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Abstract—In this paper, a new multi-cell MMSE detector is
proposed for massive MIMO systems. LetK and B denote the
number of users in each cell and the number of available pilot
sequences in the network, respectively, withB = βK, where
β ≥ 1 is called the pilot reuse factor. The novelty of the multi-
cell MMSE detector is that it utilizes all B channel directions
that can be estimated locally at a base station, so that intra-cell
interference, parts of the inter-cell interference and thenoise
can all be actively suppressed, while conventional detectors only
use theK intra-cell channels. Furthermore, in the large-system
limit, a deterministic equivalent expression of the uplink SINR
for the proposed multi-cell MMSE is derived. The expressionis
easy to compute and accounts for power control for the pilot
and payload, imperfect channel estimation and arbitrary pilot
allocation. Numerical results show that significant sum spectral
efficiency gains can be obtained by the multi-cell MMSE over
the conventional single-cell MMSE and the recent multi-cell ZF,
and the gains become more significant asβ and/or K increases.
Furthermore, the deterministic equivalent is shown to be very
accurate even for relatively small system dimensions.

I. I NTRODUCTION

Massive multiple-input-multiple-ouput (MIMO) is an
emerging technology that scales up multi-user MIMO by
orders of magnitude compared to current state-of-the-art [1],
[2]. The idea is to employ an array comprising a hundred,
or more, antennas at each base station (BS) and serve tens
of users simultaneously in each cell. The system spectral
efficiency (SE) can be drastically increased without consuming
extra bandwidth [1]–[3]. The uplink and downlink transmit
power can also be reduced by an order of magnitude since
the phase-coherent processing provides a comparable array
gain [4]. In the limit of an infinite number of antennas, intra-
cell interference and noise can be averaged out by simple
coherent linear transceivers, and the only performance limita-
tion is pilot contamination and distortion noise from hardware
impairments [1], [5]. These features make massive MIMO
one of the key techniques for the next generation wireless
communication systems.
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In the uplink reception, the most commonly used linear
detection schemes are matched filtering (MF), zero forcing
(ZF) and minimum mean square error (MMSE). We consider a
multi-cell network withB available orthogonal pilot sequences
andK users in each cell, whereB = βK with β ≥ 1 being the
pilot reuse factor (i.e., only1/β of the cells use the same set of
pilots). In conventional massive MIMO, the BS first listens to
the uplink pilot transmission from its own users, estimatesthe
channels and then constructs user-specific detectors basedon
the channel estimates [6]–[9]. However, more channel state
information (CSI) can be extracted whenβ > 1. If the BS
is aware of all pilot sequences, then it can locally estimate
B channel directions by listening to the pilot signalling from
all cells instead of only from its own cell. In principle, the
BS is then able to select its detectors to suppress parts of
inter-cell interference, since itsK users only occupyK out
of the B channel directions. Based on similar observations,
the authors of [10] propose a multi-cell ZF detector (referred
to as full-pilot ZF detector in their paper) which exploits and
orthogonalizes all available directions to mitigate partsof the
inter-cell interference. The detector in [10] achieves higher SE
than the conventional ZF when the interfering users are near
to the intended users of a cell. In general cellular networks,
however, the gain is less obvious, partly due to a loss in array
gain ofB in multi-cell ZF, instead ofK with conventional ZF.
Multi-cell MMSE detectors are proposed in [9] and [11], but
the former is limited toβ = 1 and equal power allocation and
the latter is based on the unrealistic assumption that perfect
CSI is known at each BS. There is thus need for a more
practical multi-cell MMSE detector.

In this paper, we propose a new multi-cell MMSE detector
which accounts for power control for the pilot and payload,
imperfect channel estimation and arbitrary pilot allocation.
By utilizing all the estimated channel directions at a BS,
the proposed multi-cell MMSE detector can actively suppress
intra-cell interference, parts of the inter-cell interference and
noise. Numerical results show that significant sum SE gains
can be obtained by multi-cell MMSE over the single-cell
MMSE and the multi-cell ZF from [10]. Furthermore, a
deterministic equivalent expression of the stochastic uplink
SINR is derived in the large-system limit. The expression is
easy to compute and only depends on large-scale fading, power
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control and pilot allocation. The expression is shown to be a
very accurate approximation even for relatively small system
dimensions.

Notations: Boldface lower and upper case symbols repre-
sent vectors and matrices, respectively. The trace, transpose,
conjugate, Hermitian transpose and matrix inverse operators
are denoted bytr (·), (·)T , (·)∗, (·)H and(·)−1, respectively.

II. SYSTEM MODEL AND DETECTORDESIGN

We consider a synchronous massive MIMO cellular network
with multiple cells. Each cell is assigned an index in the cell
setL, and the cardinality|L| is the number of cells. The BS in
each cell is equipped with an antenna array ofM antennas and
servesK single-antenna users within each coherence block.
Assume that this time-frequency block consists ofTc seconds
andWc Hz, such thatTc is smaller than the coherence time of
all users andWc is smaller than the coherence bandwidth of all
users. This leaves room forS = Tc×Wc transmission symbols
per block, and the channels of all users remain constant within
each block. Lethjlk denote the uplink channel response from
userk in cell l to BS j within a block, and assume that it is
a realization from a zero-mean circularly symmetric complex
Gaussian distribution:

hjlk ∼ CN (0, dj (zlk) IM ) . (1)

The vectorzlk ∈ R
2 is the geographical position of userk

in cell l anddj (z) accounts for the channel attenuation (e.g.,
path loss and shadowing) related to any user positionz ∈ R2.
Since the user position changes relatively slowly,dj (zlk) is
assumed to be known at BSj for all l and all k. In what
follows, the uplink channel estimation is first discussed tolay
a foundation for the novel detector design.

A. Uplink Channel Estimation

In the channel estimation phase, the collective received
signal at BSj is denoted asYj ∈ CM×B whereB is the
length of a pilot sequence (B also equals to the number
of orthogonal pilot sequences available for the network, as
mentioned in Section I). ThenYj can be expressed as

Yj =
∑

l∈L

K∑

k=1

√
plkhjlkv

T
ilk

+Nj , (2)

wherehjlk is the uplink channel defined in (1) andplk is the
power coefficient for the pilot of userk in cell l. The matrix
Nj contains independent elements which follow a complex
Gaussian distribution with zero mean and varianceσ2. We
assume that all pilot sequences originate from a predefined
orthogonal pilot book, defined asV = {v1, . . . ,vB}, where

vH
b1
vb2 =

{
B, b1 = b2,
0, b1 6= b2,

(3)

and defineilk ∈ {1, . . . , B} as the index of the pilot sequence
used by userk in cell l. In our work, arbitrary pilot reuse
is supported by denoting the relation betweenB and K by
B = βK, whereβ ≥ 1 is the pilot reuse factor andS ≥ B ≥

K. It is shown later that a largerβ brings a lower level of
pilot contamination, since a smaller fraction of the cells use
the same pilot sequences as the target cell.

Based on the received signal in Eqn. (2), the MMSE
estimate of the uplink channelhjlk is [12]

ĥjlk =
√
plkdj (zlk)Yj

(
Ψ∗

j

)−1
v∗
ilk

, (4)

whereΨj is the covariance matrix of the vectorized received
signalvec (Yj) and is given by

Ψj =
∑

ℓ∈L

K∑

m=1

pℓmdj (zℓm)viℓmvH
iℓm

+ σ2IB. (5)

Then according to the orthogonality principle of MMSE
estimation, the covariance matrix of the estimation error
h̃jlk = hjlk − ĥjlk is given by

Cjlk = E

{

h̃jlkh̃
H
jlk

}

= dj (zlk)
(
1− plkdj (zlk)v

H
ilk

Ψ−1
j vilk

)
IM . (6)

Notice that

vH
ilk

Ψ−1
j =

1
∑

ℓ∈L

∑K

m=1 pℓmdj (zℓm)vH
ilk

viℓm + σ2

︸ ︷︷ ︸

αjilk

vH
ilk

= αjilkv
H
ilk

, (7)

whereαji is defined to be used later on. Then the estimation
error covariance matrix in (6) can also be expressed as

Cjlk = dj (zlk) (1− plkdj (zlk)αjilkB) IM . (8)

As pointed out in [10], the partYj

(
Ψ∗

j

)−1
v∗
ilk

of the
MMSE estimator expression in (4) depends only on which
pilot sequenceilk that the particular user uses. Therefore, the
estimated channels of users who use the same pilot will have
the same direction, while only the amplitudes are different. To
show this explicitly, define theM ×B matrix:

ĤV,j =
[

ĥV,j1, ..., ĥV,jB

]

= Yj

(
Ψ∗

j

)−1
[v∗

1 , ...,v
∗
B ] , (9)

which allows the channel estimate in (4) to be reformulated
as

ĥjlk =
√
plkdj (zlk) ĤV,jeilk , (10)

whereei denotes theith column of the identity matrixIB.
The fact that users with the same pilot have parallel estimated
channels is utilized to derive a new deterministic equivalent
expression of the stochastic SINR in the sequel.

Notice that the estimated channelĥjlk is also a zero-mean
Gaussian vector, and its covariance matrixΦjlk ∈ CM×M is

Φjlk = dj (zlk) IM −Cjlk = plkd
2
j (zlk)αjilkBIM . (11)

Define the covariance matrix of̂hV,ji as Φ̃V,ji ∈ CM×M .
Then according to (10) and (11),̃ΦV,ji = αjiBIM .
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∑
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ĥjlmĥH
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+ σ2IM
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gjk

(15)

B. Uplink Multi-cell MMSE detector

After the channel estimation, each received signal at BSj
during the uplink payload data transmission phase is

yj =
∑

l∈L

K∑

k=1

√
τlkhjlkxlk + nj , (12)

where xlk ∼ CN (0, 1) is the transmitted signal from a
Gaussian codebook andnj ∼ CN (0, σ2IM ) is additive white
Gaussian noise (AWGN).τlk is the transmit power of the
payload data from userk in cell l, and we use different
symbols for the pilot and the payload data to allow for different
power control policies for them. Denote the linear detector
used by BSj for an arbitrary userk in its cell asgjk, then
the estimatêxjk of the signalxjk is

x̂jk = gH
jkyj = gH

jk

∑

l∈L

K∑

k=1

√
τlkhjlkxlk + gH

jknj . (13)

Then the following uplink ergodic SE can be achieved [6]

Rul
jk =

(

1− B

S

)

E{ĥ(j)}
{
log2

(
1 + ηuljk

)}
, (14)

where the SINRηuljk is given in (15) on top of this page
and E{ĥ(j)}

is the expectation with respect to the channel

estimates known at BSj. Similarly,E{·|ĥ(j)} in (15) denotes
the conditional expectation given the estimated channels at BS
j. The rate in (14) is achieved by treatinggH

jkĥjjk as the true
channel in the decoding, and treating interference and channel
uncertainty as worst-case uncorrelated Gaussian noise; see [6]
for further details. Thus,Rul

jk is a lower bound on the uplink
ergodic capacity.

The second line of Eqn. (15) shows that the uplink SINR
takes the form of a generalized Rayleigh quotient. Therefore,
a new multi-cell MMSE (M-MMSE) detector that maximizes
the SINR in (15) for given channel estimates is derived as:

gM−MMSE
jk

=

(
∑

l∈L

K∑

k=1

τlk

(

ĥjlkĥ
H
jlk +Cjlk

)

+ σ2IM

)−1

ĥjjk . (16)

Furthermore, this detector minimizes the mean square errorin
estimatingxjk as well [13]:

E

{

|x̂jk − xjk|2
∣
∣ĥ(j)

}

. (17)

By plugging (8) and (10) into (16), the M-MMSE detector can
also be expressed as

gM−MMSE
jk =

(

ĤV,jΛjĤ
H
V,j +

(
σ2 + ϕj

)
IM

)−1

ĥjjk,

(18)

whereΛj =
∑

l∈L

K∑

k=1

τlkplkd
2
j (zlk)eilke

H
ilk

. Apparently,Λj is

a diagonal matrix and theith diagonal elementλji depends on
the large scale fading, the pilot power and the payload power
of users that use theith pilot sequence inV . The scalarϕj is

ϕj =
∑

l∈L

K∑

k=1

τlkdj (zlk) (1− plkdj (zlk)αjilkB), (19)

whereαjilk is defined in (7).
To elaborate the advantages of our M-MMSE scheme, we

compare it with related work. First, the conventional single-
cell MMSE (S-MMSE) detector from [6]–[8] is

gS−MMSE
jk =

(
K∑

m=1

τjmĥjjmĥH
jjm + Zj + σ2IM

)−1

ĥjjk,

(20)
where inter-cell interference is either ignored by settingZj =
0 or only considered statistically as with

Zj = E







K∑

m=1

τjmh̃jjmh̃H
jjm +

∑

l 6=j

K∑

m=1

τjmhjlmhH
jlm






.

(21)
Notice that the S-MMSE detector only utilizes theK

estimated channel directions from within the serving cell,and
treats directions from other cells as uncorrelated noise. Our M-
MMSE detector, however, utilizes all theB available estimated
directions inĤV,j so that BSj can actively suppress also parts
of inter-cell interference whenB > K. Therefore, our detector
can actually maximize the SINR in (15), while S-MMSE can
only do this in single-cell cases. The M-MMSE scheme can
be seen as a coordinated beamforming scheme, but we stress
that there is no signaling between the BSs since BSj can
estimate the channelŝHV,j directly from the uplink pilots.
Moreover, the long-term channel statistics (like the channel
attenuation and the pilot allocation) of all users to each BScan
be obtained by using the uplink control channel, and hence
does not necessarily require BS cooperation. Therefore, the
M-MMSE scheme is fully scalable.



Compared with the multi-cell MMSE schemes proposed
in [11] and [9], our M-MMSE detector is more general and
practical. To begin with, any pilot reuse policy and power
control are supported in our scheme, which allows for an
analysis based on a more flexible and practical network
deployment. As shown in [10], non-universal pilot reuse is a
reliable way to suppress pilot contamination and achieve high
spectral efficiency in massive MIMO. In addition, as shown
later on, it is with the larger pilot reuse factors that the M-
MMSE achieves large gains over S-MMSE. Furthermore, the
uplink detector in [11] is based on the unrealistic assump-
tion that perfect CSI is known at the BS, while imperfect
channel estimation is accounted for in our detector. Thus the
performance gains provided by our detector are achievable in
practical systems.

III. A SYMPTOTIC ANALYSIS

In this section, performance analysis is conducted for the
proposed M-MMSE detector. The SINR in (15) is stochastic
since it depends on the estimated channels in each block.
Hence, the SE in (14) cannot be computed in closed form.
We compute a deterministic equivalent of the SINR that is
asymptotically tight. The large-system limit is considered,
whereM and K go to infinity while keepingK/M finite.
In what follows, the notationM → ∞ refers toK, M → ∞
such thatlim supMK/M < ∞ and lim infMK/M > 0.1

SinceB scales withK for a fixed β, lim supMB/M < ∞
andlim infMB/M > 0 also hold forB. The results should be
understood in the way that, for each set of system dimension
parametersM , K andB, we provide a deterministic equiv-
alent expression for the SINR, and the expression is a tight
approximation asM , K and B grow large. The expression
is “deterministic” because it only depends on the large-scale
fading, pilot allocation and power control, while the SINR
in (15) depends also on the stochastic small-scale fading
realizations. In what follows, the notation

a.s.−−−−→
M→∞

denotes

almost sure convergence of a stochastic sequence.
Before we continue with our performance analysis, two

useful results from random matrix theory are first recalled.
All vectors and matrices should be understood as sequences
of vectors and matrices of growing dimensions.

A. Useful theorems

Theorem 1 (Theorem 1 in [14]): LetD ∈ CM×M be de-
terministic andH ∈ CM×B be random with independent
column vectorshb ∼ CN

(
0, 1

M
Rb

)
. Assume thatD and the

matricesRb (b = 1, ..., B), have uniformly bounded spectral
norms (with respect toM ). Then, for anyρ > 0,

1

M
tr

(

D
(

HHH + ρIM

)−1
)

− 1

M
tr (DT (ρ))

a.s.−−−−→
M→∞

0,

(22)

1The limit superior of a sequencexn is defined by lim sup
n
xn ,

lim
n→∞

(sup {xm : m > n}); the limit inferior is defined aslim infnxn ,

lim
n→∞

(inf {xm : m > n}).

whereT (ρ) ∈ C
M×M is defined as

T (ρ) =

(

1

M

B∑

b=1

Rb

1 + δb (ρ)
+ ρIM

)−1

(23)

and the elements ofδ (ρ)
∆
= [δ1 (ρ) , ..., δB (ρ)]T are defined

asδb (ρ) = limt→∞ δ
(t)
b (ρ) , b = 1, ..., B, where

δ
(t)
b (ρ) =

1

M
tr




Rb




1

M

B∑

j=1

Rj

1 + δ
(t−1)
j (ρ)

+ ρIN





−1





(24)
for t = 1, 2, . . . , with initial valuesδ(0)b = 1/ρ for all b.

Theorem 2 (see [14]) LetΘ ∈ CM×M be Hermitian non-
negative definite with uniformly bounded spectral norm (with
respect toM ). Under the same conditions forD andH as in
Theorem 1,

1

M
tr

(

D
(

HHH + ρIM

)−1

Θ
(

HHH + ρIM

)−1
)

− 1

M
tr (DT′ (ρ))

a.s−−−−→
M→∞

0 (25)

whereT′ (ρ) ∈ CM×M is defined as

T′ (ρ) = T (ρ)ΘT (ρ) +T (ρ)
1

M

B∑

b=1

Rbδ
′
b (ρ)

(1 + δb (ρ))
2T (ρ) .

(26)
T (ρ) and δ (ρ) are given by Theorem 1, andδ′ (ρ) =
[δ′1 (ρ) , ..., δ

′
B (ρ)]

T is calculated as

δ
′ (ρ) = (IB − J (ρ))

−1
v (ρ) (27)

whereJ (ρ) andv (ρ) are defined as

[J (ρ)]bl =
1
M
tr(RbT(ρ)RlT(ρ))

M(1+δl(ρ))
2 , 1 ≤ b, l ≤ B (28)

[v (ρ)]b =
1

M
tr (RbT (ρ)ΘT (ρ)) , 1 ≤ b ≤ B. (29)

B. Deterministic Equivalents of the SINR in (15)

In what follows, we derive the deterministic equivalentη̄uljk
of ηuljk for the M-MMSE detector such that

η̄uljk − ηuljk
a.s.−−−−→

M→∞
0. (30)

Theorem 3 For the uplink MMSE detector in (18), we have
ηuljk − η̄uljk

a.s.−−−−→
M→∞

0, whereη̄uljk is given in (31) on top of the

next page with

δjk =
1

M
tr
(

Φ̃V,jijkTj

)

µjlmk =
1

M
tr
(

T
′

jk

)

− plmdj (zlm) γjilmϑ
′

jlmkϑjlm

2 + γjilmϑjlm

(1 + γjilmϑjlm)
2



η̄uljk =
τjkpjkd

2
j (zjk) δ

2
jk

δ2jk
∑

(l,m) 6=(j,k),i
lm

=ijk

τlmplmd2j (zlm) +
∑

i
lm

6=ijk

τlmdj (zlm)
µjlmk

M
+ σ2

M
ϑ

′′

jk

(31)

ϑjlm =
1

M
tr
(

Φ̃V,jilmTj

)

ϑ
′

jlmk =
1

M
tr
(

Φ̃V,jilmT
′

jk

)

ϑ
′′

jk =
1

M
tr
(

Φ̃V,jijkT
′′

jk

)

where

1) Tj = Tj (α) and δ (α)
∆
= [δ1, ..., δB]

T are given by

Theorem 1 forα =
σ2+ϕj

M
andRb = γjbΦ̃V,jb.

2) T
′

jk = T
′

jk (α) and δ′ (α) = [δ′1, ..., δ
′
B]

T are given by

Theorem 2 forα =
σ2+ϕj

M
, Θ = Φ̃V,jijk , and Rb =

γjbΦ̃V,jb.
3) T

′′

jk = T
′′

jk (α) and δ
′ (α) = [δ′1, ..., δ

′
B]

T are given

by Theorem 2 forα =
σ2+ϕj

M
, Θ = IM , and Rb =

γjbΦ̃V,jb.

Proof: The main idea behind the proof is to derive the
deterministic equivalent of each term of the first line of (15).
Then the deterministic equivalent of (15) is obtained as (31).
The full proof can be found in the Appendix B of [15]. �

With the η̄uljk above, the ergodic SE in (14), after dropping
the prelog factor, converges tōRul

jk = log2(1+ η̄uljk). Sinceη̄uljk
does not depend on the instantaneous small-scale channel fad-
ing, (1− B

S
)R̄ul

jk is a large-scale approximation of the ergodic
SE. As shown later, this approximation is even very accurate
at small system dimensions. Furthermore, the approximation is
easy to compute and allows for simple performance analysis.

IV. SIMULATION RESULTS

In this section, we illustrate the accuracy and usefulness of
the analytical contributions for a symmetric hexagonal network
topology. We apply the classic 19-cell-wrap-around structure
to avoid edge effects and guarantee the same performance for
all cells. Each hexagonal cell has a radius ofr = 500 meters,
and is surrounded by 6 interfering cells in the first tier, and
12 in the second tier. To achieve a symmetric pilot allocation
network, the pilot reuse factor can beβ ∈ {1, 3, 4, 7, ...}.

User locations are generated independently and randomly in
the cells by following uniform distributions, but the distance
between each user and its serving BS is at least0.14r. For each
user locationz ∈ R

2, a classic pathloss model is considered,
where the variance of channel attenuation isdj (z) =

C
‖z−bj‖

κ .
Here bj ∈ R2 is the location of the BS in cellj, κ is the
pathloss exponent, and‖·‖ denotes the Euclidean norm.C > 0
is independent shadow fading with10 log10 (C) ∼ N (0, σ2

sf ).
We assumeκ = 3.7, σ2

sf = 5 and coherence block length

S = 300.2 Orthogonal pilots are chosen from aB×B discrete
Fourier transform unitary matrix.

Statistical channel inversion power control is applied to both
pilot and payload data transmission [10], i.e.,plk = τlk =

ρ
dl(zlk)

. Thus the average effective channel gain between users

and their serving BSs is constant:E{plk ‖hllk‖2} = Mρ, and
the statistical per antenna received SNR of each user at its
serving BS isρ/σ2. This is a simple but effective policy
to avoid near-far blockage and, to some extent, guarantee a
uniform user experience. In the simulation,ρ/σ2 is set to 0
dB to allow for decent channel estimation accuracy.

In the simulation, 10000 independent Monte-Carlo channel
realizations for small scale fading are generated to numerically
calculate the achievable SE in (14). The numerical result and
its large-scale approximation from Theorem 3 are shown in
Fig. 1 for K = 10 and differentM . Fig. 1 shows that the
achievable sum SE increases monotonically asβ grows, at
least forβ ≤ 7. This is a result of the following two properties.
Firstly, a largerβ results in a lower level of pilot contam-
ination, contributes to a higher channel estimation accuracy,
and thereby increases the system SE. Secondly, a largerβ
also indicates more available estimated channel directions in
the M-MMSE detector, thus a higher inter-cell interference
suppression can be achieved. Fig. 1 also shows that the Monte-
Carlo simulations and the large-scale approximations match
well, even for relatively smallM andK.
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Fig. 1. Achievable sum SE as a function of the number of antennasM , for
β ∈ {1, 3, 4, 7} andK = 10.

To show explicitly the advantages of our M-MMSE detec-
tion scheme, simulation results for the matched filter (MF)
from [1], the multi-cell ZF (M-ZF) detector from [10], and
the S-MMSE detector from (20) are provided for comparison.
Notice thatM−βK > 0 is needed for the M-ZF scheme, thus

2This coherence block can, for example, have the dimensions of Tc = 3ms
andWc = 100 kHz.



the minimum value ofM for the M-ZF isβK+1. Since Fig. 1
shows thatβ = 4 and β = 7 give the highest performance,
we provide simulation results forβ = 4 andβ = 7 in Fig. 2
and Fig. 3, respectively. The MF scheme always achieves the
lowest performance since it does not actively suppress any
inter-user interference. Compared with the S-MMSE, our M-
MMSE achieves a notable SE gain and the advantage becomes
more significant asβ and/orK increases. Forβ = 4 and
M = 200, the SE of M-MMSE are 28% and 56% higher
than those of S-MMSE forK = 10 andK = 30, respectively.
Whenβ = 7, the gains increase to 40% and 84%, respectively.
Notice that whenβ = 7, K = 30 brings lower achievable rates
compared withK = 10, due to the loss from a large pilot
overhead. The advantage of the M-MMSE over the M-ZF is
relatively small forK = 10, but it becomes significant as
β andK grow. Moreover, the M-ZF can sometimes achieve
very low SE for smallM , while our M-MMSE can always
achieve good performance, with the same complexity as for
the M-ZF. From the analysis above, it can be concluded that
the proposed M-MMSE brings a very promising gain over
single-cell processing and the M-ZF, and the gain becomes
increasingly significant asβ and/orK grow.
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Fig. 2. Achievable sum SE of M-MMSE (squares), M-ZF (triangles), S-
MMSE (diamonds) and M-MF (circles) withβ = 4, K = 10 andK = 30.

V. CONCLUSIONS

In this paper, a multi-cell MMSE detector is proposed and a
tight deterministic equivalent SINR expression is derivedin the
large-system limit. Compared with the conventional single-cell
MMSE scheme, that only utilizes the estimated directions from
within the serving cell, the proposed multi-cell MMSE scheme
utilizes all channel directions that can be estimated locally
at the BS to suppress the inter-cell interference. Numerical
results show that the proposed multi-cell MMSE brings very
promising sum SE gains over the single-cell MMSE and the
multi-cell ZF. Since imperfect estimated CSI is accounted for
in our scheme, the gains obtained are likely to be achievable
in practical systems. The M-MMSE scheme is the new state-
of-the-art method for massive MIMO detection and is hard
to beat since it maximizes the SINR under very general
conditions. Furthermore, the deterministic equivalent isshown
to be accurate even for relatively small system dimensions.
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Fig. 3. Achievable sum SE of M-MMSE (squares), M-ZF (triangles), S-
MMSE (diamonds) and M-MF (circles) withβ = 7, K = 10 andK = 30.
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