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Abstract

4G wireless access systems require high spectral efficiencyto support the ever increasing number

of users and data rates for real time applications. Multi-antenna OFDM-SDMA systems can provide the

required high spectral efficiency and dynamic usage of the channel, but the resource allocation process

becomes extremely complex because of the augmented degreesof freedom. In this paper, we propose

two heuristics to solve the resource allocation problem that have very low computational complexity

and give performances not far from the optimal. The proposedheuristics select a set of users for each

subchannel, but contrary to the reported methods that solvethe throughput maximization problem, our

heuristics consider the set of real-time (RT) users to ensure that their minimum rate requirements are

met. We compare the heuristics’ performance against an upper bound and other methods proposed in

the literature and find that they give a somewhat lower performance, but support a wider range of

minimum rates while reducing the computational complexity. The gap between the objective achieved

by the heuristics and the upper bound is not large. In our experiments this gap is10.7% averaging

over all performed numerical evaluations for all system configurations. The increase in the range of the

supported minimum rates when compared with a method reported in the literature is14.6% on average.

I. INTRODUCTION

With the ubiquitous use of smart phones, tablets, laptops and Real-Time (RT) applications,

traffic demand on the wireless access network is increasing exponentially [1]. In contrast, mobile

subscription prices have flattened in the last years due to competition and maturity of the market

[2]. Therefore, there is a need to design systems that support high data rates traffic with strict time

deadlines, and concurrently optimize the system resourcesto make deployments economically

profitable.
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One of the key system design parameters in 4G wireless accessnetworks is spectral efficiency.

Using spatial, user and frequency diversity techniques in amulti-user Multiple Input Multiple

Output (MIMO)-OFDMA system, provides us with a high spectral efficiency. These systems are

proposed in current 4G standards, such as Long Term Evolution (LTE) and IEEE 802.16 [3],

[4]. However, when increasing the degrees of freedom for transmission, a price has to be paid.

Multi-antenna systems require more hardware and software resources to process the multiple

spatial layers. In addition, the Resource Allocation (RA) process becomes much more complex

because we have many more possibilities from which to choose.

The problem we deal with in this paper is the design of efficient RA algorithms that provide

us with solutions not too far from the optimal, for a Zero-Forcing (ZF) Multiple Input Single

Output (MISO)-OFDMA system supporting minimum rates. ThisRA problem is a nonlinear,

non-convex integer program, which makes it almost impossible to solve directly for any realistic

number of subchannels, users and antennas. For this reason,most research work focuses on

developing heuristic algorithms. It is also important to benchmark the performance of these

heuristic algorithms. In [5], a dual method is proposed to find a near-optimal solution to the

sum rate maximization problem with minimum rate constraints. It requires an enumeration of all

Spatial Division Multiple Access (SDMA) sets, which prevents the method to be implemented

efficiently, but it provides us an off-line method useful forheuristic benchmarking.

Several heuristic methods have been used to solve the RA problem for OFDMA-SDMA

systems with both RT and non-Real Time (nRT) traffic. In [6], the objective is to maximize

the sum of the user rates subject to per-user minimum rate constraints that model the priority

assigned to each user at each frame. The optimization problem is solved approximately for

each frame by minimizing a cost function representing the increase in power needed when

increasing the number of users or the modulation order. The advantages of this approach are

that it handles user scheduling and RA together and supportsRT and nRT traffic. Its weaknesses

are that no comparison is made against a near-optimal solution and the method used to determine

user priorities at every frame is very complex. In [7], both RT and nRT traffic are supported.

Priorities are set according to the remaining deadline timefor RT users and to the difference

between the achieved rate and the desired rate required for nRT users. Comparisons against the

algorithm in [6] show that the packet drop rate for RT users and the algorithm’s complexity
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are significantly reduced. However, as in [6], a performancecomparison with a near-optimal

solution is not provided.

In [8], a heuristic algorithm is proposed for the sum rate maximization problem with propor-

tional rates among the user data rates, i.e., the ratio amongallocated user rates is predetermined.

The criteria used to form user groups includes semi-orthogonality as in [7], but also fairness

through proportional rate constraints. This method is extended to include hard minimum rates in

[9]. There is no reported method to evaluate the accuracy of these heuristics, except by comparing

them with each other.

In the heuristic method [10], the objective is the weighted sum rate maximization under a total

power constraint. The user weights are updated at each frameto include different fairness criteria.

When compared to [8] the performance is better, but Jain’s fairness index is lower. The sequential

user selection to swap users require the channel matrix inversion of all candidates, similarly to

[9], which creates a computational burden. In addition, forRT users the method introduces delays

by first detecting that the user rates are lower than expected, and then adjusting the user weights,

i.e. no hard rate constraints are considered.

Our work differs from previously reported methods because we consider hard minimum rate

constraints for real-time users, which is advantageous in terms of delay and QoS compliance.

We propose two efficient heuristic methods with much lower computational complexity than the

methods proposed in the literature. The computational complexity reduction is several orders

of magnitude depending on the algorithm used and the problemparameters. We compare the

proposed heuristics performance against the near-optimalsolution proposed in [5] and find that

the performance obtained is within10.7% of the optimal averaging over all performed numerical

evaluations. In addition, the proposed heuristics increase the range of the supported minimum

rates when compared with the method proposed in [9]. For the same case above, the increase in

the rate range is14.6% on average. This increase is achieved by considering the rate constraint

dual variables in the user power allocation stage.

The paper is organized as follows, in section II, we mathematically formulate the problem

we want to solve: for a given time slot, find the user selectionand beamforming vectors that

maximize a linear utility function of the user rates, given atotal transmit power constraint and

minimum rate constraints for RT users. In section III, we propose two heuristic methods to solve

the problem more efficiently. We compare their performance against the upper bound and against
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other method proposed in the literature in section IV. Finally in section V, we summarize the

main findings and state our conclusions.

II. PROBLEM FORMULATION AND DUAL -BASED NEAR-OPTIMAL METHOD

We consider the resource allocation problem for the downlink transmission in a multi-carrier

multi-user multiple input single output (MISO) system witha single base station (BS). There are

K users, some of which have RT traffic with minimum rate requirements while the others have

nRT traffic that can be served on a best-effort basis. The BS isequipped withM transmit antennas

and each user has one receive antenna. The system’s available bandwidthW is divided intoN

subchannels whose coherence bandwidth is assumed larger than W/N , thus each subchannel

experiences flat fading. In the system under consideration the BS transmits data in the downlink

direction to different users on each subchannel by performing linear beamforming precoding. At

each OFDM symbol, the BS changes the beamforming vector for each user on each subchannel

to maximize a weighted sum rate. We assume that we use a channel coding that reaches the

channel capacity.

The BS transmits on each subchanneln, the signal vectorxn =
∑

k wn,ksn,k, wherewn,k ∈

CM×1 and sn,k ∈ C are, respectively, the beamforming vector and the information symbol for

userk on subchanneln. The symbolssn,k are assumed to be independent and follow theCN (0, 1)

distribution. A power constraint
∑

n,k ‖wn,k‖2 ≤ P̌ is also imposed. The signal received at user

k on subchanneln is then given by

yn,k = hn,kwn,ksn,k +
∑

j 6=k

hn,kwn,jsn,j + zn,k. (1)

wherehn,k ∈ C1×M is the channel rowM-vector between the BS and userk on subchannel

n, andzn,k ∼ CN(0, 1) is the white additive noise at the receiver. The second term in Eq. (1)

corresponds to the inter-user interference. To simplify the RA problem, we assume that the

beamforming vectors are chosen according to the zero forcing (ZF) criteria, which is known

to be nearly optimal when the SNR is high [11]. For each subchannel, we can choose at most

M users for which‖wn,k‖2 > 0 and, for those users, the beamforming vectors must meet

the orthogonality constraintshn,kwn,j = 0, j 6= k. Under the ZF constraint, the inter-user

interference term becomes zero in (1) and the achievable rate of userk on subchanneln is
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given by

rn,k (wn,k) = log2
(

1 + ‖hn,kwn,k‖
2
)

. (2)

The set of usersK is divided into a setD of RT users with minimum rate constraintšdk > 0

and a set(K−D) of non real-time (nRT) users for whicȟdk = 0. The user selection is modelled

by the binary variablesαk,n which take the value1 when the userk is selected in the SDMA

set of subchanneln, and zero otherwise.

The objective of the RA algorithm is to maximize the weightedsum rate of the users subject

to the power, minimum rate and ZF constraints. The users weights ck and the minimum rate

constraints are determined by a higher layer scheduler.

Defining w,α as the vectors of stacked optimization variableswn,k, αn,k, the RA problem

can be mathematically formulated as follows:

max
w,α

N,K
∑

n=1,k=1

ckrn,k(wn,k) (3)

N,K
∑

n=1,k=1

‖wn,k‖
2 − P̌ ≤0 (4)

−
N
∑

n=1

rn,k(wn,k) + ďk ≤0, k ∈ D (5)

∑

k

αn,k ≤ M, ∀n (6)

(hn,kwn,j)
2 ≤ B′ [(1− αn,k) + (1− αn,j)] ,

∀n, ∀k, ∀j, k 6= j (7)

‖wn,k‖ ≤ A′αn,k (8)

αn,k ∈ {0, 1} (9)

Constraint (4) is the total power constraint imposed on the beamforming vectors and constraints

(5) assure that the RT users are assigned rates larger or equal than their minimum ratešδk.

Constraints (6) to (9) correspond to the ZF constraints: Eq.(6) guarantees that we do not choose

more thanM users for each subchannel, Eq. (7) that two users in an SDMA set meet the ZF

constraints and Eq. (8) that the beamforming vector is null for users that are not in an SDMA

set,A′ andB′ are some large constants.
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Problem (3–9) is a non-linear mixed integer program (NLMIP). The vector of binary variables

α determines the set of users that are assigned to each subchannel. On the other hand, the vector

of continuous variablesw determine the beamforming vectors and need to comply with the ZF

constraints (7–8) which depend on the user selection binaryvariablesα. There are many off-

the-shelf software packages available to solve NLMIPs, see[12] for a survey. They use different

methods with different levels of accuracy and speed. However, the current NLMIP solvers do

not automatically exploit the specific structure of problem(3–9). An off-line method is proposed

in [5] to solve this problem with near-optimality which we use to compare our heuristics.

III. EFFICIENT HEURISTIC METHODS

In this section, we propose heuristic methods to solve problem (3–9) efficiently. We are

interested in feasible solutions, i.e., points that satisfy the rate and power constraints, and that are

not too far from the optimal solution. In the dual-based near-optimal [5], power allocation and

subchannel assignment are jointly performed. Except for some trivial cases, we cannot separate

the subchannel allocation and power allocation processes.For heuristic methods, however, we

separate these processes in order to reduce computational complexity. In the first stage, we find

a subchannel assignment that has enough subchannels assigned to the real-time (RT) users, and

in the second stage, we allocate power among users using the fixed subchannel assignment.

For the subchannel assignment stage, we make use of the well known Semiorthogonal User

Selection (SUS) algorithm [11] to select user channel vectors that have large norms and are

semiorthogonal to each other. But contrary to the throughput maximization case, we include the

RT users to satisfy their minimum rates when selecting the user set for each subchannel. For

the power allocation stage, we use a method that finds feasible points and is much quicker than

optimally solving the power optimization problem. The subchannel assignment algorithm and

the power allocation algorithm constitute the proposed heuristic method.

A. General Description of the Proposed Heuristic Method

The basis for the design of our heuristic is the realization that for a fixed subchannel assignment

α in problem (3–9), the resulting power allocation problem can be approximated to a convex

one which is much easier to solve. Thus, instead of enumerating all feasible values of variableα

corresponding to every subchannel assignment, our heuristic chooses a subchannel assignment
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and solves a convex power allocation problem. Then, it reassign resources and solves the power

allocation problem again until the RT users’ rate constraints are met.

There are two mechanisms to reassign resources to users. Thefirst mechanism —subchannel

reassignment— takes away subchannels assigned to users that do not require them, because

they are not RT users or they have more resources than needed,and assigns them to the users

in need. The second mechanism —rate-constrained power allocation— takes into account the

user rate constraints to reallocate power between users. Subchannel reassignment has a much

larger effect because users in need are given subchannels that they did not have before; the

rates increase substantially with every subchannel added.Rate-constrained power allocation has

a lower effect because the rate increase dependency againstpower is logarithmic. However, this

mechanism proves to be crucial in finding feasible points when the minimum rate requirements

increase. In addition, recomputing the users power is quicker than finding a new subchannel and

inverting its new channel matrix.

The proposed heuristic method starts by solving problem (3–9) without considering rate

constraints (5). If the required ratešdk are lower or equal than the obtained rates, we have

an optimal solution and the algorithm finishes. To obtain themaximum throughput solution

efficiently, we use the SUS algorithm to assign subchannels to users and then performmaximum

throughput power allocation, which consists of finding the user power allocation that satisfies

the power constraint with equality disregarding the rate constraints. These correspond to the first

two blocks in the diagram of figure 1. If the required rates aremet, we exit, otherwise, we need

to assign more resources to the users in need, thus we performrate-constrained power allocation

as indicated by block 3 in figure 1.

We perform subchannelre-assignment when the maximum throughput subchannel assignment

plus rate-constrained power allocation does not support the required minimum rates. A heuristic

method that groups semiorthogonal user vectors is used to assign more subchannels to the users

in need and it is indicated by block 4 in figure 1. We perform iterations adding subchannels to

users in need and performing power allocation (blocks 2 and 3) until the user minimum rates

are met or there are no more subchannels to reassign and the problem is declared unfeasible by

the heuristic.

February 22, 2018 DRAFT



8

1. Assign subchannels to users

to obtain maximum throughput

2. Perform maximum throughput

power allocation

Feasible

point ?

3. Perform rate-constrained

power allocation

No

Yes, Exit

4. Re-assign subchannels to users

No

Feasible

point ? Yes, Exit

No

All subc.

examined? Yes, Exit

Fig. 1: Heuristic general algorithm

B. Power Allocation

In this subsection we find the user power allocation for a fixedsubchannel assignment. Assume

that we have chosen a vectorα for each subchanneln satisfying Eqs. (6) and (9. We explain

the heuristic method to obtain such a vector in section III-E. The vectorα(n) determines a fixed

SDMA set of users,Sn, defined as

Sn
.
= {k ∈ K : αn,k = 1} , (10)

gn
.
= |Sn|, ∀n. (11)

SetsSn contain the indexes of the users assigned to subchanneln. We first reformulate problem

(3–9) using these known sets. Then, we apply a dual method to solve it. For this purpose, we

arrange the channel vectors of selected users in the rows of agn ×M matrix

Hn
.
=











hn,Sn(1)

...

hn,Sn(gn)











, ∀n, (12)
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whereSn(j) is the j-th user in the setSn. We also arrange the corresponding beamforming

vectors in the columns of aM × gn matrix for each subchannel

Wn
.
=
[

wn,Sn(1), . . . ,wn,Sn(gn)

]

, ∀n. (13)

Then, the ZF constraints (7) can be written as

HnWn = diag(
√

q(n)), ∀n (14)

whereq(n) = {qn,j} is the users power vector comprised of

qn,j = hn,sn(j)wn,sn(j), j ∈ {1, . . . , gn} (15)

Beamforming vectors for usersk not belonging tosn are set to zero. Restricting the direction

of Wn to the pseudo-inverse of matrixHn as done in [5], we obtain from (14)

Wn = H†
n diag(

√

q(n)), ∀n (16)

the power constraint can now be written as

N
∑

n=1

tr (WH
n Wn)− P̌ ≤ 0 (17)

and replacing (16) in (17) we obtain

N
∑

n=1

gn
∑

j=1

[

(H†
n)

HH†
n

]

j,j
qn,j − P̌ ≤ 0 (18)

Let’s define the entries of theN ×K matricesβ andp as

βn,k
.
=











[

(H†
n)

HH†
n

]

j,j
if k = sn(j), ∀j ∈ {1, . . . , gn}

0, otherwise
(19)

pn,k
.
=











qn,j if k = sn(j), ∀j ∈ {1, . . . , gn}

0, otherwise.
(20)

The power constraint can now be expressed as

N
∑

n=1

K
∑

k=1

βn,kpn,k − P̌ ≤ 0. (21)
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From the original model (3–9), we do not need constraints (6)and (9) because we choose

αn,k satisfying these conditions. Constraints (7) and (8) are implicit in the reformulated model

because the beamforming vectors satisfy (14) and we set to zero all beamforming vectors for

which αn,k = 0. Therefore, only constraints (4) and (5) remain. We also changed the problem

optimization variables from the vectorswn,k to the scalarspn,k because the vector directions are

now fixed by (16).

Replacing(hn,kwn,k)
2 by pk,n in (3),(5) and replacing (4) by (21), we obtain the problem

formulation

max
pn,k

N
∑

n=1

K
∑

k=1

ck log2(1 + pn,k) (22)

N
∑

n=1

K
∑

k=1

βn,k pn,k − P̌ ≤ 0 (23)

−
N
∑

n=1

log2(1 + pn,k) + ďk ≤ 0, k ∈ D (24)

pn,k ≥ 0, ∀n, k. (25)

C. Optimal Power Allocation

Problem (22–25) is convex since it maximizes a concave function over a convex set formed

by constraints (23–25). We can solve this problem optimallyusing a dual Lagrange approach.

First, we define dual variablesθ for the power constraint (23), and{δk} for the rate constraints

(24). Then, we derive a closed-form expression of the dual function and solve the dual problem.

This yields the water-filling power allocation [13]

pn,k =

[

ck + δk
θβn,k ln 2

− 1

]+

, ∀n, ∀k : βn,k 6= 0 (26)

and rate allocation

rn,k = log2

(

1 +

[

ck + δk
θβn,k ln 2

− 1

]+
)

, ∀n, (27)

whereδ is the vector of dual variablesδk. For convenience we have defined dual variablesδk

for all users including the ones with no minimum rate requirements (k /∈ D); for these users we

set ďk = 0.

We can the optimal dual variablesθ, {δk} using derivative-free techniques. The use of such

methods involves two steps. In the first one, we compute a matrix pseudo-inverse per subchannel
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to obtain the inverse of the channel effective gainsβn,k; this has computational complexity

O(NM3). In the second step, we perform subgradient iterations computing the power and rate

constraints to obtain the subgradient vector; this has computational complexity isO(N(M +

D)Id), assuming a maximum number of subgradient iterationsId.

D. Efficient Power Allocation

To solve problem (22–25) more efficiently we separate it in two stages: maximum-throughput

power allocation (PA) and rate-constrained PA. Maximum-throughput PA only considers the

power constraint (23), thusδk = 0 in (26) and we just need to find the dual variableθ that

satisfies the power constraint with equality. For this purpose, we use the exact method reported

in [14], [15] which is summarized below

1) Find the dual variableθ that satisfies the power constraint (23) with equality, using

θ(i) =

∑K

k=1 |Bk(θ̌, δk)|ck

(P̌ +
∑K

k=1

∑

n∈Bk(θ̌,δk)
βn,k) ln 2

, (28)

where θ̌ > 0 is a lower bound ofθ, δk = 0, i is the iteration index and

Bk(θ, δk)
.
=
{

n ∈ N : (k ∈ Sn) ∧ (29)

(βn,k <
(ck + δk)

θ ln 2
)
}

, ∀k ∈ K,

with Sn is the SDMA set associated to subchanneln, andN the set of all subchannels.

2) Recompute setsB(i+1)
k using θ(i). If the setsB(i)

k and B(i+1)
k are equal, we have found

the solution, the power constraint is satisfied with equality. Otherwise, iterate recomputing

(28) and (29) until finding identical sets in two consecutiveiterations.

After solving the maximum throughput PA problem, if the achieved rates are feasible they

correspond to the optimal ones. If the rate constraints are not met, we incorporate the rate

constraints (24) and perform rate-constrained PA using theheuristic reported in [15]. This method

finds a feasible point and does not require any iteration. This feasible point satisfies the power

constraint with equality but the rate constraints with inequality and is faster to compute than the

subgradient algorithm. Here, we summarize the method

1) Compute the set of unsatisfied usersT as

T
.
= {k ∈ {1, . . . , K} : rk < ďk} (30)
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rk
.
=

N
∑

n=1

log2

(

1 +

[

ck
θ(1)βn,k ln 2

− 1

]+
)

(31)

whereθ(1) is the optimal power allocation dual variable obtained after maximum throughput

PA.

2) For the users that do not belong toT , make δk = 0. For the other users, obtain the

minimum value of the dual variableδk required to satisfy the rate constraints

δ
(2)
k =






(θ̄ ln 2)



2ďk
∏

n∈A′

k

βk,n





|A′

k
|−1

− ck







+

(32)

whereA′
k = Bk(θ̄, δk), θ̄ is an upper bound ofθ given by

θ̄ = θ(1)2(ďk−rk)ǫ (33)

and ǫ > 0 is a parameter found experimentally as explained in subsection IV-A.

3) Using dual variablesδ(2)k , compute the power constraint dual variableθ that satisfies the

constraint (23) with equality.

Maximum throughput and rate constrained power allocation correspond to blocks 2 and 3 in

figure 1.

E. Subchannel Assignment Heuristic

The purpose of block 1 in figure 1 is to perform user subchannelassignment to obtain high

rates. The rates in (27) are affected by the effective channel gainsβ−1
n,k, which increase when the

channel vector norms are large and the chosen vectors for each subchannel are semi-orthogonal

to each other. We use the well-known SUS algorithm [11] to perform this assignment. The

computing efficiency of this algorithm is improved in [16]. We rewrite the SUS algorithm splitting

it in two parts: an initialization stage and a user search stage. This is done to adapt the SUS

algorithm to the rate-constrained case described in subsection III-F.

The input to SUS initialization stage is the set of availableusersU0. Its output are the user

with the maximum norm{π0} and a matrixG0 forming a basis of the null space spanned by

the channel vectorhπ0
. We write the input/output relation of this stage as [S0

n,G
0
n ]= SUS init

(U0), whereS0
n contains only the selected first user{π0}.

In the SUS search stage, we compute the projection of the remaining channel vectors to the

null space spanned by the channel vectors of the users already selected. We pick the user whose

February 22, 2018 DRAFT



13

projection is the largest, add it to setSn and recompute matrixGn. We add users until the set

containsM users or we finish examining all users in the input setU0. The input/output relation

of the users search stage is [Sn,Gn]= SUS search (U0, S0
n, G0

n), whereSn is the set of selected

users for subchanneln and Gn its the matrix that spans the null space of the selected user

vectors. The SUS algorithm as described in [11] is implemented by makingU0 = {1, . . . , K}

and sequentially invoking the two stages: [S0
n, G0

n]= SUS init (U0) and [Sn,Gn]= SUS search

( U0 − S0
n, S0

n, G0
n).

After performing subchannel assignment for each subchannel n, we perform maximum through-

put and rate constrained power allocation — indicated by blocks 2 and 3 in figure 1 — using

the heuristics described in III-D.

F. Subchannel Reassignment Heuristic

After executing block 3 of the diagram in figure 1, we obtain the user rates per subchannelr
(0)
n,k.

The user rates are simply computed byr
(0)
k =

∑

n∈Ck
r
(0)
n,k, whereCk is the set of subchannels

assigned to userk. We compute the set of unsatisfied usersT given by (30). SetT tells us

which users need to be assigned additional subchannels. We first scan the subchannels in which

any of the users in need have good channel conditions, so theycan be first reassigned to these

users. The computational complexity of the subchannel ordering is bounded byO(N2). For each

subchanneln, we build a critical setE containing the users in the current SDMA set that can not

be removed from the SDMA set because that would take the user out of feasibility. We consider

two cases: first that the setE is empty. In this case we invoke the SUS initialization algorithm

to select the strongest user inT as the first element of the SDMA set. Then, we invoke the SUS

search stage to add users to the SDMA set. We initially scan other users inT so that they can

be added with priority to the SDMA set, and if the SDMA set has not yet been completed, we

scan the remaining users{1, . . . , K} − T .

In the second case, when setE is not empty, we initialize the SDMA set with all the users in

setE , and then add users invoking the SUS search algorithm. To addusers to this SDMA set,

we scan the rest of the users but look first in the set of users inneedT . The difference between

the casesE = ∅ andE 6= ∅ is that in the second case, we keep the users in need that are already

in the SDMA set before trying to add more users.
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Algorithm 1 Subchannel Reassignment Heuristic Algorithm
Input: Current dual variablesθ, {δk}, current subchannel assignment setsSn

Output:New subchannel assignment setsSn, user ratesr(1)k or r(2)k

- Computern,k and set of users in needT using (30)

- Order subchannels according to maximum norm of the users inneed, i.e. according to

maxk∈T ‖hn,k‖, ∀n, producing ordered setN

for all n ∈ N do

- Compute critical user setE containing users inSn for which
∑

m6=n rm,k < ďk

If E = ∅, Z ← T

Otherwise,Z ← E

[S0
n,G

0
n]= SUS Init (Z)

[Sn,Gn]= SUS search (Z − S0
n, S

0
n,G

0
n)

if |Sn| < M then

[Sn,Gn]= SUS search({1, . . . , K} − Sn, Sn,G)

end if

Compute pseudo-inverse of channel matrix formed by users inSn and computeβn,k using

(19)

Perform Maximum Throughput power allocation obtaining dual variableθ(0) that satisfies

power constraint with equality, obtaining ratesr(1)k

if r
(1)
k satisfy rate constraintsthen

Exit

else

Perform rate constrained power allocation, obtaining rates r
(2)
k

if r
(2)
k satisfy rate constraintsthen

Exit

end if

end if

Update set of users in need,T

end for
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Algorithm Complexity Purpose

Alg. 1 Eq. (34) Prob. (3–9)

Alg. 2 O(KNM
3)

Prob. (3–9) with

per-subchannel power

constraint

Papoutsis’ method

[9]
O(KN

2
M

4)

Prob. (3–9) with

per-subchannel power

constraint

Dual bound [5] O(NK
M
M

3) Dual of (3–9)

TABLE I: Algorithms complexity

Notice that all the selected users comply with the semiorthogonality condition of the SUS

algorithm; the only change in computations to the SUS algorithm is the order in which we

examine the users. By changing the order, we are giving priority to the users in need. The

computational complexity of this stage is bounded by the complexity of the maximum throughput

SUS search algorithm, i.e.O(KM3).

After obtaining the new SDMA set for a subchannel, we performmaximum throughput power

allocation. If the resulting rates are feasible we exit the algorithm. Otherwise, we perform rate-

constrained power allocation. If the resulting rates are still not feasible, we continue reassigning

subchannels until the rates are feasible or there are no moresubchannels and the algorithm

declares that is not able to find a feasible point. This corresponds to the loop in the lower part

of the block diagram in figure 1. The pseudo-code of the subchannel reassignment heuristic is

listed in algorithm 1, which corresponds to the sequence of blocks 4,2,3 in figure 1.

The power allocation algorithms have computational complexity O(KN) [15] and the SUS

search algorithm has complexityO(KM3). Assuming the worst case where all subchannels are

examined for reassignment, the proposed algorithm’s overall computational complexity is

Oalg.1 =











O(KN2), if N > M3

O(KNM3), otherwise.
(34)

This is lower than Papoutsis’ method [9] computational complexity, which isO(KN2M4) for

all N .
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G. Reduced Complexity Algorithm

In this section, we devise a variation to the subchannel reassignment algorithm 1 that linearizes

the dependency of the computational complexity in expression (34) with respect to the number

of subchannelsN , for N > M3. Since in LTE-Advanced systems, the maximum number of

subchannels is large, it is important to linearize the computational complexity with respect to

N .

For this purpose, we solve a sum rate maximization problem with one power constraint per

subchannel instead of a total power constraint and we do not consider the rate constraints (24).

In the subchannel iteration loop in algorithm 1, we update the user power corresponding to all

subchannels because the power-constraint dual variable affects them all, which produces the term

N2 in the complexity expression (34) forN > M3. To solve the new problem formulation, we

need to update the user power corresponding to only one subchannel. Therefore, when computing

the power and rates after power allocation, only the ones corresponding to that subchannel are

affected, making the computational complexity of this stepO(K) as opposed to the original

O(KN). The computational complexity of this method is

Oalg. 2 = O(KNM3). (35)

(35) varies linearly withN and sinceN ranges from6 to 550 in a LTE-Advanced system with

Carrier Aggregation (CA) [3], this results in a much faster algorithm for largeN . The reduced

complexity method does not support the high minimum rates that algorithm 1 can, but it is a

more efficient algorithm whenN is large. We name this simplified method algorithm 2, but we

do not provide its pseudo-code since the differences with algorithm 1 are straightforward. Table

I summarizes the computational complexity of the methods presented in this paper.

IV. NUMERICAL EVALUATIONS

In this paper we devised heuristic algorithms to efficientlysolve problem (3–9). For this

purpose, we proposed algorithm 1 in subsection III-F and itssimplified version, algorithm 2, in

subsection III-G. Table I shows that they have reduced computational complexity when compared

to other methods. In this section, we numerically evaluate their performance and CPU load,

and compare them against existing methods. The power allocation (PA) heuristics presented in

subsection III-D are invoked at each subchannel assignmentiteration as illustrated in the block
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diagram of figure 1. Thus, the CPU load and performance of the PA algorithms have an important

effect on the overall heuristic performance. In subsectionIV-A we evaluate the performance of

these PA heuristics independently of the subchannel assignment method, we assume certain

subchannel assignment and evaluate the PA heuristics.

In subsection IV-B we evaluate the performance of the proposed overall heuristics and the

support of the fulfilled minimum rates. Our interest is on answering the following questions:

how far from the optimal is the sum rate achieved by these methods; how fast are the proposed

heuristics compared to existing methods; what is the range of the minimum rates supported by

the rate-constrained PA methods, as opposed to the maximum throughput PA methods; and how

the overall heuristics compare to [9].

A. Performance of Power Allocation Heuristics

Figure 2 shows an example of the performance obtained by the PA heuristics presented

in subsection III-D for the listed system parameters. In thefigure, we compare the sum rate

given by the optimal solution to problem (22–25) and the result given by the PA heuristics.

For minimum rate constraints lower than47 bps/Hz, the rate constraints are inactive and the

maximum throughput PA heuristic method gives the optimal sum rate. However, for minimum

rate constraints higher than47 bps/Hz, the performance of the rate-constrained PA heuristic is

sub-optimal and it depends on the parameterǫ in (33). From the results of figure 2, we observe

that a parameter value close toǫ = 0.2 achieves a large minimum rate support. For the example

in figure 2, rate-constrained PA extends the range of the minimum rates constraints from47 to

56 bps/Hz, i.e.,16%. Evaluating the performance over multiple configurations, we find that rate-

constrained PA increases the range of supported minimum rates between15% and30% when

compared to schemes that perform maximum throughput PA only. In general, any subchannel

assignment method can increase the supported minimum ratesby performing rate-constrained

PA as we show below.

1) Benefits of rate-constrained power allocation:Papoutsis method [9] only performs maxi-

mum throughput PA. If we add rate-constraints PA to Papoutsis method, we would achieve and

increase in the range of minimum rate constraints supported. This is illustrated in figure 3 for

the system parameters listed, where the minimum rates support is extended from40 bps/Hz to

50 bps/Hz, i.e., a20% increase. In this example, we optimally solve a power allocation problem
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Fig. 2: Optimal and heuristic power allocation comparison for different values ofǫ. K = 3,M =

3, N = 1, P̌ = 20.
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Fig. 3: Optimal and heuristic methods comparison.K = 16,M = 3, N = 8, D = 1, P̌ = 20.

similar to (22–25), but with sub-channel power constraintsinstead of a total power constraint.

The smearing effect in figure 3 occurs when the rate constraints are not satisfied with simple

maximum throughput PA and rate-constrained PA is applied.

It is not possible, however, to solve the rate-constrained PA problem without an increase in

the computational complexity. For this reason, we use the PAheuristics described in section

III-D.

B. Overall Heuristics Performance Comparison

We use a Rayleigh fading channel model to generate independent channels and compare

numerically the supported minimum rates and the sum rate achieved by the following methods:
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Fig. 4: Optimal and heuristic methods comparison.

1) Dual-based upper bound [5]

2) Papoutsis’ algorithm [9]

3) The proposed heuristic SUS-based heuristic algorithm 1 described in subsection III-F

4) A simplified SUS-based heuristic algorithm 2, described in subsection III-G that performs

PA considering per-subchannel power constraints.

Figure 4 illustrates one example of the objective achieved by these methods for one real-time

user,D = 1 and parametersN = 8, K = 8, M = 3, P̌ = 20. The plots only show feasible

points. Thus, when increasing the minimum required rates (horizontal axis), the curves stop if

the methods can no longer find feasible points.

We start by solving the problem without considering minimumrate requirements as indicated

by blocks 1 and 2 in figure 1; this gives us user rates{r0k}. If we were to extend the curves of

figure 4 to zero, they would be flat curves with
∑

k r
0
k as the sum rate. We want to focus on the

domain where rate constraints are active. For this purpose,we increase the rate constraints by

increments∆r, i.e., ďk = r0k +∆r, for the RT users and solve the problem for eachďk.

For a number of RT usersD > 1, we use
∑D

k=1 ďk to list the minimum rate constraint in

plots. In our numerical evaluations, we increase the rate constraints and try to find feasible

points using the heuristics until the dual upper bound becomes positive indicating the problem

unfeasibility. In figure 4, the upper bound provided by the negative of the dual function maximum

is shown by a dashed line and it is the reference to measure theperformance of all heuristic
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methods. Papoutsis’ method is shown in diamond markers and closely follows the upper bound.

The proposed SUS-based heuristic (algorithm 1) is shown in circle markers and its simplified

version (algorithm 2) in cross markers. They have lower performance than Papoutsis’ method,

but they increase the range of supported minimum rates. To quantify these observations, we

define the following measurements:

• A: The difference in percentage between the minimum rate supported by the SUS-based

heuristic algorithm 1r1, and Papoutsis’ methodr2, i.e.,A = 100(r1 − r2)/r1.

• B: The difference in percentage between the minimum rate supported by the SUS-based

heuristic algorithmr1 and its simplified versionr3 in percentage.A andB indicate how

much the proposed SUS based algorithm 1 increases the range of supported minimum rates.

The larger these measurements are, the better the proposed algorithm 1.

• E: The difference in percentage between the upper dual boundu1 and the sum rate achieved

by Papoutsis’ methodu2, i.e. E = 100(u1 − u2)/u1. To computeu1 and u2 we average

the sum rates over the minimum rates supported by Papoutsis’method. This corresponds

to rates betweenr0 up to r2 in figure 4, wherer0 is sum of of the rates at which theD RT

users’ rate constraints become active. We average the sum rates over the same rate interval

for all methods.

• F : The difference in percentage between the upper dual bound and the SUS-based heuristic

algorithm 1.

• G: The difference in percentage between the upper dual bound and the simplified SUS-

based heuristic algorithm 2.E, F andG indicate how far the sum rate is from the upper

bound for each method. The smaller this measurement is, the better the algorithm.

Averaging these measurements over100 channel realizations, we obtain the results shown

in figure 5 for various number of RT users,D. The difference, E, between Papoutsis’ method

performance and the upper bound is very small (< 2.5 %). This is because Papoutsis’ method

minimizes the throughput reduction by scanning over all possible users swapping. The proposed

heuristic methods have similar performance gaps against the dual bound (E, F ≈ 13 %), which

are larger than Papoutsis’ method. However, they achieve this performance with a much lower

computational complexity as we shall see. In addition, the proposed SUS-based heuristic method

with rate-constrained power allocation, supports up to20% larger minimum rates than the other
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Fig. 5: Optimal and heuristic methods comparison vs.D.

two methods (seeA,B in figure 5). As the number of RT usersD increases, the differenceA

decreases since it is harder for algorithm 1 to find feasible points. Recall that we force allD

user rate constraints to be active.

Figure 6 shows the results when varying the number of usersK from 8 to 32. The performance

of the proposed methods improves as the number of users increase, as indicated by the difference

between the upper dual bound and the sum rate attained (measurementsF andG decrease from

14% to 7%). This is because in the presence of more users, the SUS algorithm is more likely to

find semiorthogonal channel vectors, thus increasing the rates and effectively exploiting multiuser

diversity. In contrast, Papoutsis’ method slightly deteriorates when the number of users increase

(measurementE increases to3.8 %).

C. Increasing the number of RT users

We now study an interesting scenario where we increase the number of RT users but keep

fixed the minimum rates. This will correspond to the case of finding the maximum number of

supported RT users (e.g. video) in a cell. We activate the rate constraints by setting the minimum

rates to10% more of the rates achieved by maximum throughput channel and power allocation.

Figure 7 shows the upper dual bound in dashed lines, the objective achieved by Papoutsis’

method in star markers and the proposed heuristics in circleand square markers, as a function

of the number of RT users. Papoutsis’ method performance is very close to the upper bound,

but it quickly degrades when the number of RT users increases. It cannot find feasible points
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Fig. 7: Algorithms performance vs. the number of RT users

with 9 RT users onward, while the proposed heuristics yield solutions for these values within

12 % of the upper bound.

Figure 8 shows the elapsed time employed by these heuristics. Papoutsis’ method elapsed time

grows approximately linear with the number of RT users and itis larger than both algorithms

1 and 2. This is because when the number of RT users increases,Papoutsis’ method need to

examine more combination of users and invert their corresponding channel matrices. Algorithms

1 and 2 grow much slower. According to figures 7 and 8, not only algorithms 1 and 2 support

a higher number of RT users than Papoutsis’ method, but they require less computation time.
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V. CONCLUSIONS

In this paper we designed algorithms to provide solution points to the RA problem for ZF

beamforming MISO-OFDMA systems supporting minimum rate requirements. The solution

points given by these algorithms differ in their distance tothe optimal solution and in the

computational complexity to obtain them. We designed two heuristic methods: algorithms 1 and

2, they select an SDMA set for each subchannel and then solve apower allocation problem.

The difference between algorithms 1 and 2 is that the latter one considers power constraints per

subchannel, providing a smaller minimum rates range but higher computational efficiency.

We showed through numerical evaluations that they have a performance not far from the

optimal solution and that they increase the range of supported minimum rates when compared

with other approach reported in the literature. This is an important result because, in a system

with RT users, it is more important to satisfy the rate constraints of the users in need than

increasing the rates of the nRT users. Compared with the method proposed in [9], our methods

do not follow the upper bound as closely but they increase therange of the minimum rates

supported. This and the fact that we have reduced the computational complexity, are the main

advantages of the proposed methods. We also showed that rateconstrained power allocation

extends the range of the minimum rates supported when applied to other subchannel assignment

methods.
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