 3.4. The channel vectors from these training locations to the
AP are used to train the SVMs. That is, these channel vectors from these training loca-
tions to the AP are used to compute the feature vectors ~xi in Dtr. Then, we use Dtr to
compute the SVMs introduced above. In fact, we use MATLAB library functions to solve
the QP problems in (3.10), (3.16), and (3.17) to gain the classifiers

∑
~xi∈S αiyi(~x

T
i ~z) + b

or
∑

~xi∈S αiyiK(~xi, ~z) + b [44] [45]. Besides AP and these training locations, the remain-
ing locations are used as test locations, which means that the channel vectors from these
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Table 3.1: Number of training locations versus |Dtr|/|D|
Number of Training Locations 5 10 15

|Dtr|/|D| 11.63% 23.26% 34.88%

locations to the AP are used to test the output SVM machines. That is, these channel
vectors are used to compute ~xi in Dtest. Then we test the output SVM machines using
Dtest. This is the first round of simulation, which is depicted in Figure 3.4. The square
point in this figure represent the AP. The circles are the training locations, and the small
triangles represent test locations. Another round of simulation should be done by picking
another AP randomly firstly. The simulation outputs are averaged.

Pick 
several 

locations 
as 

training 
locations

Train the machine 
using training data

Test the machine 
using the remaining 

locations
Enough? Stop

Pick an AP 
randomly

Figure 3.3: Simulation working flow

In reality, it is obvious that the training locations should be picked carefully to improve
the performance of the output SVMs, because the training data should be presentive.

The number of training locations means how many locations in Figure 3.4 are used to
generate Dtr. The relationship between the number of training locations and the size of
Dtr is given in Table 3.1. When 5 locations in Figure 3.4 are used to generate Dtr, 11.63%
of the total feature vectors are used for training.

Figure 3.5 and Figure 3.6 are the results. It can be seen that the performance becomes
better as the size of Dtr increases. In Figure 3.5, the sum of misdetetion probability and
false alarm probability can reach about 4%, when 34.88% of the data used for training.
When different AP is selected, the detection probability and false alarm probability are
plotted in Figure 3.6. Also, the average detection probability and false alarm probability
are plotted too. From the two figures, it is shown that, polynomial SVMs are better than
quadratic SVMs, which are better than linear SVMs. SVM based schemes have better
performance than NPHT in terms of misdetection probability and false alarm probability.

30



−5 0 5 10

−4

−2

0

2

4

6

8

10

12

14

X Coordinate(m)

Y
 C

oo
rd

in
at

e(
m

)

 

 

Training Locations
AP
Test Locations

Figure 3.4: Room layout for simulation

SVMs can provide the weights and threshold at the same time, which is an advantage.
While most existing schemes do not introduce the method to compute or set the threshold.

Among all the nonlinear SVMs, degree-3 polynomial SVM has the best performance in
terms of ROC curves and PF + PM .

3.3 Complexity Analysis of SVM Based Schemes

Recall that |S| denote the size of the set of the support vectors, |Dtr| denotes the size of
the training set, and J denote the dimension of the feature vectors. During the training
stage, the complexity is related to the size of Dtr. There are |Dtr| feature vectors to
compute. The complexity of compute the feature vector is introduced in last chapter.
Besides, the core to train a SVM is to feed to a QP Solver. The space complexity of
solving QP problem is O(J |Dtr|2) [46]. Training time complexity of nonlinear SVMs is
generally between O(J |Dtr|2) and O(J |Dtr|3) [41] [47]. The complexity comparison of
these schemes during the training stage is shown in Table 3.2.

Most of the computation happens in the training phase. In the testing phase, the
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Figure 3.5: Comparison of different SVMs in terms of PM + PF with different number of
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Table 3.2: Complexity comparison in training stage

Schemes Computation of Feature Vectors QP Solver

Number of
Complex
Multiplica-
tions

Number of
Complex
Additions

Time Complexi-
ty

Space Com-
plexity

Linear SVM
based scheme

(N
2
log2N +

PN)|Dtr|
(Nlog2N +
PN)|Dtr|

O(|Dtr|J) O(|Dtr|2J)
[46]

Quadratic
SVM based
scheme

(N
2
log2N +

PN)|Dtr|
(Nlog2N +
PN)|Dtr|

between
O(J |Dtr|2)
and O(J |Dtr|3)

O(|Dtr|2J)
[46]

Polynomial
SVM based
scheme

(N
2
log2N +

PN)|Dtr|
(Nlog2N +
PN)|Dtr|

between
O(J |Dtr|2)
and O(J |Dtr|3)

O(|Dtr|2J)
[46]

computation is very simple. During the testing stage, in order to authenticate one frame,
only the feature vector should be computed according to (3.18), (3.19), (3.20) firstly. When
linear SVMs is used, the testing of new feature vector just involves the inner product of
J-dimensional vectors. When nonlinear SVMs are used, the testing of new feature vector
involves the kernel tricks. Assume thatM is the number of operations required to evaluate
the kernel functions. The complexity comparison is listed in Table 3.3.

3.4 Summary

In this chapter, our work is listed in the following.

• How to use SVMs to solve the problem in (2.6) is given. Our proposed SVM based
scheme is to gain the classifiers

∑
~xi∈S αiyi(~x

T
i ~z) + b or

∑
~xi∈S αiyiK(~xi, ~z) + b using

DE,tr and DA,tr.

• How to use the measurement data to do simulation is given.

• Simulation results show that our SVM based authentication schemes can gain satis-
factory detection probability and false alarm probability.
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Table 3.3: Complexity comparison in testing stage

Schemes Time Complexity Space
Com-
plexity

Number of Complex
Multiplications

Number of Complex
Additions

Linear SVM
based scheme

N
2
log2N + PN + J/4 Nlog2N + PN + J/2 O(J)

Quadratic SVM
based scheme

N
2
log2N +PN +J/4+

JM
Nlog2N+PN+J/2+
JM

O(J)

Polynomial
SVM based
scheme

N
2
log2N +PN +J/4+

JM
Nlog2N+PN+J/2+
JM

O(J)

• Time complexity and space complexity during training stage and test stage are ana-
lyzed.
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Chapter 4

Fisher Discriminant Analysis Based
Authentication Scheme

In this chapter, we use the features (β, θ, and λ) to construct a test statistic to solve the
problem in (2.6). If the PDFs of these random variables (β, θ, and λ) are already known,
we can use the likelihood-ratio test (LRT), which is considered to be optimal according to
the Neyman-Pearson criterion [48]. The LRT test statistic ΛLRT and LRT testing can be
formulated as (4.1).

ΛLRT =
f(β, θ, λ|H1)

f(β, θ, λ|H0)

H1

Q

H0

thLRT (4.1)

where thLRT is the decision threshold.

For the LRT, we need to compute the conditional PDF of (β, θ, λ), which is intractable
mathematically [49]. As a result, we always adopt an linear combination of these features
as the test statistics Λ. Rejection region and accept region should be determined too. If
the value of Λ falls into the rejection region, Bob accepts H1. Otherwise, H0 is accepted.
Λi in (4.2) is of common forms, which are linear combinations of some features. Λi is

computed from ~hi and ~hi−1.

Λi = ~wT~xi

=
J−1∑
j=0

wjxi,j

H1

Q

H0

th
(4.2)
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where xi,j is the feature, J is the total number of features used, wj is the weight for xi,j,
and th is the threshold. In this thesis, we just use three features, so J is 3.

In this chapter, we focus on the construction of the test statistics and the determination
of the parameters (including weights and thresholds).

4.1 Linear Fisher Discriminant Analysis Based Au-

thentication

Our proposed Fisher discriminant analysis (FDA) Based Authentication scheme is to con-
struct a linear combination of β, θ, and λ and use linear FDA (LFDA) and Dtr to determine
the weights. Linear FDA is always used in statistics, pattern recognition, and machine
learning to find a linear combination of features, which may be used as a linear classifier.
Let ΛLFDA denote the test statistic. Let thLFDA denote the decision threshold. Then, the
hypothesis test problem in (4.2) becomes:

Λi,LFDA = ~wT
LFDA~xi

= w0βi + w1λi + w2θi

H1

Q

H0

thLFDA
(4.3)

(4.4) can guarantee that the value of the test statistic ΛLFDA varies between 0 and 1, which
means that the threshold thLFDA should be set from [0, 1].

w0 + w1 + w2 = 1 (4.4)

Since f(ΛLFDA|~ht = ~hA) is different from f(ΛLFDA|~ht 6= ~hA), thLFDA can be utilized
to distinguish them with acceptable error. The greater the difference, the better we can
distinguish them. The optimal value of the weight vector is the one that maximizes the
detection probability and minimizes the false alarm probability [16]. However, a closed-
form expression of the optimal linear coefficients is difficult to gain because it is hard to
gain all the statistical information about these features.

The existing linear FDA algorithm can be used to find a linear coefficient vector ~wLFDA
that clearly separates different channel vectors by assigning a higher linear coefficient to
a more significant feature. Let SB and SW denote the between- and within-class scatter
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matrices respectively [50]. ~wLFDA can be gained by maximizing the so-called Rayleigh
coefficient [51] in (4.5) with respect to ~w, which is formulated in (4.6).

J(~w) =
~wTSB ~w

~wTSW ~w
(4.5)

~wLFDA = arg max~w J(~w) (4.6)

The selection of the weights is very important. The weights reflect the importance of the
features. So, the selection of the weights directly affects the performance of authentication.
When the statistics properties (SB, SW , ~m0, ~m1) of these features are available, we can
get the best weights. However, it is difficult to obtain all the information of these features
in practice. Instead, only a set of channel vectors is available. For example, some labeled
data can be obtained through the higher layer authentication scheme in the first place.
That is how we can get Dtr in reality. Based on the labeled (training) data Dtr, the linear
FDA algorithm can be performed to determine the weights in (4.3).

We use the linearize FDA to compute the weights. According to [50], ~wLFDA can be
computed according to (4.7).

~wLFDA = S−1W (~m1 − ~m0) (4.7)

where ~m0 is the mean of all the ~xi in DA,tr, and ~m1 is the mean of all the ~xi in DE,tr. ~m0

and ~m1 are given in (4.8) and (4.9), respectively.

~m0 =
1

|DA,tr|
∑

~xi∈DA,tr

~xi (4.8)

~m1 =
1

|DE,tr|
∑

~xi∈DE,tr

~xi (4.9)

SW can be estimated according to (4.10):

SW =
∑

~xi∈DA,tr

(~xi − ~m0) · (~xi − ~m0)
T

+
∑

~xi∈DE,tr

(~xi − ~m1) · (~xi − ~m1)
T

(4.10)

In summary, our proposed LFDA based authentication scheme to construct a linear
combination of βi, θi, and λi and to use linear FDA and Dtr to determine the weights.
Specially, we use (4.7), (4.9), (4.8) and (4.10) to compute these weights.
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4.2 Performance Analysis and Complexity Analysis

In this section, performance analysis and complexity analysis of our proposed LFDA based
authentication are presented. Firstly, we study the effect of the training size. Then, we
compare our proposed LFDA based authentication with existing schemes (CTS, RMTS,
and NPHT) in terms of performance and complexity. Lastly, the complexity analysis is
given.

4.2.1 Size of Training Set

The ROC curves and PM +PF performance of LFDA based scheme with different number
of training locations are shown in Figure 4.1 and Figure 4.2, respectively. These two figures
are used to show the effect of the size of training set. It is obvious that the larger size the
training data set, the better the performance of our proposed scheme. When 34.88% of
data are used for training, our scheme can gain satisfactory performance.
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Figure 4.1: ROC curves of LFDA based scheme under different number of training locations

The optimal thresholds for different APs are different in fact. In Figure 4.2, “Opti-
mal Threshold” means that the optimal threshold for each AP is gained by brute force in
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each round of simulation. In Figure 4.1, “Optimal Threshold” is not given in the legend,
which means that the detection probabilities and false alarm probabilities of each thresh-
old are averaged on all APs and the threshold with minimum averaged sum of detection
probabilities and false alarm probabilities is gained by brute force.
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Figure 4.2: PM + PF of LFDA based scheme under different number of training locations

4.2.2 Comparing LFDA Based Scheme with Other Schemes

We use similar methods introduced in last chapter to generate Dtr and Dtest. We use Dtr

to compute ~wLFDA according to (4.7), (4.9), (4.8) and (4.10). Then we vary the threshold
thLFDA and use (4.3) to test the performance of our FDA based scheme on Dtest. There
are two cases of simulating linear FDA based scheme. The first case is that we know D
before we compute the linear classifier (denoted as “LFDA global”). In this case, we use
Dtr ∪Dtest to compute ~w first and then test the ~w on the Dtr ∪Dtest. The second case is
that we use 34.88% of the data set as Dtr to compute the linear classifier and then test the
output linear classifier on the remaining data. This case is denoted as “LFDA training”.
We compare the proposed scheme with the NPHT scheme in [25]. The ROC curves are
plotted in Figure 4.3, which is used to compare the ROC curves of LFDA based scheme and
NPHT. In this figure, it is shown that the performance of our proposed scheme is better
than NPHT. When PF is 1%, PD of NPHT is 70%, and PD of the proposed scheme is
extremely close to 95%. It implies that the proposed scheme can achieve higher detection
probability, given the same false alarm probability.
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Figure 4.3: ROC curves of LFDA based scheme and NPHT

Table 4.1: Comparison with CTS

Targeted PF 0.04 0.06 0.08

PD of CTS 0.9467 0.9633 0.9744

PD of LFDA based scheme 0.9898 0.9985 0.9997

We also compare the proposed scheme with CTS and RMTS schemes in [43]. When PF
is 0.1, PD of RMTS is 96.5%, whilePD of the proposed scheme is extremely close to 99.98%.
Table 4.1 shows that the proposed scheme has higher PD given the same PF compared with
CTS.

From Figure 4.4, the LFDA based scheme is better than SVM based schemes in terms
of the sum of PM and PF .

4.2.3 Noise’s Effects

Because in the experiments, all the pairwise links were measured for several times and
averaged finally. The measurement can be considered free of measurement noise. But in
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Figure 4.4: Comparison between SVM based schemes and LFDA based scheme in terms
of PM + PF
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reality, measurements always involves noise. As a result, we need to consider the effect
of measurement noise on our proposed scheme and existing schemes. Considering the
measurement noise, we define the signal-to-noise ratio (SNR) as the channel power to the
measurement noise power. From Figure 4.5, it can be seen that under different SNRs, our
proposed scheme always has better ROC curves than NPHT. In sum, our proposed scheme
is better than NPHT in terms of ROC curves.
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Figure 4.5: ROC curves of LFDA based scheme and NPHT under different SNRs

4.2.4 Complexity Analysis of LFDA Based Scheme

In this section, the complexity of our proposed LFDA based authentication scheme is
analyzed. During the testing stage, in order to authenticate one frame, the feature vector
should be computed according to (3.18), (3.19), (3.20) firstly. The complexity of the
computation of the features is given in Table 2.1. After that, the inner product of two
J-dimensional vectors should be computed to be compared with a threshold according to
(4.3). The complexity comparison is listed in Table 4.2. In fact, NPTH involves a minimum
problem, which makes NPTH more complex than just FFT computation (marked by > in
Table 2.1). So we use Ω-notation.
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Table 4.2: Complexity comparison in testing stage

Schemes Time Complexity

Number of Complex
Multiplications

Number of Complex
Additions

LFDA based scheme N
2
log2N + PN + J/4 Nlog2N + PN + J/2

NPTH> Ω(N
2
log2N) Ω(Nlog2N)

RMTS N
2
log2N Nlog2N

During the training stage, the complexity of LFDA based scheme is related to the size
of Dtr. NPTH and RMTS have no training stage. The complexity comparison of these
schemes during the training stage is shown in Table 4.3.

Table 4.3: Complexity comparison in training stage

Schemes Computation of Feature Vectors Computation of ~wLFDA

Number of Com-
plex Multiplica-
tions

Number of Com-
plex Additions

Number of
Real Mul-
tiplications

Number of
Real Addi-
tions

Space
Com-
plexity

LFDA
based
scheme

(N
2
log2N +

NP )|Dtr|
(Nlog2N +
NP )|Dtr|

O(J2|Dtr|) O(J2|Dtr|) O(J |Dtr|)
[49]

NPTH 0 0 0 0 0

RMTS 0 0 0 0 0

4.3 Adaptive Threshold Scheme (ATS)

4.3.1 ATS

Until now, how to set the decision threshold has not been discussed. We just researched the
performance of our proposed scheme and the existing schemes by varying the threshold.
The threshold defines the reject region and accept region. So, the selection of the threshold
directly affects the performance of authentication. When the statistics properties of these
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features are available, the optimal threshold can be determined by numerical method or
derivation. However, in practice, it is difficult to obtain all the information of these features.
Instead, only a set of channel vectors is available. In the section, how to set the initial
threshold based on the training data, and how to adjust the threshold adaptively are
discussed. The idea is that we set one initial value to the threshold at first. During
the testing stage, the threshold is adjusted according to certain optimal objective. If the
objective is to minimize the sum of misdetection probability and the false alarm probability,
the threshold should be increased or decreased according to whether a attacker is detected
and whether one legitimate user does not pass the test. If one attacker is not detected,
the threshold is increased by one step. If the legitimate user is tested as the attacker, the
threshold is decreased by one step. The step value affects the speed of iteration and how
close the adjusted threshold approach the optimal threshold. If the step is set too big, the
speed of iteration is high, but the final threshold may be too far from the optimal threshold.
If the step is set too small, the speed of iteration is very slow. Another idea is to adjust the
step value during the iteration process. We set the initial threshold according to (4.11),
which is used to test the first feature vector. That is we compare Λ1 with th1. If Λ1 < th1,
we reject H0 and ask the user to provide high-layer credentials. If the user can provide the
right credentials, it is proven that this is a false alarm. The threshold should be updated
to th1 + 0.5(Λ1− th1) according to (4.12), where 0.5 is a factor. If the user cannot provide
right credentials, it is proven the attack is detected precisely. The threshold should not be
changed. Sometimes, we need to ask the user to provide the credentials randomly even if
Λi > thi. In this case, if the user can not provide the credentials rightly, the user is proven
to be attacker. The threshold should be updated to thi + 0.5(Λi− thi). This is the second
proposed scheme: adaptive threshold scheme (ATS).

th1 = 0.5(~m0 + ~m1)
T · ~wLFDA (4.11)

thi ← thi−1 + 0.5(Λi−1 − thi) (4.12)

We use simulation to verify the performance. The simulation should be done according
to the following steps.

• Step 1: When the system is setup, the AP is selected.

• Step 2: Several locations are selected to generate Dtr. Based on Dtr, ~wLFDA is worked
out according to (4.7), (4.9), (4.8),and (4.10).

• Step 3: The initial threshold is computed according to (4.11).
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• Step 4: Dtest is generated. We simulate the real scenario, where the channel vectors
come the AP one by one. During the process, the threshold is adjusted according to
(4.12).

• Step 5: If the number of simulation rounds is big enough, stop. Otherwise, go to
Step 1.

In Figure 4.6, the ROC curve of NPHT is depicted by varying the thresholds. This ROC
curve is used for comparisons. We do several rounds of simulation. During each round
we pick one AP randomly. We use the sequence number of AP to distinguish different
APs. All the sequence numbers are depicted in Figure 3.4. When different AP is selected
in each round, the false alarm probabilities and detection probabilities are depicted in
Figure 4.6. The average false alarm probability and detection probability are also depicted
in this figure. The sums of false alarm probability and detection probability are depicted
in Figure 4.7. From these figures, it is shown that the LFDA based scheme with ATS is
better than NPHT on average. It is also shown that the LFDA based scheme with ATS is
worse than the LFDA based scheme with optimal threshold on average.
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Figure 4.6: ROC curves of NPHT and LFDA based schemes with optimal threshold and
with ATS
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4.3.2 Comparison with SVM Based Schemes

From Figure 4.8, linear FDA based scheme with ATS has better performance than SVM
based schemes in terms of false alarm probability and misdetection probability. SVM based
schemed and LFDA based scheme with ATS are very practical, because the weights and
thresholds are addressed.
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Figure 4.8: Comparison between SVM based schemes and LFDA based scheme in terms
of PD and PF

In fact, |Dtr| � J always holds. From Table 4.3, Table 4.2, Table 3.3, Table 3.2, we
know that linear FDA based scheme has lower complexity than SVM based schemes.

4.4 Combining Scheme for Two-User Cooperative Au-

thentication

In this section, we consider one special scenario, which is depicted in Figure 4.9. There
are three legitimate users, Alice, Bob, and David, as well as a malicious user, Eve. Alice
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is sending data to Bob. Eve tries to masquerade Alice and send frames to Bob. David can
help Bob do the authentication.

The result in this subsection can be extended to multiple-antenna scenarios, where
different antenna represents different legitimate user.

4.4.1 Combining Scheme

Let DB denote the data set got by Bob. DB,tr, used for training, is the subset of DB.

DB = {~xB,i|~xB,i ∈ R3, yB,i ∈ {−1, 1}}Ii=1 (4.13)

The subscript B means “the feature vector is computed by Bob”. DB consists of training
data set DB,tr and testing data set DB,test.

Let DDa denote the data set got by David. DDa,tr, used for training, is the subset of
DDa.

DDa = {~xDa,i|~xDa,i ∈ R3, yDa,i ∈ {−1, 1}}Ii=1 (4.14)

The subscript Da means “the feature vector is computed by David”. DDa consists of
training data set DDa,tr and testing data set DDa,test.

~wB,LFDA and ~wDa,LFDA are computed by Bob and David respectively, based on DB,tr

and DDa,tr according to (4.7), (4.9), (4.8), and (4.10).

After ~wDa,LFDA is computed, David sends the information ~wT
Da,LFDA~xDa,i(∀~xDa,i ∈

DDa,tr) to Bob. These new combined feature vectors are [wT
B,LFDA~xB,i, w

T
Da,LFDA~xDa,i]

T.
Bob uses these new feature vectors to compute the ~wBD,LFDA according to (4.7), (4.9),
(4.8), and (4.10).

The new test statistic is (4.15). Bob authenticate the i-th frame using the value of the
test statistics according in (4.15).

ΛCombining = [wT
B,LFDA~xB,i, w

T
Da,LFDA~xDa,i]~wBD,LFDA

H1

Q

H0

thBD,LFDA (4.15)
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Figure 4.9: Combining scheme

4.4.2 Simulation Results of Combining Scheme

Two APs (AP1 and AP2) are selected randomly in each round of simulation. Linear FDA
based scheme is simulated on AP1 and AP2, respectively. Then, the combining scheme is
used on AP1, with the help from AP2. The simulation result is given in Figure 4.10. The
performance of the combining scheme is better than the performance of LFDA without
cooperation. It is shown that the combining scheme can improve the ROC curves at the
cost of communication and computation overhead, which are analyzed next section.

4.4.3 Complexity Analysis of Combining Scheme

The complexity at David is analyzed in Table 4.2 and Table 4.3. The complexity at Bob
is given in Table 4.4 and Table 4.5. Let L denote the total number of legitimate users who
take part in the Bob’s authentication. Here, L is 2.

As for the communication overhead, during training stage |Dtr| numbers should be
sent to Bob from David. During testing stage, only one number should be sent to Bob to
authenticate each frame.
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Table 4.4: Complexity in testing stage

Schemes Time Complexity

Number of Complex Multi-
plications

Number of Complex Addi-
tions

Combining scheme N
2
log2N + PN + J/4 + L/4 Nlog2N + PN + J/2 + L/2

Table 4.5: Complexity in training stage

Schemes Computation of Feature Vectors Computation of ~wBD,LFDA

Number of
Complex
Multiplica-
tions

Number of
Complex
Additions

Number
of Real
Multipli-
cations

Number
of Real
Additions

Space
Complex-
ity

Combining
Scheme

(N
2
log2N +

NP )|Dtr|
(Nlog2N +
NP )|Dtr|

O((J2 +
L2)|Dtr|)

O((J2 +
L2)|Dtr|)

O((J +
L)|Dtr|)
[49]
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4.5 Summary

In this chapter, our work is listed in the following.

• We introduce some background knowledge in FDA. How to use the linear FDA to
compute the weights of the three features to generate a linear classifier is presented.

• We use the measurement data to verify that our proposed scheme have better ROC
curves and better PF + PM performance, when enough training data is provided.
Also, our proposed scheme is less sensitive to noise than NPHT.

• An adaptive threshold scheme is presented in this thesis. LFDA based scheme with
ATS is proven to have better performance than NPHT on average.

• Time complexity and space complexity during testing stage and training stage are
analyzed.

• SVM based and LFDA based schemes are compared in terms of complexity, misde-
tection probability, and false alarm probability.

• Combining scheme for two-user cooperation is presented and analyzed.

Our proposed schemes:

• Linear FDA based scheme: We construct a linear combination of β, θ, and λ as the
test statistic and use linear FDA to determine the weights.

• ATS: The threshold is set initially based on FDA and Dtr. Then, the threshold is
adjusted according to certain optimal objective by variable steps during the testing
stage.

• Combining scheme: When the cooperation between legitimate users is available,
combining the data from other legitimate user can reduce the misdetection proba-
bility and false alarm probability at cost of extra computation and communication
overhead.
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Chapter 5

Conclusion and Future Work

In this thesis, we have studied the channel-based physical layer authentication. Existing
literature on this topic has been reviewed firstly. Several channel-based authentication
schemes, including SVM based schemes, the LFDA based scheme, and the combining
scheme, have been proposed to improve the detection probability and reduce the false
alarm probability. The sum of false alarm probability and misdetection probability can be
reduced to less than 1.8% by our proposed LFDA based scheme. Furthermore, this sum can
be reduced to less than 0.8% by our proposed combining scheme when two-user cooperation
is available. When the false alarm probability is 8%, the detection probability can reach
99.97% by the LFDA based authentication scheme even without two-user cooperation.

Besides, we address the channel-based authentication problem from the aspect of ma-
chine learning. We do not make any assumptions that the statistics characteristics of the
channels are known, which are common in existing channel-based schemes. For example,
it is assumed that the underlying complex channel is a stationary, zero-mean, Gaussian
random process in [27]. Instead, we try to provide better performance based on some
training data, which can give our schemes more generality to be used in various kinds of
environments. The kind of generality is gained at the cost of the training stage.

In addition, how to set the threshold is not addressed in most of existing work. We
address the problem of setting the threshold in our thesis, which makes our proposed
schemes more practical.

Lastly, the physical layer security is proposed to complement and enhance traditional
security. Channel-based authentication should be integrated with upper layer security
techniques to provide authentication. One candidate method is to use the physical layer
authentication to trigger the upper layer authentication mechanisms. For example, if the
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user does not pass the physical layer authentication, the user should provide upper layer
credentials. In this case, the detection probability should be high enough. Our proposed
scheme can guarantee the detection probability of 99.97%, which can be used in such kind
of practical systems for authentication. Also, since the proposed schemes only need the
channel vectors, it is easy to implement them without much modification on the existing
systems.

The proposed authentication schemes are suitable for wireless network with relatively
low nodes’ mobility. For the future work, we will study the physical layer authentication
for the scenarios with high nodes mobility. In addition, how to integrate our proposed
physical layer authentication schemes with upper layer techniques should be an interesting
one.
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