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Abstract — Wireless surveillance in cellular networks has 
become increasingly important, while commercial LTE 
surveillance cameras are also available nowadays. Nevertheless, 
most scheduling algorithms in the literature are throughput, 
fairness, or profit-based approaches, which are not suitable for 
wireless surveillance. In this paper, therefore, we explore the 
resource allocation problem for a multi-camera surveillance 
system in 3GPP Long Term Evolution (LTE) uplink (UL) 
networks. We minimize the number of allocated resource blocks 
(RBs) while guaranteeing the coverage requirement for 
surveillance systems in LTE UL networks. Specifically, we 
formulate the Camera Set Resource Allocation Problem (CSRAP) 
and prove that the problem is NP-Hard. We then propose an 
Integer Linear Programming formulation for general cases to find 
the optimal solution. Moreover, we present a baseline algorithm 
and devise an approximation algorithm to solve the problem. 
Simulation results based on a real surveillance map and synthetic 
datasets manifest that the number of allocated RBs can be 
effectively reduced compared to the existing approach for LTE 
networks. 

Keywords—Long term evolution (LTE), resource allocation, 
surveillance, approximation ratio, np-hard 

I. INTRODUCTION 

The need for faster and more reliable mobile services has 
focused significant attention on wireless broadband systems 
such as 3GPP Long Term Evolution (LTE). The LTE 
standardization aims at developing the future cellular 
technologies which can provide a high peak-data-rate, reduced 
latency, scalable bandwidths, and improved system capacity 
and coverage. In order to achieve this goal, Orthogonal 
Frequency Division Multiple Access (OFDMA) has been 
selected for LTE downlink (DL) radio access technology 
because of its robustness to multipath fading, higher spectral 
efficiency, and bandwidth scalability [28]. However, OFDMA 
has a high Peak-to-Average Power Ratio (PAPR), which is 
inefficient for the user equipment (UE) [29] since the power of 
UE is limited. Such undesirable high PAPR increases the cost 
of the UE and drain the battery faster. As a result of seeking an 
alternative to OFDMA, Single Carrier OFDMA (SC-FDMA) 
has been adopted as the LTE uplink (UL) multiple access 
scheme. SC-FDMA has a significantly lower PAPR which 
significantly benefits the UE in terms of transmit power 

efficiency since the underlying waveform is essentially single-
carrier. 

The resource allocation problem in LTE networks has been 
well explored in the previous works. In the LTE downlink (DL) 
system, some previous works modified the well-known 
Proportional Fair (PF) scheduler to perform joint scheduling in 
order to maximize system throughput while maintaining the 
fairness among users [1], [2]. Others took into account user 
demands for quality of service (QoS) by first satisfying higher 
priority users and then serving the remaining users [3], [4]. By 
contrast, the LTE uplink (UL) system operates under two 
inherent constraints: continuous allocation constraint and 
robust rate constraint [6] since its underlying waveform is 
essentially single-carrier. Continuous allocation constraint 
means that the user can only use adjacent resource blocks (RBs) 
while robust rate constraint means that the adjacent RBs 
allocated to one user must use the same MCS which is the most 
robust one among the adjacent RBs. Thus recent works have 
considered information related to adjacent subchannels while 
allocating RBs to users [5], [6], [7]. They achieved this goal by 
setting a window to determine the data rate of adjacent 
subchannels or by partitioning a channel into an ordered set. 
However, in the DL or UL neither the above scheduling and 
allocation schemes considered the demand for wireless 
surveillance. 

In recent years, unexpected events, including major terrorist 
attacks and criminal events, have led to increased demands for 
sophisticated surveillance systems. In the past, such systems 
used high capacity wired or WiFi networks to transmit 
multimedia data. Today, however, in light of high spectral 
efficiency and scalable bandwidth management in LTE 
technologies, US police departments have been collaborating 
with wireless ISPs to roll out innovative and low-cost 
surveillance systems on 3G/4G networks [8], [9]. In addition, 
commercial LTE surveillance cameras and related products are 
also available in the markets [18], [19]. Therefore, LTE 
wireless surveillance has become increasingly important 
nowadays.  

Nevertheless, new challenges also arise for efficient 
scheduling in LTE wireless surveillance. First, the bandwidth 
consumption is expected to soar to support a huge amount of 
video information from cameras, and minimizing the resource 
consumption thereby is very important. Second, when the 



network is congested and not able to support all cameras, the 
current fair scheduling strategy is not a feasible approach 
because the data rate shared by each camera is not be able to 
support the required video quality. In this situation, an efficient 
strategy to select suitable cameras to ensure the coverage of 
surveillance is desired. However, the problem is challenging 
because the channel condition of each uplink channel of a 
camera varies, while each geographic surveillance target is 
covered by different cameras, and each camera can observe 
multiple targets. Fig. 1 presents an illustrative example with 
four cameras, six surveillance targets, and a scheduling frame 
with six subchannels and three time slots. All the targets need 
to be covered by at least one camera and the resource allocation 
constraint of LTE UL should be satisfied. Fig 1(a) shows the 
topology and the achieved data rate of each camera on each 
subchannel. The traditional SNR measurement algorithm 
results in 12 allocated RBs as shown in fig 1(b) while the 
algorithm considering camera coverage results in only 6 
allocated RBs as shown in fig 1(c). 

In this paper, therefore, we first explore the resource 
allocation problem for wireless surveillance systems in heavy 
loaded LTE networks for a large number of surveillance 

cameras and then extend it to the general case afterward. More 
specifically, given 1) a set of wireless cameras, 2) a set of static 
surveillance targets (e.g., banks, post offices, etc.), 3) the 
channel condition of each camera in each subchannel, and 4) 
the number of available RBs in each time slot, we formulate a 
new optimization problem, named Camera Set Resource 
Allocation Problem (CSRAP), to minimize the number of 
allocated RBs for wireless surveillance cameras in a frame 
while guaranteeing that every geographic surveillance target 
can be observed by at least one camera. We prove that CSRAP 
is NP-Hard and inapproximable within ln 푛, where n is the 
number of observed surveillance targets. To solve the problem, 
we first study a baseline scheduling algorithm based on SNR 
measurements and use a small-scale example to explain why 
this intuitive algorithm is not suitable and why the system must 
explicitly consider coverage requirements. Afterward, we 
design a c ln 푛  approximation algorithm, called Minimum 
Resource Allocation Maximum Coverage (MRAMC), where c 
is 

	
, and 푟푚푎푥 and 푟푚푖푛 denote the best and the worst MCS 

rate. MRAMC iteratively selects a camera with the minimum 
average cost to ensure the coverage requirement and then 
adjusts the camera allocation to meet the scheduling constraint, 
which means that an RB can be allocated to only one camera. 
Afterward, we extend MRAMC to 1) the scenario with 
sufficient resources to allocate multiple cameras to the 
surveillance targets that are required to be observed from more 
angles and 2) the scenario for scheduling both the surveillance 
traffic and the traditional traffic. In addition to synthetic 
datasets, we also evaluate the above algorithms on a real 
surveillance camera map.  

The remainder of this paper is organized as follows. Section 
II summarizes the related works. We introduce the system 
model, formulate the CSRAP, and present the hardness result 
in section III. Section IV first studies a baseline algorithm and 
then presents the proposed approximation algorithm. Section V 
compares different algorithms in synthetic and real datasets. 
Finally, we conclude this paper in section VI. 

II. RELATED WORK 

A. LTE UL Resource Allocation 
Resource allocations in the LTE UL have been studied in 

several works [5], [6], [7]. Wong et al. [5] formulated the 
resource allocation problem as a set partitioning problem and 
maximized the weighted-sum rate for LTE UL systems.  Chao 
et al. [6] maximized the total system throughput by considering 
the data rates of continuous and non-continuous scheduling. 
Ren et al. [7] incorporated the queue length and channel state 
information in a LTE UL frequency domain packet scheduling 
(FDPS) problem to maximize the profit function. However, the 
above works did not specifically consider the security 
requirements of multi-camera surveillance systems (e.g., 
coverage), and their approaches thereby tend to miss some 
important cameras with worse channel quality. Contrarily, our 
proposed algorithm can minimize the allocated RBs while 
guaranteeing the coverage requirement for wireless multi-
camera surveillance systems in LTE networks. 

(a) Surveillance system topology and data rate information of each camera on 
each subchannel 

              
(b) Baseline algorithm result                 (c) MRAMC algorithm result 

 
Fig. 1. Scheduling example for a multi-camera surveillance system. 



B. Video Surveillance System in Other Wireless Networks 
Previous works have proposed camera systems for different 

applications, such as security systems, people tracking, or tele-
immersive environments [10], [11], [12]. Stringa and 
Regazzoni [10] proposed a video-based surveillance system for 
detecting the presence of abandoned objects in a guarded area. 
Yang et al. [11] proposed a cross-layer framework with QoS-
enabled streaming in a tele-immersive 3D multi-camera 
environment, which was later improved by considering 
dynamic bandwidth management in [12]. Moreover, multi-
camera surveillance has been explored in WiFi and sensor 
networks with limited resources [13], [14], [15]. Toni et al. [13] 
considered the correlation between each packet and minimized 
the distortion in the scene reconstruction for multi-camera 
streaming in WiFi. Shiang and van der Schaar [14] focused on 
allocating the available time fraction to maximize received 
video quality while considering the distortion impact and delay 
constraints in multihop wireless networks. Durmus et al. [15] 
proposed an algorithm to achieve fair resource scheduling for 
application level messaging units in sensor networks. Wu and 
Hwang [16] proposed a cross-layer approach to fairly schedule 
all wireless cameras with varying channel quality in WiMAX, 
while the selection of cameras to ensure the coverage is not 
considered. Tseng et al. [17] minimized the number of sensors 
to guarantee that each object can be monitored by at least k 
sensors satisfying some angle constraints. Nevertheless, the 
above approaches are not designed for LTE UL. To our best 
knowledge, no previous studies have examined the resource 
allocation problem in terms of coverage requirements for multi-
camera surveillance systems in LTE networks, which has 
gained increasing attentions recently [8], [9].  

III. PROBLEM FORMULATION 

In this section, we first introduce the system model and then 
formulate the Camera Set Resource Allocation Problem 
(CSRAP). We also propose an Integer Linear Programming 
formulation for CSRAP. Finally, we prove that CSRAP is NP-
Hard and inapproximable within ln 푛.  

An LTE radio frame consists of time domain and frequency 
domain. The frame with 10ms duration is divided into ten 
equal-sized subframes, and each subframe is further divided 
into two equal-sized time slots with 0.5ms duration. A basic 
scheduling unit in LTE, called an RB, consists of a time slot in 
the time domain and a subchannel in the frequency domain, 
which consists of 12 consecutive subcarriers and has a 180 kHz 
bandwidth [20]. 

We consider a surveillance system that consists of K cameras 
핂 = {1, 2,…… ,퐾} and Y observed static geographical objects 
핐 = {1, 2,…… ,푌}. Each camera is associated with a coverage 
set 푆 , which represents the set of objects covered by the 
camera, where ⋃ 푆 = 핐. We define the LTE network frame 
duration for scheduling as 휌 (휌 = 10ms in LTE) with T uplink 
time slots 핋 = {1, 2,…… ,푇} , and the scheduling algorithm 
runs every frame length. At each time slot t, a base station can 
allocate 푀 RBs to K cameras. Specifically, a set of continuous 
RBs can be assigned to one camera, and each RB can be 

assigned to at most one camera. We denote 퐴∗  as the collection 
of all sets of continuous RBs that can just achieve the rate 
requirement of camera k. In other words, for ∀푎 ∈ 퐴∗ , 푎 =
{푖, 푖 + 1, …… , 푖 + 푙	|	푚푐푠 ∙ 푙 < 푅 , and	푚푐푠 ∙ (푙 + 1) ≥ 푅 ,
1 ≤ 푖 ≤ 푖 + 푙 ≤ 푀}, where a is a set of continuous RBs, 푚푐푠  
is the MCS used for allocation a, and 푅  is the requirement on 
the video rate for camera k. 휙 , ,  denotes the number of RBs 
allocated to camera k by using allocation a at time slot t within 
a frame duration 휌. Our problem is formulated as follows: 

Problem: The Camera Set Resource Allocation Problem 
Instance: A set of cameras 핂 = {1, 2,…… ,퐾} with K coverage 
sets 핊 = {푆 , 푆 ,…… , 푆 } , M channel conditions for each 
camera, a set of objects 핐 = {1,2,…… ,푌}  and a scheduling 
frame with 푀 × 푇 RBs in the LTE UL. 
Task: To allocate RBs and select a set of cameras to cover all 
objects such that the total number of allocated RBs is 
minimized. 

In the following, we propose an Integer Linear Programming 
formulation for CSRAP. The CSRAP is a minimization 
problem with the following objective function:  
 

minimize			z = 푋 , , ∙ 휙 , ,
∈ ∗

 

 
and with the following constraints: 
 
∑ ∑ ∑ 푋 , ,∈ ∗ ≥ 1			∀y ∈ 핐| ∈                                  (1) 

∑ ∑ 푋 , , ∙ 휙 , ,∈ ∗ ≤ 푀 			∀푡 ∈ 핋	                    (2) 

∑ ∑ 푋 , , ≤ 1∈ ∗ | ∈ ∀푚 ∈ {1,… ,푀}, ∀푡 ∈ 핋  (3) 

∑ ∑ 푋 , ,∈핋 ≤ 1∈ ∗ 			∀푘 ∈ 핂                                  (4) 

푋 , , ∈ {0, 1}		∀푘 ∈ 핂, 푎 ∈ 퐴
∗ , ∀푡 ∈ 핋                        (5) 

 
where 푋 , ,  (5) is a decision binary variable that is equal to 1 if 
camera k uses allocation a at time slot t within a frame duration 
휌 , or 0 otherwise. Constraint (1) shows that each object is 
covered by at least one camera. Constraint (2) guarantees the 
maximum available resources at each time slot. Constraint (3) 
ensures that each resource block can only be scheduled to one 
camera and constraint (4) ensures that each camera can only use 
one allocation in a frame. 

In the following, we prove that CSRAP is NP-Hard with the 
reduction from Weighted Set Cover Problem (WSCP) [23]. 

Theorem 1. CSRAP is NP-hard 
Proof. Let 핌  denote the set of elements. Let ℂ =
{퐶 , 퐶 ,…… ,퐶 } be the collection of sets in WSCP such that 
each set in ℂ  with weight 푤  is a subset of 핌 , and 
⋃ ∈ , ,…, {퐶 } = 핌. The problem is to find a subset ℂ∗ ⊆ ℂ with 
⋃ ∈ℂ∗ 퐶 = 핌  such that the total weight ∑ 푤∈ℂ∗  is 
minimized. For each set of WSCP, we construct an instance of 
CSRAP by defining 핐 = {1, 2, …… , 푌} = 핌  as the set of 
objects to be observed, and 핂 = {1, 2,…… ,퐾} = ℂ as the set 
of cameras. Let the set of objects covered by camera k as 푆 , 



where ⋃ 푆 = 핐.  Each camera k may require a different 
number of RBs, 휙 , , , according to  different allocation a in 
different time slot t. Since CSRAP is a minimization problem, 
we set the smallest value of 휙 , ,  for camera k as 푤 .  

For the WSCP, if there exists a collection of set ℂ∗ such that 
the union of elements in ℂ∗ is 핌, we can find the corresponding 
subset 핂∗ ⊆ 핂 such that the union of covered objects in 핂∗ is 
also 핐. Conversely, if there exists a subset 핂∗ ⊆ 핂 with the 
union of covered objects in 핂∗  as 핐 , we can find out the 
corresponding collection of sets ℂ∗  such that the union of 
elements in ℂ∗ is also 핌. This is because each camera in 핂 with 
weight 푤  corresponds to a covering set in ℂ with weight 푤 . 
Hence, the hardness of CSRAP is as hard as WSCP, and the 
theorem follows.                                                                        ∎ 

From Theorem 1, CSRAP is at least as hard as the set cover 
problem. Feige [23] proved that the set cover problem is 
inapproximable within ln 푛  and thus we have the following 
result.  

Corollary 1. CSRAP is inapproximable within ln 푛. 

IV. ALGORITHM DESIGN 

In this section, we first describe a baseline algorithm 
according to SNR measurements, and explain that why this 
approach is not suitable for a surveillance system in the LTE 
UL. We then propose the Minimum Resource Allocation 
Maximum Coverage (MRAMC) algorithm, which minimizes 
the number of allocated RBs while guaranteeing the coverage 
requirement of the surveillance system. Afterward, we evaluate 
the approximation ratio of MRAMC, and analyze the space and 
time complexity. Finally, we extend MRAMC to 1) the scenario 
with sufficient resources to allocate multiple cameras to the 
surveillance targets that need to be observed from more angles, 
and 2) jointly schedule the surveillance traffic and the 
traditional traffic. 

A. Baseline Scheduling Algorithm 
Most scheduling algorithms adopt only the measured SNR 

value as the scheduling criterion. Based on this value, the 
scheduler selects a modulation and coding scheme (MCS), 
which is further mapped to the data rate for each device on each 
RB. The MCS determines the number of RBs required by each 
device. If one device chooses a higher MCS, fewer RBs is 
required to satisfy its data rate requirement. Hence, the baseline 
approach assigns the RB to the camera with the best MCS (data 
rate). In addition, with the continuous allocation constraint in 
the LTE UL, the algorithm iteratively examines the current RB 
and its subsequent RBs, and selects the most robust MCS for 
transmission. When all objects are covered, the algorithm stops.  

Fig. 1 presents an example to explain why the baseline 
scheme is not suitable for a multi-camera surveillance system. 
The multi-camera surveillance system has four cameras and six 
surveillance targets. The scheduling frame has three time slots, 
and each time slot contains six RBs. The surveillance system 
topology and data rate requirement of each camera for each RB 
is shown in Fig. 1(a). The yellow star represents the 
surveillance target and the 2-tuple represents (camera number, 

data rate requirement). The bar chart next to the camera 
represents the achieved data rate of the camera on each 
subchannel. For the baseline scheme, the highest achieved data 
rate in subchannel 1 among all candidate cameras is 8. 
Therefore, the scheduler allocates RB1 in time slot1 to Camera1, 
and subsequently allocates RB2 to Camera1 since its data rate 
requirement is not satisfied by the allocation of RB1 alone. 
Afterward, the data rate for Camera1 on each allocated RB is 4, 
which is the most robust data rate among the allocated RBs (i.e. 
min(8, 4)). RB3 is also allocated to Camera1 to meet the data 
rate requirement. The most robust data rate among the allocated 
RBs is also 4 (i.e. min(8, 4, 7)), and thus the data rate 
requirement of Camera1 is met (i.e. 4*3 = 12 > 9). Next, 
because the highest achieved data rate among the remaining 
cameras on RB4 is 5, the scheduler allocates RB4 to Camera2. 
Again, the scheduler sequentially allocates RBs to Camera2 to 
meet its data rate requirement. The following scheduling 
procedure is similar to that for Camera1, which schedules the 
camera with the best MCS among all candidate cameras on the 
current RB and subsequently allocates the adjacent RB to the 
camera to satisfy the data rate requirement. The total number of 
allocated RBs for the baseline scheme is 12. 
 In this example, the baseline algorithm examines only the 
channel quality during the selection of the cameras, and the 
algorithm stops when all surveillance spots are covered. Hence, 
this algorithm tends to select more cameras and requires more 
RBs in LTE networks. 

B. Proposed Scheduling Algorithm 
To solve CSRAP, we propose the Minimum Resource 

Allocation Maximum Coverage (MRAMC) algorithm, which 
selects the cameras and allocates the minimum number of RBs 
to cover all objects. MRAMC iteratively chooses the camera 
with the minimum average cost to ensure that all uncovered 
objects can be covered with the minimum number of allocated 
RBs. The average cost is defined as follows: 

, ,
| ∩ℤ|

                                            (6) 

where 휙 , ,  is the number of RBs allocated to camera k with 
allocation a in time slot t of one frame size 휌, and ℤ are the set 
of objects that have not been covered. MRAMC consists of two 
parts: greedy scheduling and RB relocation. The first step 
schedules the camera without considering the scheduling 
constraint, which means that an RB can be reassigned to 
different cameras, while the second step re-allocates the RBs to 
meet the scheduling constraint. 

1) Greedy Scheduling 
In the greedy scheduling stage, MRAMC iteratively selects 

the camera with the minimal average cost. First, the scheduler 
finds all possible continuous RBs that can satisfy the rate 
requirement for each camera. The number of all possible 
continuous RBs for each time slot is at most ( )∙  where M 
is the number of RBs in a time slot. The scheduler then 
calculates the average cost for each camera over every possible 
continuous RBs, as defined in (6). Afterward, the scheduler 



selects the camera with the minimum average scheduling cost. 
That is, the selected camera exerts a lower average cost for an 
uncovered object. In this process, an RB is allowed to be 
assigned to more than one camera. In practical, however, an RB 
must be assigned to only one camera. Therefore, an adjustment 
step is required to relocate the cameras to meet this practical 
constraint. 

2) RB Relocation 
In the relocation step, we consider the scheduling constraint 

and relocate the RBs of some cameras, if the RBs are assigned 
to multiple cameras in the greedy scheduling phase. Here, an 
adjusted camera represents that the allocation of RBs for the 
camera has been adjusted, while other cameras whose allocated 
RBs overlap with the other cameras selected in the previous 
step are unadjusted cameras. The algorithm iteratively adjusts 
unadjusted cameras as follows.  
1. The scheduler selects an unadjusted camera whose 

scheduling result from greedy scheduling phase has the 
minimum number of allocated RBs. The camera is assigned 
the same RBs. 

2. Then, the scheduler iteratively relocates the RBs of 
unadjusted cameras, which overlaps the RBs of the 
unadjusted camera selected in step 1, to other RBs that have 
not been occupied by any cameras. The scheduler selects the 
RBs with the minimum number that can satisfy the rate 

requirement of the camera. 
3. The scheduler sets the unadjusted cameras considered in the 

above two steps as adjusted cameras and finds the next 
unadjusted camera. The above process is repeated iteratively 
until there is no unadjusted camera. 
In the following, we compare MRAMC and the baseline 

approach in the example in Fig. 1. MRAMC first considers RB1 
in time slot1 and schedules Camera2 due to its lowest average 
cost (Camera1 is 3/2, Camera2 is 2/3, Camera3 is 3/2, and 
Camera4 is 3/3). The average costs are computed for each 
camera according to all possible continuous RB allocations that 
can just achieve the rate requirement of the camera. Then, the 
scheduler updates the average cost of each camera (Camera1 is 
3/1, Camera3 is 3/1 and Camera4 is 3/3). Camera4 is selected 
and the algorithm stops since all objects are covered. The total 
number of allocated RBs is 5, i.e., less than half of the RBs 
allocated in the baseline scheme. Fig. 1(d) depicts the optimal 
result with the proposed algorithm. The pseudo code for 
MRAMC is presented in Algorithm 1. 

C. Approximation Ratio 
In this section, we derive the approximation ratio of 

MRAMC. We first study the approximability of MRAMC 
without the scheduling constraint and then derive the 
approximation ratio for the general case. More specifically, let 
푁  and 푁   denote the number of RBs for MRAMC with and 
without the scheduling constraint. Let  푁∗  and 푁∗  represent 
the optimal solution with and without the scheduling constraint. 
Let 푑  denote number of objects in the coverage range of 
camera k, and 푑∗ = max 푑 . H(푑∗) is the harmonic function of 
푑, i.e., H(푑∗) = ∑ 1 푖⁄∗ = ln푑∗ +Θ(1). 

Lemma 1. For CSRAP without the scheduling constraint, 
푁 ≤ H(푑∗) ∙ 푁∗ . 
Proof. For each camera 푘, let 푆 = {1,2,…… , 푑 } denote the 
set of objects in the coverage range of camera k. Since each 
object can be covered by multiple cameras, the objects in 푆  are 
sorted according to their cover sequence in our algorithm, 
which means that 푖 < 푗 if object 푖 is covered before object 푗 in 
MRAMC, 1 ≤ 푖 ≤ 푑 , 1 ≤ 푗 ≤ 푑 . In other words, for the 
iteration that 푗 is covered, the objects in 푆  that have not been 
covered at the beginning of the iteration are {푗, 푗 + 1,…… , 푑 }. 
Since the average cost of each element in set 푆  is defined in 

(6), we have , ,
| ∩ℤ|

= , ,  where ℤ is the set of objects that 
have not been covered at the beginning of the iteration. 

Suppose 푗 is covered when set 푆  is selected in MRAMC. 
The cost of 푗 is as follows. 

푐표푠푡 = , ,
| ∩ℤ|

≤ , ,
| ∩ℤ|

= , ,                        (7) 

The inequality in (7) holds because the algorithm chooses the 
set with the minimum average cost in each iteration. Let the 
total cost of the objects in set 푆  selected by the algorithm as 
∑ 푐표푠푡∈ . The upper bound of the cost for 푆  is then obtained 
as 

Algorithm 1. Minimum Resource Allocation Maximum Coverage 
1:Initialize ℤ = 핌,픾 = ∅,핂∗ = ∅ 

Greedy Scheduling: 
2:repeat 

3: Calculate , ,

| ∩ℤ|
 for each 푘 ∈ 핂, 푎 ∈ 퐴∗ , 푡 ∈ 핋 

4: (푘∗, 푎∗, 푡∗) = arg푚푖푛 ∈핂, ∈ ∗ , ∈핋
, ,

| ∩ℤ|
 

5: 핂 = 핂\푘∗  
6:    핂∗ = 핂∗ ∪ 푘∗ 
7:    ℤ = ℤ\푆 ∗ 
8: 픾 = 픾∪ (푘∗, 푎∗, 푡∗)  
9:until 	ℤ = ∅ 

 
Adjustment Step: 
10:repeat 

11:
Select the unadjusted camera 푘 ∈ 핂∗  with the minimum 
scheduling result 휙 , ,  from Greedy Scheduling 

12: Assign the same allocation result a to k 
13: Set k as adjusted camera 

14:    for each unadjusted camera 푘   whose allocation overlaps 
with k do 

15:
Select 푚푖푛 ∈ ∗ , ∈핋휙 , ,  for each k’ where the RBs
of 푎   have not been occupied by any other cameras 

16:           Assign 푎  to camera 푘  
17:           set 푘  as adjusted camera 
18:          	픾 = (픾 ∪ (푘 ,푎 , 푡 ))\(푘 ,푎∗, 푡∗) 
19: end for 
20:until there is no unadjusted camera 
21:return 픾 

 



∑ 푐표푠푡푗푗∈ = ∑ 푐표푠푡푗 ≤ ∑ , , = H(푑 ) ∙ 휙 , ,               (8) 

The inequality holds due to (7), and the last equality holds since 
H(푑 ) is the harmonic function. 

According to (8), we have 휙 , , ≥ 	 ( )
∙ ∑ 푐표푠푡∈ ≥

	 ( ∗)
∙ ∑ 푐표푠푡∈  where 푑∗ = max 푑 	. Let  픾∗  denote the 

optimal solution, and 픾  denotes the solution of MRAMC. 
Therefore, the total cost of the optimal solution follows the 
inequality below. 

푁∗ = ∑ 휙 , ,∈픾∗ ≥
	 ( ∗) ∙ ∑ ∑ 푐표푠푡∈∈픾∗                     (9) 

Furthermore, since each object in the universal set 핌  is 
covered at least once by the cameras in 픾∗, we have, 

∑ ∑ 푐표푠푡∈∈픾∗ ≥ ∑ 푐표푠푡∈핌 = ∑ 휙 , ,∈픾 = 푁         (10)               

Finally, we obtain the upper bound for the algorithm by (9) and 
(10), 푁 = ∑ 푐표푠푡∈핌 ≤ H(푑∗) ∙ 푁∗ .                   ∎ 

Theorem 2. For CSRAP with the scheduling constraint, 푁 ≤
풓풎풂풙
풓풎풊풏

∙ H(푑∗) ∙ 푁∗.  
Proof. In the second phase of MRAMC, we relocate the RBs of 
some cameras selected in the first phase to meet the scheduling 
constraint. The worst case is that the cameras will switch from 
the RBs with the optimal channel conditions to those with the 
worst channel conditions and thus induce additional resource 
consumption. The number of RBs allocated to a camera is based 
on the MCS rate. Therefore, the adjustment for one camera will 
exert at most 

풓풎풂풙
풓풎풊풏

 RBs, where 푟푚푎푥  and 푟푚푖푛  denote the best 

and the worst MCS rates. Therefore, 푁 ≤ 풓풎풂풙
풓풎풊풏

	 ∙ 푁 . 
Moreover, since the feasible region of CSRAP without the 
scheduling constraint is larger than the one with the scheduling 
constraint, 푁∗ ≤ 푁∗  holds for the minimization problem 
CSRAP. Therefore, 푁 ≤ 풓풎풂풙

풓풎풊풏
	 ∙ 푁 ≤ 풓풎풂풙

풓풎풊풏
∙ H(푑∗) ∙ 푁∗ ≤

풓풎풂풙
풓풎풊풏

∙ H(푑∗) ∙ 푁∗, and the theorem follows.                             ∎ 

D. Complexity Analysis 
In this section, we analyze the time and space complexity of 

MRAMC. Since MRAMC maintains the information of each 
camera on each RB and the observed objects in the environment, 
the space complexity is O(퐾푀 +푁). 

As for time complexity, to find the camera with the lowest 
average cost, the scheduler first computes all possible 
continuous RBs that can satisfy the rate requirement for each 
camera of each time slot. This takes at most 퐾 ∙ ( )∙ ∙ 푇 =
O(퐾푀 푇) time for K cameras. Then, the scheduler iteratively 
selects the camera with the smallest average cost until each 
object is covered by at least one camera. The algorithm takes 
O(퐾) iterations to guarantee the coverage since there are at 
most K cameras. Moreover, the minimum average cost can be 
found in O(log(퐾푀 푇)) time by using a priority queue in each 
iteration. Thus, the time complexity for greedy scheduling 
phase isO(퐾푀 푇)+ O(퐾 log(퐾푀 푇)) = O(퐾 log(퐾푀 푇)) . 
In the adjustment step, the scheduler first takes O(퐾) time to 
find the unadjusted camera with the smallest number of 
allocated RBs. Then, the scheduler requires O(퐾푀 푇 ∙
(log푀 푇)) time to sort the allocations for K cameras based on 
the number of RBs. Afterward, the scheduler takes O(퐾) time 
for the RBs of unadjusted cameras. The time complexity of 
adjustment step is O(퐾) + O(퐾푀 푇 log(푀 푇)) + O(퐾) =
O(퐾푀 푇 log(푀 푇)).  As a result, the total time complexity of 
MRAMC is O(퐾 log(퐾푀 푇)) + O(퐾푀 푇 log(푀 푇)). 

E. Discussion 
In previous subsections, we propose MRAMC to assign at 

least one camera for each surveillance object. When the 
resources are sufficient, it is promising to allocate more 
cameras to the surveillance targets that are required to be 
observed from more angles. To address this issue, we slightly 
modify MRAMC and present m-MRAMC to choose the camera 
with the minimal resource consumption, instead of the lowest 
average cost. Initially, MRAMC is applied to select at least one 
camera to cover each target. At the second iteration, for each 
target that is currently covered by only one camera and able to 
be covered by more cameras, m-MRAMC finds a new camera 
with the minimal resource consumption, while every other 
target that has been covered by at least two cameras will not be 
considered in this iteration. If there are still sufficient resources, 
m-MRAMC is repeated to find a new camera with the minimal 
resource consumption for each target that needs three or more 
cameras. The above process stops when all available RBs are 
employed.  

In the following, we extend proposed algorithm to jointly 
schedule the surveillance traffic and the traditional traffic in m-
MRAMC. As mentioned above, m-MRAMC iteratively 
allocates the camera with the minimal resource consumption to 
the surveillance targets that are required to be observed from 
more angles. To jointly schedule the surveillance traffic and the 
traditional traffic, we define a parameter α  which can be 
determined by network operators to decide the priority 
(importance) of different traffic. Algorithm m-MRAMC 
iteratively considers the traffic (surveillance or traditional 

traffic) with minimum , ,
	

, where 휙 , ,  is the number of RBs 
allocated to traffic i with allocation a at time slot t of one frame 
size 휌, where traffic i belong to either surveillance traffic or 
traditional traffic. With a larger α, traditional traffic i tends to 
be schedule earlier in the algorithm. Consequently, m-MRAMC 

TABLE I. SIMULATION SETTINGS 
Parameter Setting Parameter Setting 
Bandwidth 10MHz Bandwidth per RB 180 kHZ 
Channel 
model Typical Urban Shadowing Log-normal 

Schedule 
length 1 frame TX power 24dBm 

Monitored 
area  500*500 m2 [17] Object distribution Uniform 

Cell-Edge 

Camera Type 
and View 
distance 

Omnidirectional: 
30m~60m [25] 
Directional: 
60m~100m [26] 

MCS settings  QPSK、 
16QAM[22] 

 



jointly schedules both the surveillance and the traditional traffic 
by minimizing the number of allocated RBs in the system.  

V. SIMULATION 

In this section, we compare different resource scheduling 
approaches for wireless surveillance in LTE networks. 

A. Simulation Setups 
We consider a guarded area of 500 × 500	푚  with a base 

station at the center, and randomly distribute N objects and M 
surveillance cameras over the area. We consider two coverage 
cases: overall coverage and partial coverage. For overall 
coverage, we deploy cameras in a grid-based scheme such that 
the cameras can cover the entire area. For partial coverage, to 
guarantee that all objects can be covered by at least one camera, 
we first randomly distribute the objects and then randomly 
deploy a camera to cover each object. Afterward, the other 
cameras are randomly distributed over the area. In addition, we 
exploit a real surveillance map of University of Maryland [26]. 
In the map, we assume that each important place (e.g., 
intersections, buildings, or parking lots) is a surveillance spot. 

The bandwidth of the LTE network is set at 10MHz with 50 
RBs in each time slot. The uplink bandwidth per RB is 180 kHz, 
which is equal to the bandwidth of an OFDMA RB in LTE [20]. 
The transmission power is set at 24dbm. For a realistic 
simulation, the path loss, shadowing model, and MCS are based 
on 3GPP specifications [21], [22]. We consider omnidirectional 
[24] and directional cameras [25], and assume that the cameras 
are all capable of LTE interface. The view distance of an 
omnidirectional camera is set at 30m~60m, while that of a 
directional camera is set at 60m~100m. The simulation settings 
are summarized in Table 1. 

In the simulation, we compare the baseline and MRAMC 
algorithms with the Greedy-Based (G-B) algorithm [7], where 
the G-B algorithm stops after all objects are covered. In addition, 
we also find the optimal solution with the proposed Integer 
Linear Programming formulation solved by Gurobi [27]. To 
evaluate our proposed algorithms, we change the following 
parameters: 1) number of objects, 2) view distance, 3) field of 
view (FOV), and 4) deployment scenario. We evaluate different 
algorithms to find the number of RBs transmitted by the base 
station. Each result is averaged with 5000 times. 

B. Simulation Results 
1) Omnidirectional Cameras 

We first consider overall coverage and investigate the 
number of objects versus the number of allocated RBs for the 
three approaches given different camera view distances (40m 
and 50m). In Fig. 2, increasing the number of objects generally 
raises the number of allocated RBs, that is, more cameras need 
to be selected to cover all objects. Also, the performance gap 
between MRAMC and the baseline scheme increases as the 
number of objects grows because MRAMC minimizes the 
average number of RBs required to cover an object. However, 
it has a smaller impact on the G-B scheme since this scheme 
only considers channel quality in algorithm design. In Fig. 2(b), 
we increase the view distance, finding a trend similar to that in 
Fig. 2(a) except that the performance gap between MRAMC 
and baseline scheme grows. This indicates that, MRAMC 
benefits more from the cameras with greater coverage, because 
it minimizes the average number of allocated RBs required to 
cover an object.  
 Next, we consider partial coverage. In Fig. 3, we investigate 
the view distance of omnidirectional cameras versus the 
number of allocated RBs under two possible deployment 
scenarios [1], namely Cell-edge and Random. We set the 
number of cameras as 50, and the number of objects as 40. In 
the two deployment scenarios, MRAMC outperforms both the 
baseline and G-B schemes. When the view distance (i.e., 
camera coverage) is increased, fewer RBs are needed. In Cell-
edge deployment, more RBs are allocated to the cameras due to 
the poor channel conditions, as shown in Fig. 3(a). In the 
Random deployment, the objects and cameras are equally 
distributed over the whole cell area, and thus the cameras can 
cover the objects in any direction within their view distance. 
Therefore, fewer cameras are involved to meet the coverage 
requirement for surveillance systems, as depicted in Fig. 3(b). 

2) Directional Cameras 
Directional cameras usually have a higher resolution than 

omnidirectional cameras, providing a clear view at a long 
distance (e.g., the camera described in [24] features a night view 
distance of up to 100m). Fig. 4 presents the view distance of 
directional cameras versus the number of RBs used for the three 
approaches under the two deployment scenarios described in 
the previous subsection. The view distance ranges between 
60m~100m, and the default FOV (i.e., the angle that a camera 
can monitor in a single frame) value is set at 120°. In the two 
deployment scenarios, MRAMC outperforms both the baseline 
and G-B schemes. When the view distance is increased, fewer 

     
(a) View distance = 40m                      (b) View distance = 50m 

Fig.2. Performance of the three approaches for various numbers of objects in 
overall coverage 500*500 m2 area under different view distances. 

     
(a) Cell-Edge Deployment              (b) Random Uniform Deployment 

Fig. 3. Performance of the three approaches for various omnidirectional 
camera view distances under different deployment schemes. 
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RBs are allocated to ensure coverage. From Fig. 3 and Fig. 4, 
when the view distance is the same, the results manifest that 
directional cameras need more RBs in both deployment 
scenarios since omnidirectional cameras have better coverage. 
Fig. 5 shows the impact of FOV on the number of allocated RBs 
for different camera view distances. The cameras and objects 
are distributed randomly over the area. The number of allocated 
RBs is highly dependent on the camera FOV. When FOV is 
increased (i.e., when a camera has a wider view range), fewer 
cameras are needed to ensure the coverage requirement. The 
curves for the baseline scheme and MRAMC decrease rapidly. 
By contrast, the improvement of G-B is much minor since only 
the channel condition is examined. 

3) Real Surveillance Map 
In the following, we present the results of a real surveillance 

map of University of Maryland [26]. We assume that the view 
distance of cameras is 100m, and the FOV varies between 
100~300m. Fig. 6 presents the impacts of the view distance and 
FOV on the number of allocated RBs. In Fig. 6(a), initially the 
curves decline quickly and become saturated after exceeding 
200 degrees. Since the cameras are deployed near the objects, 
at angles exceeding 200 degrees, further increasing the FOV 
will not significantly add to the number of objects included. In 
Fig. 6(b), we set the FOV to 300 degrees, with a view distance 
ranging between 80m ~120m in increments of 20m. The curves 
decline quickly after the view distance exceeds 100m because 
a camera can cover a distant objects, thus fewer cameras are 
actually needed to cover all objects. In general, both MRAMC 
and baseline outperform the G-B scheme about 30%~40% and 
25%~35% respectively. Therefore, the result shows that the 
coverage requirement must be carefully considered for the 
resource allocation in a surveillance system.  

VI. CONCLUSION 

Previous works on LTE resource allocation usually 
considered traditional network traffic. However, for 
surveillance system, the camera coverage should be cautiously 
considered such that every important spot is under surveillance. 
In this paper, a multi-camera surveillance system in the LTE 
UL is proposed to minimize the number of RBs allocated to 
cameras while guaranteeing surveillance system coverage 
requirements. We formulate the Camera Set Resource 
Allocation Problem (CSRAP) and prove that the problem is NP-
Hard and not approximable within 푙푛 푛. To solve the problem, 
we study a baseline scheduling algorithm based on SNR 
measurements and propose an approximation algorithm. 
Simulation results demonstrate that the number of allocated 
RBs can be effectively reduced compared to the existing 
approach for LTE networks. 
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Fig. 6. Simulation results for a real surveillance map. 
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Fig. 5. Performance of the three approaches for various FOV values of 
directional cameras at different view distances. 
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