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Abstract

4G wireless access systems require high spectral efficiensypport the ever increasing number
of users and data rates for real time applications. Multeana OFDM-SDMA systems can provide the
required high spectral efficiency and dynamic usage of tlectl, but the resource allocation process
becomes extremely complex because of the augmented degréegdom. In this paper, we propose
two heuristics to solve the resource allocation problenm Heve very low computational complexity
and give performances not far from the optimal. The propderdistics select a set of users for each
subchannel, but contrary to the reported methods that shé/¢hroughput maximization problem, our
heuristics consider the set of real-time (RT) users to enguat their minimum rate requirements are
met. We compare the heuristics’ performance against anruppend and other methods proposed in
the literature and find that they give a somewhat lower peréorce, but support a wider range of
minimum rates while reducing the computational complexitye gap between the objective achieved
by the heuristics and the upper bound is not large. In our raxgats this gap isl0.7% averaging
over all performed numerical evaluations for all systemfigumations. The increase in the range of the

supported minimum rates when compared with a method reghortthe literature isl4.6% on average.

. INTRODUCTION

With the ubiquitous use of smart phones, tablets, laptogsReal-Time (RT) applications,
traffic demand on the wireless access network is increasipgrentially [1]. In contrast, mobile
subscription prices have flattened in the last years duerngpettion and maturity of the market
[2]. Therefore, there is a need to design systems that stpjgbr data rates traffic with strict time
deadlines, and concurrently optimize the system resoumesake deployments economically

profitable.
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One of the key system design parameters in 4G wireless anebssrks is spectral efficiency.
Using spatial, user and frequency diversity techniques mudti-user Multiple Input Multiple
Output (MIMO)-OFDMA system, provides us with a high spektgfiiciency. These systems are
proposed in current 4G standards, such as Long Term EvoltioE) and IEEE 802.16 |3],
[4]. However, when increasing the degrees of freedom forstrassion, a price has to be paid.
Multi-antenna systems require more hardware and softweseurces to process the multiple
spatial layers. In addition, the Resource Allocation (RA)qess becomes much more complex
because we have many more possibilities from which to choose

The problem we deal with in this paper is the design of efficRA algorithms that provide
us with solutions not too far from the optimal, for a Zero-€iag (ZF) Multiple Input Single
Output (MISO)-OFDMA system supporting minimum rates. TRIA problem is a nonlinear,
non-convex integer program, which makes it almost impassdsolve directly for any realistic
number of subchannels, users and antennas. For this reasst,research work focuses on
developing heuristic algorithms. It is also important tontlemark the performance of these
heuristic algorithms. In[]5], a dual method is proposed ta fan near-optimal solution to the
sum rate maximization problem with minimum rate constmaiittrequires an enumeration of all
Spatial Division Multiple Access (SDMA) sets, which preteithe method to be implemented
efficiently, but it provides us an off-line method useful foguristic benchmarking.

Several heuristic methods have been used to solve the RAepnmofor OFDMA-SDMA
systems with both RT and non-Real Time (nRT) traffic. [Ih [6le tobjective is to maximize
the sum of the user rates subject to per-user minimum ratstreants that model the priority
assigned to each user at each frame. The optimization pnotdesolved approximately for
each frame by minimizing a cost function representing th@eiase in power needed when
increasing the number of users or the modulation order. Tvardages of this approach are
that it handles user scheduling and RA together and supBdrtnd nRT traffic. Its weaknesses
are that no comparison is made against a near-optimal golatid the method used to determine
user priorities at every frame is very complex. In [7], both &d nRT traffic are supported.
Priorities are set according to the remaining deadline tianeRT users and to the difference
between the achieved rate and the desired rate requiredRibiusers. Comparisons against the

algorithm in [6] show that the packet drop rate for RT userd #re algorithm’s complexity
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are significantly reduced. However, as in [6], a performaoocmparison with a near-optimal
solution is not provided.

In [8], a heuristic algorithm is proposed for the sum rate iimazation problem with propor-
tional rates among the user data rates, i.e., the ratio amlbrgated user rates is predetermined.
The criteria used to form user groups includes semi-orthality as in [7], but also fairness
through proportional rate constraints. This method isrekel to include hard minimum rates in
[9]. There is no reported method to evaluate the accuradyesi heuristics, except by comparing
them with each other.

In the heuristic method [10], the objective is the weightethgate maximization under a total
power constraint. The user weights are updated at each t@melude different fairness criteria.
When compared td [8] the performance is better, but Jaiirisdas index is lower. The sequential
user selection to swap users require the channel matrixsioreof all candidates, similarly to
[9], which creates a computational burden. In addition Rérusers the method introduces delays
by first detecting that the user rates are lower than expgeatetithen adjusting the user weights,
i.e. no hard rate constraints are considered.

Our work differs from previously reported methods becaugsecansider hard minimum rate
constraints for real-time users, which is advantageougrimg of delay and QoS compliance.
We propose two efficient heuristic methods with much loweanpatational complexity than the
methods proposed in the literature. The computational ¢exitp reduction is several orders
of magnitude depending on the algorithm used and the prolpi@rameters. We compare the
proposed heuristics performance against the near-opsotation proposed in [5] and find that
the performance obtained is withif.7% of the optimal averaging over all performed numerical
evaluations. In addition, the proposed heuristics inadhg range of the supported minimum
rates when compared with the method proposedlin [9]. Fordheescase above, the increase in
the rate range i$4.6% on average. This increase is achieved by considering tkeecmatstraint
dual variables in the user power allocation stage.

The paper is organized as follows, in sectionh Il, we matheally formulate the problem
we want to solve: for a given time slot, find the user selechod beamforming vectors that
maximize a linear utility function of the user rates, givetotal transmit power constraint and
minimum rate constraints for RT users. In secfioh Ill, wepgm®e two heuristic methods to solve

the problem more efficiently. We compare their performargagrest the upper bound and against
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other method proposed in the literature in secfioh IV. Fynad section[\!, we summarize the

main findings and state our conclusions.

[I. PROBLEM FORMULATION AND DUAL-BASED NEAR-OPTIMAL METHOD

We consider the resource allocation problem for the dowrliansmission in a multi-carrier
multi-user multiple input single output (MISO) system wiétsingle base station (BS). There are
K users, some of which have RT traffic with minimum rate requiats while the others have
NRT traffic that can be served on a best-effort basis. The B§ugpped with\/ transmit antennas
and each user has one receive antenna. The system’s awvdkafdwidthi}V is divided into NV
subchannels whose coherence bandwidth is assumed laggeiithV, thus each subchannel
experiences flat fading. In the system under consideratieBS transmits data in the downlink
direction to different users on each subchannel by perfogrinear beamforming precoding. At
each OFDM symbol, the BS changes the beamforming vectorain eser on each subchannel
to maximize a weighted sum rate. We assume that we use a dhaodiag that reaches the
channel capacity.

The BS transmits on each subchannethe signal vectok,, = >, W, xS,k Wherew,, ; €
CM>1 and spe € C are, respectively, the beamforming vector and the infoilemasymbol for
userk on subchannet. The symbols;, , are assumed to be independent and followdh&0, 1)
distribution. A power constraint,, , [|w,x||* < P is also imposed. The signal received at user

k on subchannet is then given by

Ynk = Ny g Wi kSn i + Z h, ;W j5n; + Zn k- Q)
ik

whereh, ; € C*™ is the channel row)/-vector between the BS and useron subchannel

n, and z, ; ~ CN(0,1) is the white additive noise at the receiver. The second tertg. (1)
corresponds to the inter-user interference. To simplily BA problem, we assume that the
beamforming vectors are chosen according to the zero fpr¢f) criteria, which is known

to be nearly optimal when the SNR is high [11]. For each sutwbh we can choose at most
M users for which||w,.||? > 0 and, for those users, the beamforming vectors must meet
the orthogonality constrainth,, ,w,; = 0, j # k. Under the ZF constraint, the inter-user

interference term becomes zero [d (1) and the achievabée afaiserk on subchanneh is
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given by
Tnk (Wnk) = log, (1 + th,kwn,k||2) . (2)

The set of user« is divided into a setD of RT users with minimum rate constrainis > 0
and a setC — D) of non real-time (nRT) users for which, = 0. The user selection is modelled
by the binary variablesy, ,, which take the valug when the usef is selected in the SDMA
set of subchannet, and zero otherwise.

The objective of the RA algorithm is to maximize the weighseon rate of the users subject
to the power, minimum rate and ZF constraints. The usershigig and the minimum rate
constraints are determined by a higher layer scheduler.

Defining w, o« as the vectors of stacked optimization variab¥es;, o, x, the RA problem

can be mathematically formulated as follows:

N.K
Hv}lag( Z ClJ‘n,k(“’n,k) (3)
T op=1k=1

N,K

> lwasl® = P <0 @)
n=1,k=1
N

— Z Tn,k:(wn,k:) -+ dk SO, keD (5)

n=1
Y <M, Vn (6)

k

(M Wi)” < B'[(1 = ang) + (1 — )],

W, Vk, Vj, k # j W
||Wn,k|| S A/an,k (8)
an,k € {07 1} (9)

Constraint[(#) is the total power constraint imposed on ts&nfiforming vectors and constraints
(@) assure that the RT users are assigned rates larger of thauatheir minimum rates,.
Constraints[(6) td (9) correspond to the ZF constraints:({@&gguarantees that we do not choose
more than) users for each subchannel, Elg. (7) that two users in an SDNlAneet the ZF
constraints and EqgL](8) that the beamforming vector is rarllusers that are not in an SDMA

set, A’ and B’ are some large constants.
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Problem [(BEDB) is a non-linear mixed integer program (NLMIH)e vector of binary variables
«a determines the set of users that are assigned to each saleth@an the other hand, the vector
of continuous variablesr determine the beamforming vectors and need to comply wehZik
constraints[([748) which depend on the user selection bivarablesa. There are many off-
the-shelf software packages available to solve NLMIPs [§2Efor a survey. They use different
methods with different levels of accuracy and speed. Howelie current NLMIP solvers do
not automatically exploit the specific structure of probl@+9). An off-line method is proposed

in [5] to solve this problem with near-optimality which weeutd compare our heuristics.

[Il. EFFICIENT HEURISTIC METHODS

In this section, we propose heuristic methods to solve prab[3+9) efficiently. We are
interested in feasible solutions, i.e., points that satisé rate and power constraints, and that are
not too far from the optimal solution. In the dual-based raaimal [5], power allocation and
subchannel assignment are jointly performed. Except forestrivial cases, we cannot separate
the subchannel allocation and power allocation processmsheuristic methods, however, we
separate these processes in order to reduce computat@naplexity. In the first stage, we find
a subchannel assignment that has enough subchannelseassgihe real-time (RT) users, and
in the second stage, we allocate power among users usingx#e subchannel assignment.
For the subchannel assignment stage, we make use of the malink Semiorthogonal User
Selection (SUS) algorithm_[11] to select user channel vwsctbat have large norms and are
semiorthogonal to each other. But contrary to the throughpaximization case, we include the
RT users to satisfy their minimum rates when selecting ther gst for each subchannel. For
the power allocation stage, we use a method that finds feagdhts and is much quicker than
optimally solving the power optimization problem. The sh@cnel assignment algorithm and

the power allocation algorithm constitute the proposedibga method.

A. General Description of the Proposed Heuristic Method

The basis for the design of our heuristic is the realizatiat for a fixed subchannel assignment
« in problem [(BED), the resulting power allocation problem && approximated to a convex
one which is much easier to solve. Thus, instead of enumeratl feasible values of variable

corresponding to every subchannel assignment, our hieucisboses a subchannel assignment
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and solves a convex power allocation problem. Then, it rgasesources and solves the power
allocation problem again until the RT users’ rate constsaare met.

There are two mechanisms to reassign resources to userirsiraechanism —subchannel
reassignment— takes away subchannels assigned to users that do notedfeim, because
they are not RT users or they have more resources than nesmug@dssigns them to the users
in need. The second mechanismrate-constrained power allocation- takes into account the
user rate constraints to reallocate power between usebeh8aonel reassignment has a much
larger effect because users in need are given subchanmlshety did not have before; the
rates increase substantially with every subchannel adela-constrained power allocation has
a lower effect because the rate increase dependency agaimst is logarithmic. However, this
mechanism proves to be crucial in finding feasible pointsrwiie minimum rate requirements
increase. In addition, recomputing the users power is @uithkan finding a new subchannel and
inverting its new channel matrix.

The proposed heuristic method starts by solving probleh®)(3without considering rate
constraints[{5). If the required ratek are lower or equal than the obtained rates, we have
an optimal solution and the algorithm finishes. To obtain mh@imum throughput solution
efficiently, we use the SUS algorithm to assign subchanoelsérs and then performaximum
throughput power allocationwhich consists of finding the user power allocation thaisfat
the power constraint with equality disregarding the ratest@ints. These correspond to the first
two blocks in the diagram of figuf€ 1. If the required ratesraeg, we exit, otherwise, we need
to assign more resources to the users in need, thus we pearditerconstrained power allocation
as indicated by block 3 in figuié 1.

We perform subchannet-assignment when the maximum throughput subchannel assign
plus rate-constrained power allocation does not suppertefjuired minimum rates. A heuristic
method that groups semiorthogonal user vectors is usedsignasiore subchannels to the users
in need and it is indicated by block 4 in figure 1. We performat®ns adding subchannels to
users in need and performing power allocation (blocks 2 gndn8l the user minimum rates
are met or there are no more subchannels to reassign andailemris declared unfeasible by

the heuristic.
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1. Assign subchannels to users
to obtain maximum throughput

A J
2. Perform maximum throughput
power allocation

Yes, Exit

3. Perform rate-constrained
power allocation

Yes, Exit

Yes, Exit

‘ 4. Re-assign subchannels to users

!

Fig. 1: Heuristic general algorithm

B. Power Allocation
In this subsection we find the user power allocation for a fexgochannel assignment. Assume

that we have chosen a vectar for each subchannel satisfying Eqgs.[(6) and (9. We explain
the heuristic method to obtain such a vector in sedfionIlFEe vectora™ determines a fixed
SDMA set of usersS,,, defined as

Sp={keK:a,,=1}, (10)

gn = |Su|, Vn. (11)
SetsS,, contain the indexes of the users assigned to subchanige first reformulate problem

(349) using these known sets. Then, we apply a dual methodlve #. For this purpose, we

arrange the channel vectors of selected users in the rowsypf&al/ matrix

h, s 1)
H, = : ,  Vn, 12)

hnysn(gn)
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where S, (j) is the j-th user in the sef5,,. We also arrange the corresponding beamforming

vectors in the columns of &/ x g, matrix for each subchannel

Wn = [Wn,Sn(l)a cee 7Wn75’n(gn)} s Vn.

Then, the ZF constraint§](7) can be written as

H,W, = diag(v/q™), Vn

whereq™ = {g, ;} is the users power vector comprised of

Gnj = Nosu()Wisu()s  J € {L -, gn}

(13)

(14)

(15)

Beamforming vectors for users not belonging tos,, are set to zero. Restricting the direction

of W,, to the pseudo-inverse of matrB,, as done in[[5], we obtain froni_(1L.4)

W, = Hi diag(v/q™), Vn

the power constraint can now be written as

N
> tr(WIW,) — P <0

n=1

and replacing[(16) inC(17) we obtain

N gn )
SN EDTH]] gus— P <0

n=1 j=1

Let’'s define the entries of th& x K matrices@ andp as

P LA
0, otherwise

0, otherwise.

Pnk =

The power constraint can now be expressed as

N K

n=1 k=1
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From the original model[{349), we do not need constrainisai®) [9) because we choose
oy, satisfying these conditions. Constrairits (7) ad (8) angligit in the reformulated model
because the beamforming vectors satisfyl (14) and we setrtoatebeamforming vectors for
which a,, , = 0. Therefore, only constraint§l(4) and (5) remain. We alsagbd the problem
optimization variables from the vectovs, ; to the scalarg,, , because the vector directions are
now fixed by [16).

Replacing(h,, xw, x)* by pi, in @),(8) and replacing{4) by (21), we obtain the problem

formulation

max Z Z ¢ logy (1 + pri) (22)
S
N K
n=1 k=1
N
—> logy(1+pug) +dp <0, keD (24)
n=1
Pk =0, Vn, k. (25)

C. Optimal Power Allocation

Problem [[2PE25) is convex since it maximizes a concave fomaiver a convex set formed
by constraints[(23-25). We can solve this problem optima#iing a dual Lagrange approach.
First, we define dual variablgsfor the power constrainf (23), and, } for the rate constraints
(24). Then, we derive a closed-form expression of the duattfan and solve the dual problem.

This yields the water-filling power allocation [13]

SO I S VARV S (26)
pn,k - eﬁn,k hl 2 9 ) c Mn,k
and rate allocation
Cr + O +
=1 — — 27
Tni = l0ogsy (1 + |:‘95nk 0o 1] ) ,  Vn, (27)

whered is the vector of dual variable§,. For convenience we have defined dual variables
for all users including the ones with no minimum rate requieats ¢ ¢ D); for these users we
setd, = 0.

We can the optimal dual variablés{d,} using derivative-free techniques. The use of such

methods involves two steps. In the first one, we compute aixrageudo-inverse per subchannel
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to obtain the inverse of the channel effective gaihs,; this has computational complexity
O(NM?3). In the second step, we perform subgradient iterations otimpthe power and rate
constraints to obtain the subgradient vector; this has ctatipnal complexity isO(N (M +

D)1,), assuming a maximum number of subgradient iteratibns

D. Efficient Power Allocation

To solve problem[(22=25) more efficiently we separate it io stages: maximum-throughput
power allocation (PA) and rate-constrained PA. Maximumodighput PA only considers the
power constraint[(23), thug, = 0 in (26) and we just need to find the dual varialdlghat
satisfies the power constraint with equality. For this psgave use the exact method reported

in [14], [15] which is summarized below
1) Find the dual variablé that satisfies the power constraintl(23) with equality, gsin
gl — Eszl ‘Bk(éa Or)|cx

- , (28)
(P + ij:l ZNEBk(é,gk) 5”7143) 1n 2
whered > 0 is a lower bound of), §, = 0, i is the iteration index and
By (0,01) = {n eN:(keS,A (29)
(s < BT ek

fln 2
with S,, is the SDMA set associated to subchannebnd A/ the set of all subchannels.
2) Recompute set8" using 4. If the setsB”’ and B/*" are equal, we have found
the solution, the power constraint is satisfied with equa@ttherwise, iterate recomputing
(28) and [(2B) until finding identical sets in two consecutiiezations.
After solving the maximum throughput PA problem, if the amstdd rates are feasible they
correspond to the optimal ones. If the rate constraints atemret, we incorporate the rate
constraints[(24) and perform rate-constrained PA usingpé¢heistic reported iri [15]. This method
finds a feasible point and does not require any iterations Téasible point satisfies the power
constraint with equality but the rate constraints with &y and is faster to compute than the
subgradient algorithm. Here, we summarize the method

1) Compute the set of unsatisfied usgrsas

T={ke{l,...,K}:r, <d} (30)
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N
Zlog2<1+[ 5nkln2 1]) (31)

whered!) is the optimal power allocation dual variable obtainedrafteximum throughput
PA.
2) For the users that do not belong 10 maked, = 0. For the other users, obtain the
minimum value of the dual variabl@. required to satisfy the rate constraints
A |~ *

o0 = [(@m2) (2% T] Ben — ¢ (32)

neA;,

where A;, = By(0,6;), 0 is an upper bound of given by
g — g odi—ri)e (33)

ande > 0 is a parameter found experimentally as explained in suioseB-Al
3) Using dual variables'?, compute the power constraint dual variabl¢hat satisfies the

constraint[(2B) with equality.

Maximum throughput and rate constrained power allocatiomespond to blocks 2 and 3 in

figure[1.

E. Subchannel Assignment Heuristic

The purpose of block 1 in figuid 1 is to perform user subchaassignment to obtain high
rates. The rates in (27) are affected by the effective cHagaies 3, +» which increase when the
channel vector norms are large and the chosen vectors farsdichannel are semi-orthogonal
to each other. We use the well-known SUS algorithml [11] tofguer this assignment. The
computing efficiency of this algorithm is improved in [16] e/kewrite the SUS algorithm splitting
it in two parts: an initialization stage and a user searchyestdhis is done to adapt the SUS
algorithm to the rate-constrained case described in stibedtl-Fl

The input to SUS initialization stage is the set of availaldersls,. Its output are the user
with the maximum norm{z,} and a matrixG, forming a basis of the null space spanned by
the channel vectoh,,. We write the input/output relation of this stage as’[ G ]= SUS init
(Uy), whereS? contains only the selected first usgr, }.

In the SUS search stage, we compute the projection of theimgrgachannel vectors to the

null space spanned by the channel vectors of the users wlsedéetted. We pick the user whose
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projection is the largest, add it to s&t and recompute matri%x,,. We add users until the set
containsM users or we finish examining all users in the inputiggetThe input/output relation
of the users search stage 1,[ G,,]= SUS search {4, S°, G?), whereS,, is the set of selected
users for subchannel and G,, its the matrix that spans the null space of the selected user
vectors. The SUS algorithm as describedlin| [11] is implemerity makingly, = {1,..., K}
and sequentially invoking the two stages?[ G%]= SUS init () and [S,,, G, ]= SUS search
(U — Sy, Shy GR).

After performing subchannel assignment for each subchanmee perform maximum through-
put and rate constrained power allocation — indicated bgKksd@® and 3 in figuréll — using
the heuristics described in1Il1D.

F. Subchannel Reassignment Heuristic

After executing block 3 of the diagram in figure 1, we obtaie tiser rates per subchanmﬁ%{.

The user rates are simply computed Mﬁ) = > e, rflo,l where(C;, is the set of subchannels
assigned to usek. We compute the set of unsatisfied us@rsgiven by [30). Set7 tells us
which users need to be assigned additional subchannelsrst/sdan the subchannels in which
any of the users in need have good channel conditions, soctreye first reassigned to these
users. The computational complexity of the subchannelrorgés bounded by)(N?). For each
subchanneh, we build a critical sef containing the users in the current SDMA set that can not
be removed from the SDMA set because that would take the wsefdeasibility. We consider
two cases: first that the sétis empty. In this case we invoke the SUS initialization aiton

to select the strongest userinas the first element of the SDMA set. Then, we invoke the SUS
search stage to add users to the SDMA set. We initially scheratsers ir/ so that they can
be added with priority to the SDMA set, and if the SDMA set has yet been completed, we
scan the remaining usefs, ..., K} — 7.

In the second case, when s&ts not empty, we initialize the SDMA set with all the users in
set&, and then add users invoking the SUS search algorithm. Touadrs to this SDMA set,
we scan the rest of the users but look first in the set of usemgédl7. The difference between
the case€ = () and€& # () is that in the second case, we keep the users in need thatreaeal

in the SDMA set before trying to add more users.
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Algorithm 1 Subchannel Reassignment Heuristic Algorithm
Input: Current dual variable8, {J;}, current subchannel assignment sgts

Output: New subchannel assignment séts user ratesf) or r,f)

- Computer,, , and set of users in neefl using (30)
- Order subchannels according to maximum norm of the usenseed, i.e. according to
maxyer ||hnill, V0, producing ordered seV’
for all ne N do
- Compute critical user se containing users ird,, for which >
fE=0,Z+«T
Otherwise,Z < &
[SY, G%]= SUS Init (2)
[S,, G,]= SUS search (2 — 59, 5% GY)
if |S,| <M then
[Sn, G,]= SUS search({1,..., K} — S,, 5, G)

end if

Tmk < dk

m#n

Compute pseudo-inverse of channel matrix formed by usefs, iand compute3, ;, using
(19)
Perform Maximum Throughput power allocation obtaining lduariable 4 that satisfies
power constraint with equality, obtaining rate&é)
if r,(j) satisfy rate constraintghen

Exit
else

Perform rate constrained power allocation, obtainingsraﬁ%

if r,(f) satisfy rate constraintghen

Exit

end if
end if
Update set of users in need,

end for
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Algorithm Complexity Purpose

Alg. [ Eq. [33) Prob. [3E£9)
Prob. [3E9) with
Alg. 2 O(KNM?) per-subchannel power

constraint
Prob. [BED) with
O(KN?M™) per-subchannel power,

Papoutsis’ method

[l

constraint

Dual bound [[5] O(NKM M3) Dual of (319)

TABLE [: Algorithms complexity

Notice that all the selected users comply with the semignality condition of the SUS
algorithm; the only change in computations to the SUS allgoriis the order in which we
examine the users. By changing the order, we are giving ifyritm the users in need. The
computational complexity of this stage is bounded by themerity of the maximum throughput
SUS search algorithm, i.€(K M?).

After obtaining the new SDMA set for a subchannel, we perfaraximum throughput power
allocation. If the resulting rates are feasible we exit tlgathm. Otherwise, we perform rate-
constrained power allocation. If the resulting rates aitersit feasible, we continue reassigning
subchannels until the rates are feasible or there are no subehannels and the algorithm
declares that is not able to find a feasible point. This cpords to the loop in the lower part
of the block diagram in figurgl 1. The pseudo-code of the sulmdlareassignment heuristic is
listed in algorithn 1L, which corresponds to the sequencelafids 4,2,3 in figuréll.

The power allocation algorithms have computational comipleO(K N) [15] and the SUS
search algorithm has complexi€y( /K M?3). Assuming the worst case where all subchannels are
examined for reassignment, the proposed algorithm’s dvawenputational complexity is

O(KN?), if N> M3

OugM= (34)
O(KNM?), otherwise.

This is lower than Papoutsis’ methdd [9] computational ctaxigy, which is O(K N?M*) for
all V.
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G. Reduced Complexity Algorithm

In this section, we devise a variation to the subchannebigament algorithrh]1 that linearizes
the dependency of the computational complexity in expoes§d4) with respect to the number
of subchannelsV, for N > M?3. Since in LTE-Advanced systems, the maximum number of
subchannels is large, it is important to linearize the catapenal complexity with respect to
N.

For this purpose, we solve a sum rate maximization probleth ame power constraint per
subchannel instead of a total power constraint and we doomider the rate constrainfs {24).
In the subchannel iteration loop in algorithh 1, we update uker power corresponding to all
subchannels because the power-constraint dual varidelgsathem all, which produces the term
N? in the complexity expression (84) fav > M?3. To solve the new problem formulation, we
need to update the user power corresponding to only one anbeh Therefore, when computing
the power and rates after power allocation, only the onesesponding to that subchannel are
affected, making the computational complexity of this stef<) as opposed to the original
O(KN). The computational complexity of this method is

Oag. 2= O(KNM?). (35)

(35) varies linearly withV and sinceN ranges from6 to 550 in a LTE-Advanced system with
Carrier Aggregation (CA) ]3], this results in a much fastigoaithm for large N. The reduced
complexity method does not support the high minimum rates #figorithm[l can, but it is a
more efficient algorithm whev is large. We name this simplified method algorithm 2, but we
do not provide its pseudo-code since the differences wighrahm[1 are straightforward. Table

[ summarizes the computational complexity of the metho@sgmted in this paper.

IV. NUMERICAL EVALUATIONS

In this paper we devised heuristic algorithms to efficierdtyve problem [(349). For this
purpose, we proposed algoritiim 1 in subsedfionlllI-F angiitgplified version, algorithm 2, in
subsection [lI-G. Tablg | shows that they have reduced caatipmal complexity when compared
to other methods. In this section, we numerically evaluatgrtperformance and CPU load,
and compare them against existing methods. The power &boc@A) heuristics presented in

subsection_II-D are invoked at each subchannel assignitezation as illustrated in the block

February 22, 2018 DRAFT



17

diagram of figuréIl. Thus, the CPU load and performance of Ahalgorithms have an important
effect on the overall heuristic performance. In subsediGAlwe evaluate the performance of
these PA heuristics independently of the subchannel asgighmethod, we assume certain
subchannel assignment and evaluate the PA heuristics.

In subsection_ IV-B we evaluate the performance of the pregasverall heuristics and the
support of the fulfilled minimum rates. Our interest is onwaesng the following questions:
how far from the optimal is the sum rate achieved by these oasthhow fast are the proposed
heuristics compared to existing methods; what is the ramdbeominimum rates supported by
the rate-constrained PA methods, as opposed to the maximamghput PA methods; and how

the overall heuristics compare 1o [9].

A. Performance of Power Allocation Heuristics

Figure[2 shows an example of the performance obtained by ghdeRiristics presented
in subsectio_III-D for the listed system parameters. In figare, we compare the sum rate
given by the optimal solution to problerh {22425) and the ltegiven by the PA heuristics.
For minimum rate constraints lower thal bps/Hz, the rate constraints are inactive and the
maximum throughput PA heuristic method gives the optimah sate. However, for minimum
rate constraints higher thaty bps/Hz, the performance of the rate-constrained PA hauitst
sub-optimal and it depends on the parametar (33). From the results of figufd 2, we observe
that a parameter value closede= 0.2 achieves a large minimum rate support. For the example
in figure[2, rate-constrained PA extends the range of thermimi rates constraints frori to
56 bps/Hz, i.e1,6%. Evaluating the performance over multiple configuratjoms find that rate-
constrained PA increases the range of supported minimues ttweer 5% and30% when
compared to schemes that perform maximum throughput PA émlgeneral, any subchannel
assignment method can increase the supported minimum bgteerforming rate-constrained
PA as we show below.

1) Benefits of rate-constrained power allocatioRapoutsis method [9] only performs maxi-
mum throughput PA. If we add rate-constraints PA to Papsutsthod, we would achieve and
increase in the range of minimum rate constraints suppofitbis is illustrated in figurél3 for
the system parameters listed, where the minimum rates suigpextended fromi0 bps/Hz to

50 bps/Hz, i.e., 0% increase. In this example, we optimally solve a power alion problem
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Optimal and heuristic power allocation

Optimal Power
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Fig. 2: Optimal and heuristic power allocation comparisondifferent values ot. K = 3, M =
3,N=1,P = 20.
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Fig. 3: Optimal and heuristic methods compariséh= 16, M =3, N =8, D = 1, P = 20.

similar to [22£2b), but with sub-channel power constrainttead of a total power constraint.
The smearing effect in figurle 3 occurs when the rate conssraire not satisfied with simple
maximum throughput PA and rate-constrained PA is applied.

It is not possible, however, to solve the rate-constraingdpfblem without an increase in
the computational complexity. For this reason, we use thehPdristics described in section
M-Dl

B. Overall Heuristics Performance Comparison

We use a Rayleigh fading channel model to generate indepermi@nnels and compare

numerically the supported minimum rates and the sum rate\aath by the following methods:
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Fig. 4: Optimal and heuristic methods comparison.

1) Dual-based upper bound [5]

2) Papoutsis’ algorithn [9]

3) The proposed heuristic SUS-based heuristic algorithnestribed in subsectidn 1IIHF

4) A simplified SUS-based heuristic algorithm 2, describedubsection I-G that performs

PA considering per-subchannel power constraints.

Figure[4 illustrates one example of the objective achiewethbse methods for one real-time
user,D = 1 and parametersy = 8, K = 8, M = 3, P = 20. The plots only show feasible
points. Thus, when increasing the minimum required ratesifbntal axis), the curves stop if
the methods can no longer find feasible points.

We start by solving the problem without considering minimrate requirements as indicated
by blocks 1 and 2 in figurkl 1; this gives us user rafes}. If we were to extend the curves of
figure[4 to zero, they would be flat curves wifj, ) as the sum rate. We want to focus on the
domain where rate constraints are active. For this purpeseincrease the rate constraints by
incrementsA,, i.e., d;, = rY + A,, for the RT users and solve the problem for edgh

For a number of RT user® > 1, we usez,’?:l dy, to list the minimum rate constraint in
plots. In our numerical evaluations, we increase the ratestcaints and try to find feasible
points using the heuristics until the dual upper bound besopositive indicating the problem
unfeasibility. In figuré 4, the upper bound provided by thgatere of the dual function maximum

is shown by a dashed line and it is the reference to measurpettiermance of all heuristic
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methods. Papoutsis’ method is shown in diamond markers laisélg follows the upper bound.
The proposed SUS-based heuristic (algorifim 1) is showriralecmarkers and its simplified
version (algorithm 2) in cross markers. They have lowerqgreriince than Papoutsis’ method,
but they increase the range of supported minimum rates. &mtdy these observations, we

define the following measurements:

« A: The difference in percentage between the minimum rate @tggb by the SUS-based
heuristic algorithmi llr;, and Papoutsis’ methoc, i.e., A = 100(ry — r2)/71.

« B: The difference in percentage between the minimum rate atggb by the SUS-based
heuristic algorithmr; and its simplified versions; in percentageA and B indicate how
much the proposed SUS based algorifim 1 increases the rasgpported minimum rates.
The larger these measurements are, the better the proplgseithan 1.

« FE: The difference in percentage between the upper dual beuadd the sum rate achieved
by Papoutsis’ method., i.e. £ = 100(u; — uy)/u;. TO computeu; and u, we average
the sum rates over the minimum rates supported by Papouatediod. This corresponds
to rates betweeny up tor, in figurel4, where, is sum of of the rates at which the RT
users’ rate constraints become active. We average the semaeer the same rate interval
for all methods.

« F: The difference in percentage between the upper dual bouthdhe SUS-based heuristic
algorithm[1.

« G: The difference in percentage between the upper dual booddttee simplified SUS-
based heuristic algorithm Z'| F and G indicate how far the sum rate is from the upper

bound for each method. The smaller this measurement is,dttertihe algorithm.

Averaging these measurements ouef channel realizations, we obtain the results shown
in figure[5 for various number of RT userB,. The difference, E, between Papoutsis’ method
performance and the upper bound is very small2(5 %). This is because Papoutsis’ method
minimizes the throughput reduction by scanning over alkfile users swapping. The proposed
heuristic methods have similar performance gaps agaiestidlal bound £, F' ~ 13 %), which
are larger than Papoutsis’ method. However, they achiegepdrformance with a much lower
computational complexity as we shall see. In addition, ttegpsed SUS-based heuristic method

with rate-constrained power allocation, supports upi® larger minimum rates than the other
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Range gap in % —>

1 1.5 2 25 3 3.5 4
Number of RT users, D —>

Rate gap in % —>

2 25 3 3.5 4
Number of RT users, D —>

Fig. 5: Optimal and heuristic methods comparison Ms.

two methods (seel, B in figure[5). As the number of RT usef3 increases, the differencé
decreases since it is harder for algorithim 1 to find feasiblatp. Recall that we force alD
user rate constraints to be active.

Figure[6 shows the results when varying the number of useirem 8 to 32. The performance
of the proposed methods improves as the number of userasgras indicated by the difference
between the upper dual bound and the sum rate attained (ree@uisF” and G decrease from
14% to 7%). This is because in the presence of more users, the SUStlatlges more likely to
find semiorthogonal channel vectors, thus increasing ties knd effectively exploiting multiuser
diversity. In contrast, Papoutsis’ method slightly deigates when the number of users increase

(measuremenk’ increases t3.8 %).

C. Increasing the number of RT users

We now study an interesting scenario where we increase theauof RT users but keep
fixed the minimum rates. This will correspond to the case dlifig the maximum number of
supported RT users (e.g. video) in a cell. We activate theeganstraints by setting the minimum
rates to10% more of the rates achieved by maximum throughput chanrtepawer allocation.

Figure[T shows the upper dual bound in dashed lines, the tolgjeachieved by Papoutsis’
method in star markers and the proposed heuristics in caetesquare markers, as a function
of the number of RT users. Papoutsis’ method performancerg elose to the upper bound,

but it quickly degrades when the number of RT users incredseannot find feasible points
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Fig. 7: Algorithms performance vs. the number of RT users

with 9 RT users onward, while the proposed heuristics yield smstifor these values within
12 % of the upper bound.

Figure[8 shows the elapsed time employed by these heuriBag®utsis’ method elapsed time
grows approximately linear with the number of RT users and larger than both algorithms
I and 2. This is because when the number of RT users incre@apeutsis’ method need to
examine more combination of users and invert their cornedimg channel matrices. Algorithms
[ and 2 grow much slower. According to figuigs 7 and 8, not otdprthms[1 and 2 support

a higher number of RT users than Papoutsis’ method, but #xgyine less computation time.
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Fig. 8: Elapsed time vs. the number of RT users

V. CONCLUSIONS

In this paper we designed algorithms to provide solutiomisto the RA problem for ZF
beamforming MISO-OFDMA systems supporting minimum ratguieements. The solution
points given by these algorithms differ in their distancethe optimal solution and in the
computational complexity to obtain them. We designed twariséic methods: algorithnis 1 and
2, they select an SDMA set for each subchannel and then sop@var allocation problem.
The difference between algorithins 1 and 2 is that the latterapnsiders power constraints per
subchannel, providing a smaller minimum rates range butdrigomputational efficiency.

We showed through numerical evaluations that they have forpgnce not far from the
optimal solution and that they increase the range of supgartinimum rates when compared
with other approach reported in the literature. This is apanant result because, in a system
with RT users, it is more important to satisfy the rate camsts of the users in need than
increasing the rates of the nRT users. Compared with theadgitoposed in[[9], our methods
do not follow the upper bound as closely but they increasersimge of the minimum rates
supported. This and the fact that we have reduced the cotigmabhcomplexity, are the main
advantages of the proposed methods. We also showed thataastrained power allocation
extends the range of the minimum rates supported when apjoliether subchannel assignment

methods.
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