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Abstract—This paper investigates the relationship between
base station (BS) density and average spectral efficiency (SE)
in the downlink of a cellular network. This relationship has
been well known for sparse deployment, i.e. when the number of
BSs is small compared to the number of users. In this case the
SE is independent of BS density. As BS density grows, on the
other hand, it has previously been shown that increasing the BS
density increases the SE, but no tractable form for the SE-BS
density relationship has yet been derived. In this paper we derive
such a closed-form result that reveals the SE is asymptotically a
logarithmic function of BS density as the density grows. Further,
we study the impact of this result on the network operator’s
profit when user demand varies, and derive the profit maximizing
BS density and the optimal amount of spectrum to be utilized
in closed forms. In addition, we provide deployment planning
guidelines that will aid the operator in his decision if he should
invest in densifying his network or in acquiring more spectrum.

Index Terms—Ultra-dense cellular network, base station den-
sity, average spectral efficiency, spectrum amount, profit maxi-
mization, stochastic geometry, network economics.

I. INTRODUCTION

Deploying more cellular base stations (BS) has been the
main remedy to cope with relentless traffic growth. To reach
the highest capacities, interest has lately been turning toward
ultra-dense BS deployment [1], [2], where the density of BS
may even exceed the typical number of users in a given area.
The impact of such extreme BS densification, however, has
still not been explicitly analyzed.

To be more specific, in an engineering perspective, the
preceding work [3] provides an analytic average spectral
efficiency (SE) calculation that reveals the SE is independent
of BS density. The result is accurate only when BS density is
low as it relies on an assumption that every BS has at least
a single serving user. For densely deployed BS environment,
the authors [4]–[6] consider turned-off BSs when having no
serving users as in the Third Generation Partnership Project
(3GPP) Release 12 specifications [7], and predict the SE
is a logarithmic function of BS density via its compatible
performance metrics, service capacity, outage probability, and
common (worst user’s) rate respectively. Nevertheless, they
cannot represent the explicit relationship between the SE and
BS density due to the intractable forms of results.

Motivated by these discussions on the BS densification,
we derive an analytic SE expression valid for general BS
density by utilizing a stochastic geometric approach [8], and
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further provide its closed-form representation under ultra-
dense BS environment. The result verifies SE logarithmically
increases with BS density in ultra-dense networks where the
BS densification makes interference restricted by turning off
empty BSs.

In an economic perspective, the authors [9] consider a
network operator’s profit maximization based on user demand
prediction in a single cell scenario neglecting the BS densi-
fication effect. For a multi-cell network, the work [5] deals
with cost minimization when BS density is low. Regarding
the relationship between user demand and network supply, the
authors [10] provide an analytic approach although it resorts
to an iterated simulation.

This study, leading from the preceding works, focuses on
the question: How much amount of BS density and spectrum a
network operator should invest in when user demand changes?
To capture the user demand variation, we consider two user
demand characteristics: (i) user density and (ii) each user’s
sensitivity to his downloading rate. We thereby answer the
question via solving a profit maximization problem while
considering the user demand meeting network’s rate supply.

This paper examines the ramifications of BS density in-
crease in downlink cellular networks from both engineering
and economic points of view in terms of SE and profit
respectively. The main contributions are listed below.
1. This paper derives the closed-form SE in an ultra-dense

downlink cellular network that is a logarithmic function
of BS density.

2. The paper provides network planning guidelines in terms
of the profit optimal BS density and spectrum amount in
closed forms.

II. AVERAGE SPECTRAL EFFICIENCY IN DOWNLINK
CELLULAR NETWORKS

A. Network Model

We consider a downlink cellular network. Let Φb denote
BS coordinates in a two-dimensional Euclidean plane, fol-
lowing homogeneous Poisson point process with density λb.
Similarly, user coordinates Φu follow homogeneous Poisson
point process with density λu, independent of Φb. Users
are associated with their nearest BSs, which correspondingly
forms BS coverage regions whose boundaries comprise a two-
dimensional Voronoi tessellation [8]. Each BS is tuned off
when its coverage, a Voronoi cell, is empty of serving users,
otherwise transmitting with unity power. For a transmitted
signal, we consider path loss attenuation with the exponent
α > 2 and Rayleigh fading.
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Fig. 1. Exact SE (equation (1)) versus its analytically approximated curve
(equation (3) in Proposition 1) for path loss exponents α = 3, 4, and 6 where
user density λu = 0.02. Compared to the exact SE when α = 4, the analytic
value achieves: 81.75%, 90.9%, and 97.96% for BS density λb = 0.1, 0.2,
and 1 respectively.

B. Average Spectral Efficiency

This section aims at providing a closed-form SE, to be
utilized for profit maximization in Section III. To this end,
we consider interference-limited regime neglecting noise, and
define SE γ as ergodic rate per user for unity spectrum amount,
E log [1 + SIR] in units of nats/sec/Hz (1bit ≈ 0.693 nats)
where SIR denotes signal-to-interference ratio. For brevity, we
neglect multiple user access, to be considered in Section II-C.

According to Proposition 1 in [4], a BS’s turned-on (non-

empty) probability pa is given as 1 −
(

1 + 3.5−1 λuλb

)−3.5
.

Applying this to the equation (16) in [3] provides γ as:

γ =

∫ ∞
0

[
1 + ρt

(
et − 1

) 2
α pa

]−1
dt (1)

where ρt :=
∫∞
(et−1)−

2
α

1/
(
1 + u

α
2

)
du.

For a sparse (λb � λu) cellular network when pa ≈ 1, the
equation (1) is in accord with the result in [3]. For explanatory
convenience, let γα hereafter denote the SE without multiple
access in a sparse network, given as

γα =

∫ ∞
0

[
1 + ρt(e

t − 1)
α
2

]−1
dt. (2)

This shows γα is independent of λb. It implies, in other
words, BS densification does not yield any gain in SE under
sparse environment since its desired signal power improvement
is on the same order of amount as the aggregate interference
increase, cancelled out each other at calculating SIR.

For an ultra-dense (λb � λu) network when pa ≈ λu
λb

by using Taylor expansion, the equation (1) hardly captures
the relationship between γ and λb due to the complicated
double integrations therein. We take a detour this problem by
deriving the closed-form approximation of γ in the following
proposition.

Proposition 1. (Approximated SE in Ultra-Dense Networks)
SE in an ultra-dense downlink cellular network is given as:

γ & log

[
1 +

(
λb
ρ0λu

)α
2

]
(3)

where ρ0 :=
∫∞
0

1/
(
1 + u

α
2

)
du.

Proof: See Appendix.

Interestingly, this simple expression shows that γ is a
logarithmic function of λb. In other words, BS densification
does increase the SE whilst yielding diminishing returns under
ultra-dense environment.

A stochastic geometric point of view interprets this phe-
nomenon as follows. At a typical user, increasing λb shrinks
each BS’s coverage, simultaneously yielding: (i) the shortened
distance to his associated BS and (ii) increased the number
of empty cells (or turned-off BSs). Focusing firstly on the
former, the shortened distance in the order λb−

1
2 (see the

average distance is 1/(2
√
λb) in [11]) yields the received

signal power increase from the associated BS, in the order
λb

α
2 . For the latter in an ultra-dense scenario, it makes almost

all BSs turned-off except for the ones serving users in their
infinitesimal coverage regions. Consequently, the interfering
BS locations (or interferer density) converge to the users’
(or λu), delimiting the quantity of interference. Combining
these results leads to the ever-increasing SIR in the order λb

α
2 ,

resulting in the logarithmic SE increase.
Fig. 1 visually validates the tightness of the value in

Proposition 1 for different α’s. When α = 4, for instance, the
difference between (1) and (3) is less than 15% for λb ≥ 6λu.
Thus, we hereafter regard (3) as the approximation of (1).

Additionally, it is worth mentioning that this result shows
the BS ultra-densification gain in SE. Comparing to γα in
a sparse scenario, ultra-densification provides the SE gain:
162%, 250%, and 464% for λb = 0.1, 0.2, and 1 respectively
when λu = 0.02.

C. Average Spectral Efficiency with Multiple Access

Now we turn our attention to multiple access of users with
a fixed amount of spectrum. So far we have considered a BS
serves all users in its coverage. Instead, we henceforth consider
each BS serves at most a single user at a given time, who
is selected according to a uniformly random scheduler [12].
According to Proposition 2 in [4], a typical user’s selection
probability by the scheduler for a sparse network is λb

λu
, and

for an ultra-dense network is 1. Applying these results to the
equations (2) and (3) yields the following corollary.

Corollary 1. (SE with Multiple Access) SE with a uniformly
random scheduler in a sparse or ultra-dense downlink cellular
network is given as follows.

Sparse: γ ≈ λb
λu
γα (4)

Ultra-Dense: γ ≈ log

[
1 +

(
λb
ρ0λu

)α
2

]
(5)



Fig. 2. Three-stage profit maximization. In order to maximize profit, an
operator predicts user demand at Stage 1, determines price at Stage 2, and
decides operating BS density and spectrum amount at Stage 3. After the final
decision, the network operates in the reverse direction, from Stage 3 to 1.

In a sparse scenario, increasing λb alleviates multiple access
congestion, and thereby linearly increases SE in spite of a
constant γα independent of λb in (4).

In an ultra-dense scenario, on the other hand, reducing
the access congestion along with BS densification does not
ameliorate SE. That is because multiple access of users barely
occurs in the ultra dense network where almost all BSs have
at most a single user within their coverages. This results in
(5) being equivalent to (3). The following section utilizes
these results so as to explore the economic impact of BS
densification.

III. USER DEMAND-AWARE PROFIT MAXIMIZATION

In this section, our objective is to maximize a network
operator’s profit when user demand varies, caused by the
changes in the number of users λu and/or each user’s rate
sensitivity b. The operator is able to cope with these demand
changes by adjusting his operating BS density λb and spectrum
amount W as well as price per nats/sec (or per nat for unity
time) p. Since the profit is a joint function of user demand,
price, average rate, and its operating cost, the operator’s profit
maximizing decision problem to clarify the adjustments in λb,
W , and p is not trivial, being of our interest. To be more
specific, we firstly predict average per-user demand X̄ , and
then determine optimal λb and W so as to maximize the
average profit per unit area, formulated as:

(P1): Maximize
λb,W,p

pλuX̄ − (cbλb + cwW )

subject to X̄ ≤Wγ

where cb and cw respectively denote BS and unit spectrum
operating costs per unit area. In an operator’s perspective,
we divide this profit maximization problem into three se-
quential stages: Stage 1. user demand prediction; Stage 2.
price decision; and Stage 3. the decision on BS density and
spectrum amount, resulting in average rate to be supplied.
Fig. 2 elucidates these subdivided problems and their solving

direction as well as the direction of network operation for
given solutions of the problem.

A. User Demand Prediction (Stages 1 and 2)

For the purpose of predicting user demand at Stage 1,
consider a typical user’s payoff U having the following
characteristics: logarithmically increasing with downloading
rate [13], and linearly decreasing with cost under usage-based
pricing [14]. Let X denote average rate per user, and define
θ as a user’s willingness-to-pay, assumed to be uniformly
distributed from 0 to b, ∀b > p. We hereafter interpret the
maximum willingness-to-pay, b, as the user’s rate sensitivity.
Correspondingly, we represent U as:

U = [θ log (1 +X)− pX]+. (6)

Consider users try to maximize their payoffs. Since U is
a concave function of X , applying the first order necessary
condition and taking average over θ yield the payoff maxi-
mizing average rate per user (or average demand per user) X̄
as follows.

X̄ =
(b− p)2

2bp
(7)

Applying the result to the profit function in (P1) reveals
the profit decreases with p. This intuitively indicates attracting
more users by reducing p yields higher profit than increasing
p. Since X̄ is also a decreasing function of p, the profit
maximizing price p∗ at Stage 2 is the price when the equality
holds at the constraint in (P1), resulting in

p∗ = b(1 +Wγ)

[
1−

(
1− 1

(1 +Wγ)2

) 1
2

]
(a)
≈ b

2(1 +Wγ)
(8)

where (a) follows from Taylor expansion for large Wγ.

B. Profit Optimal BS Density and Spectrum Amount (Stage 3)

This subsection aims at deriving optimal BS density λ∗b and
spectrum amount W ∗ in closed forms so that their resultant
average rate is provided to a typical user while maximizing
profit.

Exploiting p∗, the equation (8) in Section III-A, modifies
(P1) for Stage 3 as follows.

(P2): Maximize
λb,W

λub

2

(
1 +

1

Wγ

)−1
− (cbλb + cwW )

For sparse cellular networks, applying (4) to γ of (P2) yields
the following profit maximization problem.

(P3): Maximize
λb,W

λub

2

(
1 +

λu
Wλbγα

)−1
− (cbλb + cwW )
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(b) For per-user rate sensitivity b for λu = 5

Fig. 3. Profit optimal BS density λ∗b and spectrum amount W ∗ (α = 4, cb = cw = 0.1).

For ultra-dense networks, in the same manner, applying (5) to
γ in (P2) leads to the following profit maximization problem.

(P4):

Maximize
λb,W

λub

2

1 +

(
W log

[
1 +

(
λb
ρ0λu

)α
2

])−1
−1

− (cbλb + cwW )

Solving (P3) and (P4) provides profit maximizing λ∗b
and W ∗ of sparse and ultra-dense networks respectively, as
provided in the following proposition.

Proposition 2. (Optimal BS Density and Spectrum Amount)
Profit optimal operating BS density and spectrum amount in a
sparse or ultra-dense downlink cellular network are given as:

Sparse:


λ∗b =

[
bcw
2γα

(
λu
cb

)2] 1
3

W ∗ =

[
bcb
2γα

(
λu
cw

)2] 1
3

(9)

Ultra-Dense:


λ∗b ≈

[(
α

22.5cb

)8
(bcw)4ρ0

αλu
α+4

] 1
α+8

W ∗ ≈
[
22(α−2) cb

α

cwα+4 b
4ρ0

αλu
α+4
] 1
α+8

.

(10)

Proof: See Appendix.

We interpret the above results in the following perspectives:
1) unit operating costs cb and cw and the resultant profit
optimal operating costs cbλ∗ and cwW ∗ and 2) user demand
comprising per-user rate sensitivity b and user density λu.

1) Effect of Operating Cost: Increasing unit BS operating
cost cb leads to investing more in spectrum as the BS sub-
stitute, captured by increasing W ∗, and vice versa for unit
spectrum operating cost cw increase.

Multiplying these unit operating costs by (9) and (10) yields
the following profit optimal operating BS/spectrum cost ratio.

Corollary 2. (Optimal Cost Ratio) Profit maximizing ratio of
BS and spectrum operating costs in a sparse or ultra-dense
downlink cellular network is given as:

Sparse:
cbλ
∗
b

cwW ∗
= 1 (11)

Ultra-Dense:
cbλ
∗
b

cwW ∗
≈ 2−2α

8
α+8 . (12)

In a sparse network, the operator should invest in BS
operating cost as much as the spectrum cost since BS density
and spectrum amount equally affect average rate (see (4) with
the spectrum amount W , shown in (P3)). In an ultra-dense
network, on the other hand, BS density less affects average rate
than spectrum amount due to the densification’s logarithmic
impact on average rate. This leads to the investment strategy
that BS operating cost should be less than the spectrum cost,
depending on α (note 0.43 ≤ 2−2α

8
α+8 . 0.71). The straight

lines on the BS density-and-spectrum planes (bottom) in Fig.
3 illustrate such operating cost ratios.

2) Effect of User Demand: Both profit optimal BS density
and spectrum amount increase as user demand grows, but the
optimal value increments incurred by user density are higher
than the values by per-user rate sensitivity (see the exponents
of λu and b in (9) and (10), visualized in Fig. 3).

While rate sensitivity growth solely increases user demand,
user density growth not only increases the demand but also
decreases average rate due to: (i) incurring more multiple
access congestion in a sparse network or (ii) generating more
interference in an ultra-dense network (see the discussion after
Proposition 1 in Section II-B). Consequently, increasing user
density requires more BS density and/or spectrum amount in
order to keep up with the demand growth as well as to recover
the average rate decline.
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Fig. 4. Maximized profit with optimal BS density λ∗b and spectrum amount W ∗ (α = 4, cb = cw = 0.1).

Such different impacts of user density and per-user rate
sensitivity furthermore affect the network profitability. For user
density growth, Fig. 4(a) shows the profit of an ultra-dense
network increases less than that of a sparse network. An ultra-
dense network requires much more BS density and spectrum
amount to compensate the interference generation caused by
user density growth, and it engenders too much cost increase
worsening the network profitability. For this type user demand
increase, BS ultra-densification is not preferable.

For per-user rate sensitivity growth, in contrast, Fig. 4(b)
depicts the profit of an ultra-dense network increases more
than that of a sparse network thanks to the network’s delimited
interference, promoting ultra-dense BS deployment.

IV. DISCUSSION

In this paper we have derived a closed-form relationship
between BS density and SE in an ultra-dense cellular network.
The SE is shown to be a logarithmic function of BS density
as the density grows. This closed-form SE expression was
used to derive closed-form solutions for the optimal operating
BS density and spectrum amount, for the traditional spectrum
licensing (auction) case. This expression could aid the operator
in his decision if he should invest more in BS densification
or bid for more spectrum for his network. Our results reveal
some fundamentally unique characteristics of the ultra-dense
network deployment, e.g. that the number of users has a larger
impact on the optimal network configuration than each user’s
sensitivity to his downloading rate. Further, in our simplified
model we see that the network operator should maintain
a reasonable balance in investment, allocating about equal
amounts to spectrum and BS deployment.

To the best of our knowledge, this paper is the first to
simultaneously specify not only random spatial locations of
both users and BSs but also each user’s demand model,
bridging the gap between stochastic geometric and network
economic analysis.

A weakness of the study is the very simple, homogeneous
propagation model, i.e. using a constant path loss exponent.
The BSs are typically in the same room as the users in
line-of-sight (LOS) conditions, whereas the interfering BSs
are behind walls, i.e. in non-LOS conditions, creating a
better SIR. Further work should therefore involve a two-slope
model, describing the LOS and non-LOS cases and giving a
more direct relationship to the physical environment. Further
extension to this work could also include milimeter-wave
systems where non-LOS signals are very weak. In addition,
it does not seem likely that future short range systems will
use traditionally licensed spectrum. Extending the economic
analysis to spectrum sharing paradigms is another interesting
avenue for future research.
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APPENDIX

A. Proof of Proposition 1

Let a denote ρ0λu/λb. Since ρ0 ≥ ρt, γ is lower bounded
as:

γ ≥
∫
t>0

[
1 + a(et − 1)

2
α

]−1
dt

(a)

≥
∫
t>0

[
1− a(et − 1)

2
α

]+
dt (13)

= log
(
1 + a−

α
2

)
+ aπ csc

(
2π

α

)
− α

2
(
1 + a

α
2

) 2F1

(
1, 1; 1− 2

α
; 1− 1

a
α
2 + 1

)
︸ ︷︷ ︸

(b)

(14)



where (a) follows from Taylor expansion, Gaussian hyperge-
ometric function 2F1(a, b; c; z) :=

∑∞
k=0

zka(k)b(k)

k!c(k)
, and x(k)

rising factorial. The function (b) monotonically increases with
a for all α, having unity minimum value at a = 0. For a� 1
(or λb � λu), therefore all terms in (14) except log(1+a−

α
2 )

become negligible, completing the proof. �

B. Proof of Proposition 2

Consider a sparse network. For sufficiently large average
rate (or small λu/ (Wλbγα)), applying Taylor expansion to
the objective function in (P3) leads to the following problem.

(P3.1): Maximize
λb,W,

λub

2

(
1− λu

Wλbγα

)
− (cbλb + cwW )

The profit function is concave with respect to both λb and W ,
so it has a unique maximum result. Exploiting the first order
necessary condition yields

λ∗b =

[
b

2γαcbW ∗

] 1
2

λu and (15)

W ∗ =

[
b

2γαcwλ∗b

] 1
2

λu. (16)

Applying (16) to (15) proves the result.
Next, consider an ultra-dense network. Since the logarithmic

function in (P4) is not appropriate for deriving solutions
in closed forms, we resort to considering its lower bound

1
log(1+x) ≥ x−

1
2 as the approximation that is tight for large

x (or λb � λu). Applying Taylor expansion provides the
formulation as shown below.

(P4.1):

Maximize
λb,W

λub

2

{
1− 1

W

(
ρ0λu
λb

)α
2

}
− (cbλb + cwW )

In the same way as the sparse network, exploiting the first
order necessary condition leads to

λ∗b =

[
αbρ0

α
4

23cbW ∗

] 1
α
4

+1

λu and (17)

W ∗ =

[
bλu

α
4 +1

2cw

(
ρ0
λb
∗

)α
4

] 1
2

. (18)

Applying (18) to (17) finalizes the proof. �
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