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Abstract—Minimum-collisions assignment, in a wireless net-
work, is the distribution of a finite resource set, such that the
number of neighbor cells which receive common elements is
minimized. In classical operator deployed networks, resources
are assigned centrally. Heterogeneous networks contain user
deployed cells, therefore centralized assignment is problematic.
This paper examines the minimum-collisions assignment problem
in the context of physical cell identity (PCI) allocation. Minimum-
collisions assignment is NP-complete, therefore a potential-game-
theoretic model is proposed as a distributed solution. The players
of the game are the cells, actions are the set of PCIs and the
utility of a cell is the number of neighbor cells in collision. The
price of anarchy and price of stability are derived. Moreover
the paper adapts a randomized-distributed-synchronous-update
algorithm, for the case, when the number of PCIs is higher
than the maximum degree of the neighbor relations graph. It is
proven that the algorithm converges to a optimal pure strategy
Nash equilibrium in finite time and it is robust to node addition.
Simulation results demonstrate that the algorithm is sub-linear
in the size of the input graph, thus outperforms best response
dynamics.

I. INTRODUCTION

In a heterogeneous and small cell wireless network (Het-
SNet), user deployed small cells (SCs), also known as femto-
cells, must coexist with the operator managed larger cells. Just
as any cell, SCs too require operating parameters in order to
integrate to the wireless network. The sheer numbers of SCs
and the unpredictability of their on-off times have increased
the research interest in self-organizing networks (SONs) [1].
In a SON the network intelligence is distributed among the
cells and interactions among the cells define the state to which
the network stabilizes. This paper analyzes the equilibrium
performance of a self-organizing HetSNet, for the problem of
minimum-collisions assignments.

Consider an undirected graph G := (M, E), where M is
the set of vertices and E is the set edges. Minimum-collisions
assignments is the problem, where the objective is to allocate
a finite set of resources N over the vertices of the graph G,
such that the sum collisions are minimized. A collision is a
situation where two vertices, which share an edge, obtain a
common element from N . Examples of minimum-collisions
assignment problems are, physical cell identity (PCI) assign-
ment, orthogonal frequency band distribution among cells and
scheduling time slots of a finite duration frame over a set of
collocated links. The rest of the paper refers to the resource
set N , as the set of PCIs and minimum-collisions assignment

is synonymously called PCI assignment. PCIs are a limited
set of addresses, which is generally lower in number than the
cells in the network [2].

Minimum-collisions assignment is NP-complete. Consider
a reduction from classical graph coloring problem; given a
graph G = (M, E) and a positive integer k, can the graph be
k−colored? Let this problem be P1 (G, k) . On the other hand
the decision problem of minimum-collisions assignment can
be formulated as follows; given the graph G and two positive
integers k and τ , is there an assignment of k colors to the
nodes such that the number of collisions is at most τ? This
problem is denoted by P2 (G, k, τ) . First it is clear that P2 is
NP. Then note that P1(G, k) is reduced, in polynomial time,
to P2(G, k, 0), as P1 is NP-complete, it follows that P2 is NP-
hard. In conclusion since P2 is NP-hard and is in NP, it is NP-
complete. NP-completeness of the problem justifies seeking
heuristic solutions. This paper is concerned with scalable,
distributed, heuristic based on the theory of games. Nash
equilibrium (NE) is a widely accepted stable solution that
characterizes the end result of the interactions among rational
agents. The NE PCI assignments provide the network designer
a game-theoretical justification of the expected functionality of
the network if the control is decentralized among the players.

While minimum-collisions assignment resembles a variation
of graph coloring, the objective of the two optimization
problems are considerably different. In classical graph coloring
optimization, the objective is to minimize the number of colors
used, always having sufficient colors to achieve zero collisions
[3]. On the other hand, in minimum-collisions assignment, the
number of colors (PCIs) is constant and the objective is to
minimize the collisions. There is no motivation to minimize
the number of of PCIs used and equally there is no space
to scale up the number of PCIs. This key difference sets our
research apart from the previous game-theoretic research on
coloring problem and for these reasons, the price of anarchy
bound of [3] is not applicable to the objective of this paper.

Yet studying graph coloring problem is useful for some
cases of PCI assignment, where a zero collision is known to
exist, especially |N | > ∆ (G), where ∆ (G) is the maximum
degree of the graph G. In [3], the classical graph coloring
problem is formulated as a potential game played by the
vertices. The case considered is when the number of nodes are
equal to the number of colors, i.e., |M| = |N |. The considered
social cost is the number of colors used by all the players.
Clearly in PCI assignment the interest lies in the case when
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|M| � |N | and hence [3] is not directly applicable. Improved
bounds for the worst case number of colors required at a NE,
under the same setup as in [3], is presented in [4].

A direct adaptation of the algorithm of [5] for the signal
to interference plus noise ration (SINR) model is analyzed
in [6]. In [7], the problem of assigning a fixed number of
channels among base stations (BSs), so that adjacent BSs do
not receive the same channel is considered as a game. In
[8], a potential game is introduced for frequency assignment.
Their model is based on SINR and the utility is a function of
interference. The game discussed in [9], has been modeled
to maximize the use of a resource, whereas in our paper
the objective is to minimize the use of the same resource
among neighbors. There are a number of research works
which propose heuristic algorithms for PCI assignment. The
algorithm proposed in [10], is decentralized and depends on
BSs exchanging neighbor relation tables as opposed to the
algorithm in [11], which is centralized and makes use of
messages from UEs to build the neighbor relation tables and
PCI assignment. In [12], a dynamic PCI assignment algorithm
is proposed. The algorithm categorizes the BSs according to
activity level and assigns a unique PCI to busy cells while cells
with lower activity obtains a reused PCI. PCI assignment as a
graph coloring problem is considered in [13], [14]. To the best
of our knowledge this is the first paper to present a potential-
game theoretic analysis for PCI assignment.

In addition this paper proposes a randomized distributed
algorithm to achieve optimal NE, when |N | is at least ∆ (G)+
1, and proves it to converge in finite time. The algorithm is
an improvement upon [15], where the proposed algorithm is
shown unable to achieve NE for |N | = ∆ (G) + 1. Algorithm
of [16] too requires ∆ (G) + 2 colors for some instances and
both, [15], [16] require memory of colors used by neighbors.
The proposed algorithm is robust, that is nodes, which have
already acquired a color need not change if a downed node
reappears in the graph G. Compared to [17], the algorithm of
this paper requires communication only among neighbors.

The remainder of the paper is organized as follows. Sec-
tion II develops the non-cooperative potential game for the
problem. Section III analysis the game for price of stability
and price of anarchy. Section IV proposes the algorithm and
proves convergence. Section V presents numerical results of
simulations and finally Section VI concludes the paper.

II. PCI ASSIGNMENT GAME

This paper considers a HetSNet which consists of a set
M := {1, . . . ,M} of BSs. To avoid trivial instances M ≥ 2.
The PCI resource set isN := {1, . . . , N} . The PCI of BS m is
denoted by sm. The generation of the graph G = (M, E), has
to reflect the requirements of the problem. In the particular
case of PCI assignment, the set of edges E , must contain
the cells with overlapping coverage areas, to denote possible
conflicts. In addition, the edge set also must contain the
possible PCI confusions by introducing an edge between two
cells which have a common neighbor, even if these two cells
may not have common coverage area [18]. As shown in the
example given in Fig. 1a, edge (d, f) has to be in G, to denote

(a) For the given PCI assignment, the red and green wiggly arrows
denote conflicts and confusions respectively. PCI number is shown
above the BS in parenthesis.

(b) The only edge not included in neighbor relations graph G is (d, f).
Having the same PCI at nodes d and f does not create collisions.

Figure 1: A HetSNet and the corresponding neighbor relations
graph G.

that if BSs d and f obtain a common value, then BS c has
a confusion. In this paper, both conflicts and confusions are
commonly identified as collisions. Therefore to build the edge
set of the graph G, one can simply assign a single PCI to all
BSs M, and create an edge between each pair of BSs, which
are in collision. Fig. 1b represents the equivalent neighbor
relations graph G, for the network of Fig. 1a. LetMm denote
the set of neighbors of BS m ∈ M, i.e., all BSs which have
an edge with m, and let cardinality |Mm| = Mm. Suppose
there is no central assignment and instead each BS selfishly
chooses. This can be modeled by a non-cooperative game
where the players are the BSs. This paper considers an affine
cost function in the number of collisions. The cost of BS
m ∈M for choosing PCI sm ∈ N is

cm (sm, s−m) := a |{m′ : sm′ = sm,m
′ ∈Mm}|+ d, (1)

where a, and d are positive valued constants, the set
{m′ : sm′ = sm,m

′ ∈Mm} is the neighbors of m with the
same PCI as sm.
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Following the standard notation of game theory, the vector
s−m denotes the choices of all other BSs except m. Let s :=
(sm, s−m). Then the total cost, also called the social cost, of
the system is the sum cost of the set of BSs,

C (s) :=
∑

m∈M
cm (sm, s−m) .

The finite strategy normal form game, which
is performed by the BSs, is defined by GM :=〈
M,NM , {cm (·) | m ∈M}

〉
, where NM is the action

space of the M players.
To prove the existence of pure strategy NEs of GM, this

paper relies on the subclass of non-cooperative games called
potential games. Potential games are identified by having a
potential function [19].

Definition 1. (Weighted potential function) A function
φ : NM → R, is a weighted potential function of GM, with
weight w, if ∀ m ∈M, ∀ n, n′ ∈ N ,

φ (n, s−m)−φ (n′, s−m) = w (cm (n, s−m)− cm (n′, s−m)) .

It is well known that all finite games with a potential
function posses at least one pure strategy NE and the pure
strategy NEs are the local minima of the potential function
[19]. Furthermore in a finite game with a potential function,
the sequential best response (BR) dynamics always converge
to a NE [19]. The following lemma claims that GM has a
weighted potential function and there for posses a NE.

Lemma 1. GM has a pure strategy NE.

Proof: The change in cost of player m as it changes its
choice, from sm = n to sm = n′, n, n′ ∈ N , while all other
players hold their PCIs, (i.e.,s−m constant) is,

∆cm

( y
nn′, s−m

)
= cm (n′, s−m)− cm (n, s−m) .

∆cm

( y
nn′, s−m

)
=a |{m′ : sm′ = n′,m′ ∈Mm}|

− a |{m′ : sm′ = n,m′ ∈Mm}| . (2)

The corresponding change in total cost is,

∆C

( y
nn′, s−m

)
=a |{m′ : sm′ = n′,m′ ∈Mm}|

− a |{m′ : sm′ = n,m′ ∈Mm}|

+ ∆c

( y
nn′, s−m

)
,

=2∆c

( y
nn′, s−m

)
. (3)

From (2) and (3), the total system cost C (s), is a weighted
potential function of GM. The weight in this case is 2.

Now that the existence of NE is established, the next impor-
tant step in the discussion is to compare the performance of
NE solutions against the performance of the optimal solution.
The optimal solution solves the problem

minimize
s∈NM

C (s) . (4)

III. EFFICIENCY OF EQUILIBRIA

In general two parameters define the efficiency of NE of
a game: price of stability and price of anarchy. The price of
stability of a game is the ratio of the minimum cost achievable
over all NEs and the optimal cost. The price of anarchy is the
ratio of the worst cost over all NEs and the optimal cost [19].

The following lemma establishes that there are NEs of the
game GM which are as good as the optimal solution of (4).

Lemma 2. The price of stability of GM is 1.

Proof: The proof is by contradiction. Suppose s∗ is an
optimal assignment which minimizes the social cost C (·) .
Then let the BSs perform BR dynamics starting from s∗. If
a BR exist of at least one m ∈ M then the social cost C (·)
decreases and s∗ is not optimal. Therefore there must not exist
a BR for any player at the optimal assignment s∗. Hence by
the definition of NE the optimal assignment is a pure strategy
NE and the price of stability of GM is 1.

Lemma 2 is optimistic. Anyhow, a bound for price of
anarchy is required to be certain that the the worst case NE
performance may not be far from the optimal performance.
In the following discussion, it is helpful to imagine the
assignment as a routing game on a directed graph GR of two
nodes {S, T} and N parallel edges from S to T. Then, in
routing terms, all BSs which share the same PCI are on the
same edge. But this does not mean that the price of anarchy
of an atomic routing game applies to GM. The fundamental
difference between a routing game and the PCI assignment is
that in a routing game the cost of taking route n ∈ N for
player m ∈ M, is a function of all players who take route
n. Whereas in PCI assignment the cost is cm, is a function
of players who take route n and who belong to Mm. Due
to this difference in cost function, the bounds given in [19],
for routing games with linear cost functions are not applicable
to game GM. Fig. 2 provides an example routing graph GR

where m′ ∈Mm but m′′ /∈Mm.

Lemma 3. The price of anarchy of GM is upper bounded by∑
m a·Mm

d·M + 1, d > 0.

Proof: The proof is discussed with reference to Fig. 2.
Suppose s∗ is an optimal assignment which solves (4) and s̆ is
a NE assignment of GM. For a given assignment s the number
of neighbors of m ∈M on edge sm ∈ N of the routing graph
GR of Fig. 2, is denoted by xmn (s).

axms̆m (s̆) ≤axms∗m
(s̆) ,

axms̆m (s̆) ≤ axms∗m
(s̆) + axms∗m

(s∗) .

Summing over m,

C (s̆) ≤
∑
m

axms∗m
(s̆) + C (s∗) ,

C (s̆)

C (s∗)
≤
∑

m axxms∗m (s̆)

C (s∗)
+ 1.

Note that
∑
m axms∗m (s̆)

C(s∗) ≤
∑
m aMm

Md . Therefore

C (s̆)

C (s∗)
≤
∑

m aMm

dM
+ 1. (5)
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Figure 2: The routing graph GR, of game GM . The cost of
BS m on link n depends only on the number of neighbors of
m that are on n.

The tightness of the bound (5) is yet to be verified. The
price of anarchy is not defined for C (s∗) = 0, therefore price
of anarchy for d = 0 is not discussed. The following lemma
refines the bound for the case when N is larger than the maxi-
mum degree of a graph. The degree of a node m ∈M is Mm

and maximum degree of graph G is ∆ (G) := maxm∈MMm.

Lemma 4. Given N > ∆ (G) all NE of GM are socially
efficient with zero collisions.

Proof: The proof is by contradiction. Suppose there is
a NE assignment s, where a BS m ∈ M has collisions.
By assumption the number of neighbors of m is Mm < N.
Therefore there exists at least one n ∈ N , which is not taken
by some m′ ∈ Mm. Therefore m is not playing a BR in the
assignment s and therefore by definition of NE, s is not a
NE. Therefore at any NE assignment s̆, all players have zero
collisions. Therefore all NEs are globally optimal for (4) and
therefore the price of anarchy is 1.

IV. SIMULTANEOUS SYNCHRONOUS UPDATE ALGORITHM

It is well known that the sequential BR dynamics converges
to a NE in all potential games. On the other hand simultaneous
synchronous BR dynamics generally do not converge to a
NE [19]. Sequential dynamics are not highly alluring, as
only a single player performs an action at a time and also
a mechanism is needed to select the next player to perform
the BR.

This section proposes a randomized simultaneous syn-
chronous update algorithm which converges to the NE of
game GM, for N > ∆ (G) . Note that the game GM does
not consider any restriction on the cardinality of resource
set N. This algorithm assumes that the nodes posses the
knowledge of ∆ (G) . The algorithm assumes message level
synchronization, as opposed to symbol level. Lemma 4 dictates
that for N > ∆ (G) , all NEs are optimal and have zero
collisions. Conversely any zero collision assignment is a NE.
Therefore the objective of the algorithm is to assign the
set N , to BSs, such that neighbors receive different PCIs
and therefore all BSs achieve zero collisions. The proposed
algorithm is given in Algorithm 1. The algorithm is local to
each BS, i.e., each BS runs an instance of Algorithm 1. The
notation, cm (t) denotes the number of collisions of the BS

m ∈ M at time t and C (t) =
∑

m∈M cm (t) denotes sum
collisions at time t ∈ N0. The random variable in PCI set N ,
of player m ∈ M, at time t, is denoted by pm (t, n) . The
sampled PCI at time t by player m is denoted by sm (t) .

Initially at time t = 0, BS m, equiprobably samples a
PCI from N , call this sm (0) . Then BS m announces its
choice to its neighbors m′ ∈ Mm, by the message [sm (0)]
and simultaneously listens to the messages from neighbors.
A neighbor message can be of two types. It may be a PCI
[sm′ (t)] , or it may be a single bit message set to [1] . The
messages [sm′ (t)] are from m′ ∈ Mm who have still not
acquired a PCI and the single bit message [1] are from
m′ ∈Mm who have already acquired a PCI, which is same as
the one announced by m, i.e. sm (0) = sm′ (0) . By comparing
with neighbor messages BS m can calculate the number of
collisions cm (0), at t = 0 and verify if the initial pick sm (0)
collides with PCI choices of its neighbors. If it is collision free,
i.e., cm (0) = 0, BS m acquires sm (0) , for the rest of its life
time and m is said to be in acquired state. If the initial PCI,
sm (0) , of m ∈ M experienced collisions, i.e., cm (0) > 0,
then m resamples uniformly from N and again shares the
new PCI information sm (t) with the neighbors by sending
the message [sm (t)] and simultaneously listens to neighbor
messages to verify collisions for sm (t) by calculating cm (t) .
BS m repeats this process till there is a time tm where all
received messages from the neighbors suggest that there is
no collision with sm (tm) and then BS m goes to acquired
state with sm (tm) . Once in acquired state m continues to
listen and sends single bit message [1] to the unacquired set
of neighbors M̌m ⊂Mm who are in collision with sm (tm) .

The key difference in Algorithm 1 from [15], [16] is that
at each iteration, full set N is sampled, without conditioning
on neighbors. An added advantage is that, a node need not
maintain a list of choices of its neighbors. The following
lemma proves finite time convergence. Notation P (·) denotes
probability.

Lemma 5. For N > ∆ (G), Algorithm 1 converges to a 0
collision state in finite time with probability 1.

Proof: The proof is based on first Borel-Cantelli lemma.
The proof must show that

∑
t∈N0

P (C (t) > 0) <∞. Without
loss of generality, let us consider a BS m ∈ M, which has
not acquired a PCI yet. Suppose that by time t ≥ 0, k ≤Mm
out of the Mm neighbors of m have acquired a PCI. Then
the probability that m acquires a PCI in the next time slot is
given by N−k

N

(
1− 1

N

)Mm−k. Note that

N − k

N

(
1 − 1

N

)Mm−k

≥
N − ∆ (G)

N

(
1 − 1

N

)Mm

≥
1

∆ (G) + 1

(
1 − 1

∆ (G) + 1

)Mm

≥
1

∆ (G) + 1

(
1 − 1

∆ (G) + 1

)∆(G)+1

≥
1

∆ (G) + 1
· 1

4
≥

1

8∆ (G)
.

Let U (t) denote the number of unacquired nodes at the begin-
ning of round t. Then by the above argument, in expectation,
at least 1

8∆(G)U (t) number of nodes acquire a PCI in the next
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Algorithm 1 Simultaneous synchronous update algorithm
initialize
t = 0; #set timer to zero#
pm (0, n) ∼ Um (N ), m ∈M; #initial uniform distributions#
sm (0) = pm (0, n); #sample the random variable #
send [sm (0)] to all m′ ∈Mm;
receive [sm′ (0)] from m′ ∈Mm

compute cm (0); #number of collisions #
t+ +; #increment t by one #
while cm (t− 1) 6= 0; #stop when zero collisions#
sm (t) = pm (t, n) ; #sample the random variable #
send [sm (t)] to all m′ ∈Mm;
receive [sm′ (t)] from m′ ∈Mm

compute cm (t); #number of collisions #
t+ +;

end while
pm (t, n) ∼ δ (sm (t− 1)) ; #fix distribution with P {sm(t− 1)} = 1#

#at this stage m ∈M is in acquired state #
#continue to listen #
while (true)

receive [sm′ (t)] from m′ ∈Mm;
compute cm (t); #number of collisions #
if c (t) > 0

send [1] to m′ ∈ M̌m (t);#only to collision neighbors #
end if
t+ +;

end while

trial period. By backward recursion till t = 0,

E (U (t)) ≤ E (U (0))

(
1− 1

8∆ (G)

)t

= M

(
1− 1

8∆ (G)

)t

.

Then by Markov ’s inequality P (U (t) ≥ 1) ≤ E (U (t)) ≤
M
(

1− 1
8∆(G)

)t
. For there to be a collision at time t > 0,

there needs be at least one unacquired node at time t−1 ≥ 0.
Therefore P (C (t) > 0) ≤ P (U (t− 1) > 1) and then∑

t∈N0

P (C (t) > 0) ≤ 1 +
∑

t∈N>0

P (U (t− 1) ≥ 1)

≤ 1 +
∑

t∈N>0

M

(
1− 1

8∆ (G)

)t−1

≤ 1 + 8M∆ (G) .

Finally by the first Borel-Cantelli lemma, since∑
t∈N0

P (C (t) > 0) <∞, collisions cease after a finite time
with probability 1 [20]. By Lemma 4, ceasing of collisions
is equivalent to each BS acquiring a PCI. Additionally,

P (U (t) = 0) ≥ 1−M
(

1− 1
8∆(G)

)t
> 1−M exp

(
−t

8∆(G)

)
.

Letting t = 8δ∆ (G) logM for some constant δ > 0,
P (U (t) = 0) > 1 − 1

Mδ . Thus, in O(δ∆ (G) logM) rounds,
Algorithm 1 converges with probability 1− 1

Mδ .

Remark 1. (Robustness of Algorithm 1) Removal of an edge
or a node does not affect Lemma 5. Consider addition of an
edge to graph G, to form G′ still N > ∆ (G′). Adding a new
edge to node m ∈ M, does not affect it if m is already in
acquired state. If m has still not acquired, then Lemma 5 holds

for G′ and m eventually acquires. Therefore Algorithm 1 is
robust to addition or removal of BSs and neighbor relations
(edges). To demonstrate non-robustness of N < ∆ (G) + 1,
consider a star graph, where center node has K neighbors,
∆ (G) = K. If initially center node is missing and Algorithm
1 has N < ∆ (G) + 1, there is a non-zero probability that
all colors are used by the outer nodes. When the center node
comes on, some of the nodes have to be reassigned.
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V. NUMERICAL RESULTS

Fig. 3 demonstrates the convergence of BR dynamics to NEs
of GM, hence it verifies that C (s) is a potential function. The
simulation environment for Fig. 3 assumes 60 BSs and 5 PCIs.
To emphasize on the number of collisions, the cost function
parameters are set to, a = 1, d = 0. Therefore the value
of sum of cost functions reads the number of collisions. The
adjacency matrix, which defines the edges of the graph G =
(M, E) , is randomly generated and the maximum number of
neighbors for any BS, i.e., ∆ (G), is 41 and the minimum
is 18 with an average of 30 neighbors per BS. Two different
initial random assignments are considered, init. 1 and init. 2.
Also two mechanisms are used to pick the next BS to perform
BR dynamics. The first is named “ordered”, where BSs are
picked according to their index and at the end of the queue
circles back to the first BS. The second mechanism is named
“random” picks BSs randomly. As can be observed from Fig.
3, the NE depends on both, the initial assignment and the
mechanism for picking the next BS. All three curves converge
to a their respective NEs.

To investigate Lemma 4 the network is setup with 14 BSs.
The ∆ (G) = 9 and the number of PCIs is 10. The results
of BR dynamics are shown in Fig. 4. It is clear that all NEs
are achieved with zero collisions and therefore are optimal
irrespective of the initial assignment or the BR dynamics, BS
selection mechanism.

Fig. 5 shows the convergence time of Algorithm 1. The
number of PCIs is set to ∆ (G) + 1. Sequential BR for the
case N > ∆ (G) requires exactly M iterations to terminate,
since each BS needs a chance to verify (and change) its initial
assignment. Therefore BR dynamics are linear in the size of
the number of BSs. On the other hand, Fig. 5 demonstrates that
the empirical average of number of iterations for Algorithm 1
is sub-linear in both the number of BSs M , and the average
number of neighbors per BS, i.e., average degree of a node
in G. That is an extremely powerful observation because
Algorithm 1 outperforms BR dynamics.

VI. CONCLUSION

This paper considered the problem of assigning a finite, N
number of resource, to minimize collisions among neighboring
cells in a wireless network of M cells. It is shown that
the minimum-collisions resource assignment is NP-complete
by a reduction of graph coloring problem. The analysis is
discussed in the context of physical cell identifier assignment
problem. The paper proposed a non-cooperative potential-
game-theoretic solution and demonstrated that the price of
stability is 1. Moreover the price of anarchy is upper bounded.
In addition a novel fully distributed randomized algorithm for
the special case, where the number of neighbors of any node
of the network is less than N is developed. The algorithm
is proven to converge to a Nash equilibrium solution in finite
time and the robustness of the algorithm to addition or deletion
of cells and neighbor relations is also proved. Simulations
demonstrated that the algorithm grows sub-linearly in the
size of the network and therefore outperforms best response
dynamics. Several paths remain to be further explored. The

tightness of the upper bound for price of anarchy must be
investigated. Sub-linearity of the algorithm can be analytically
explored. The possibility of a randomized algorithm for the
case where the number of neighbors of a BS is higher than N
can also be a future extension of this paper.
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