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Abstract—Wideband spectrum sensing is a significant challenge
in cognitive radios (CRs) due to requiring very high-speed analog-
to-digital converters (ADCs), operating at or above the Nyquist
rate. Here, we propose a very low-complexity zero-block detection
scheme that can detect a large fraction of spectrum holes from the
sub-Nyquist samples, even when the undersampling ratio is very
small. The scheme is based on a block sparse sensing matrix,
which is implemented through the design of a novel analog-to-
information converter (AIC). The proposed scheme identifies some
measurements as being zero and then verifies the sub-channels
associated with them as being vacant. Analytical and simulation
results are presented that demonstrate the effectiveness of the
proposed method in reliable detection of spectrum holes with
complexity much lower than existing schemes. This work also
introduces a new paradigm in compressed sensing where one is
interested in reliable detection of (some of the) zero blocks rather
than the recovery of the whole block sparse signal.

Index Terms – Wideband spectrum sensing, cognitive radios,
compressed sensing, block sparse signals.

I. INTRODUCTION

In a wireless communication environment, many of the
primary users (PUs) do not use their licensed frequency bands
at all times. The surveys show that the maximum frequency
utilization of the allocated spectrum can be less than 10%
[1]. To increase the frequency utilization in such environments,
secondary users (SUs) equipped with cognitive radios (CRs) [2]
can be deployed to use the available spectrum (spectrum holes)
without interfering with the PUs. Spectrum sensing, as the task
of finding the spectrum holes, is thus one of the important
functions performed by CRs.

As an integral part of spectrum sensing, an analog to digital
converter (ADC) is often used to sample the signal at or above
the Nyquist rate. In wideband scenarios, this will require very
high-speed ADCs, which are challenging to implement.

One of the techniques of wideband spectrum sensing (WSS),
which could relax the high-speed sampling requirement, is
a channel-by-channel scanning approach. A tunable bandpass
filter (BPF) scans one channel at a time. A narrowband spec-
trum sensing technique is then applied to sense if the scanned
channel is vacant or not. This approach is, in general, slow
and inflexible [3]. Another approach, called “filter-bank” [4],
is based on using a parallel set of narrowband filters, each
covering one channel. In this approach, however, an enormous
number of RF components is required due to the parallel
structure of the filter bank.

Since the spectrum is sparsely occupied, the information
rate of the analog signal is much less than the Nyquist rate.
Therefore, an analog to information converter (AIC) can be
used with sub-Nyquist sampling rates, based on the compressed
sensing (CS) theory [5], [6].

Compressed sensing is a signal processing technique that can
recover an unknown signal with high probability from a small
set of linear projections, called measurements, if the signal is
sparse in some domain [7]. Linear projections of the signal and
its sparse representation are described by two matrices called
measurement matrix and sensing matrix, respectively.

CS has been recently applied to the wideband spectrum
sensing to alleviate the need for high sampling rates [8]–[11].
The spectrum is then reconstructed by a sparse signal recovery
algorithm, see, e.g., [8], [9]. To reduce the sampling rate, in
[10], [11], the block structure of the spectrum is also used in the
reconstruction process.1 In all the above literature [8]–[11], the
spectrum holes are detected from the reconstructed spectrum
by applying an energy detection algorithm. Although, in each
CR, only finding one vacant sub-channel may be enough, in
cooperative CR networks, finding more than one spectrum hole
is of interest. Therefore, in this paper, our goal is to detect
as many spectrum holes as possible with a given number
of measurements. Neither the recovery of the signal, nor the
detection of all spectrum holes is of direct interest. We thus
introduce a new CS paradigm in which, one is interested in
reliable detection of some of the zero blocks, even when the
number of measurements is relatively low.

To the best of our knowledge, all wideband spectrum sensing
methods in the literature that use CS for spectrum sensing
(e.g., [8], [10], [11]), are based on dense sensing matrices
(matrices which have few, or no, zero entries). The recovery
algorithms with such matrices are often based on linear or
convex optimization with the complexity between O(N2) and
O(N3), where N is the dimension of the signal. In mobile
CRs with limited power and computational resources, it is
impractical to use CS with such costly computations for the
reconstruction of the spectrum. In addition, the processing time
required for signal reconstruction can impose a significant delay
in the spectrum sensing. These motivate us to look for an ultra
low-complexity scheme for spectrum sensing with the goal of

1block sparse signals are the sparse signals that have nonzero entries
occurring in clusters.
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detecting a large proportion of spectrum holes.
A popular category of recovery algorithms for CS are those

based on message-passing algorithms. In particular, the ap-
proximate message-passing (AMP) algorithm of [12], which
works with dense sensing matrices, has attracted much attention
due to its remarkable performance/complexity trade-off. In the
context of block sparse signals, it is demonstrated in [13]
that AMP with James-Steins shrinkage estimator (AMP-JS)
can outperform the existing block sparse recovery algorithms.
Another subcategory of iterative message-passing recovery al-
gorithms are verification-based ones [14]–[16], which are based
on sparse sensing matrices and are thus of lower complexity
compared to the message-passing algorithms on dense matrices
(graphs). These algorithms however are very sensitive to noise.
In addition, their application to the recovery of block sparse
signals face a number of fundamental challenges.

In this paper, we apply an ultra low-complexity scheme to
the wideband spectrum sensing, which is based on a block
sparse sensing matrix. To this end, we design a measurement
matrix as part of the AIC, such that the resulting sensing
matrix has a block sparse structure. As will be seen later,
the structure of the sensing matrix affects the performance of
zero detection scheme. We analyze the proposed zero-block
detection scheme for regular sensing matrices (those with the
same number of non-zero blocks in each row and column) and
then generalize the results to the case of irregular matrices. We
can optimize the structure of the sensing matrix to maximize
the fraction of spectrum holes that can be detected for a
given number of measurements. We consider both noiseless
and noisy scenarios in this work, and analyze the performance
of the proposed algorithm in both cases. Our analytical and
simulation results demonstrate the effectiveness of the proposed
algorithm in reliable detection of spectrum holes (even when the
number of measurements is relatively small) with complexity
that is negligible compared to the existing block sparse recovery
algorithms such as AMP-JS.

II. NOTATIONS, DEFINITIONS AND ENSEMBLES OF
SENSING MATRICES (GRAPHS)

In this paper, we use capital bold letters to refer to matrices
and lowercase bold letters for vectors. We also use C and R to
refer to the fields of complex and real numbers, respectively.
For the real and imaginary parts of a complex argument, we use
<(.) and =(.), respectively. In addition, (.)T , (.)∗, (.)−1 and (.)†

denote the transpose, conjugate, matrix inversion and conjugate
transpose, respectively.

The zero block detection scheme presented in this work can
be described based on a bipartite graph representation of CS
operation. Let G(V ∪M, EV,M) denote a bipartite graph where
V ∪M is the node set and EV,M is the edge set, so that, every
edge in EV,M connects a node in V to a node in M. We refer
to the sets V andM as variable nodes (VNs) and measurement
nodes (MNs), respectively. In a bipartite graph, ES1,S2

⊆ EV,M
denotes the set of the edges that connect the set S1 ⊆ V to
the set S2 ⊆M. In addition, in a bipartite graph, let V(m) and
M(v) denote the set of VNs neighboring to the measurement

node m and the set of MNs neighboring to the variable node
v, respectively.

Let Vz ⊆ V, Vnz ⊆ V, Mz ⊆ M and Mnz ⊆ M refer to the
sets of zero VNs, non-zero VNs, zero MNs and non-zero MNs,
respectively. Clearly, Vnz (Mnz) is the complement of the set
Vz (Mz) with respect to V (M).

In a bipartite graph, a node in V (M) has degree i if it is
connected to i nodes in M (V). We use d(v) to denote the
degree of v. Let the polynomials λ(x) =

∑
i
λix

i and ρ(x) =∑
i
ρix

i, respectively, represent the degree distributions of VNs
and MNs, where λi and ρi denote the fraction of degree-i nodes
in VNs and MNs, respectively. Clearly, λ(1) = ρ(1) = 1 and
λ̄|V| = ρ̄|M| = |EV,M|, where λ̄ =

∑
i
iλi, ρ̄ =

∑
i
iρi and |.|

denotes the cardinality of a set.
If the degree of all nodes in M and V are dM and dV ,

respectively, the graph is called bi-regular (regular, in brief).
Otherwise, it is called irregular. In a regular graph, ρ(x) = xdM

and λ(x) = xdV .

III. SYSTEM MODEL AND PROBLEM STATEMENT

Suppose a cognitive radio receives and down-converts a
wideband analog signal, r(t), with the bandwidth of W . We
assume that r(t) occupies L consecutive, non-overlapping spec-
trum bands, each with bandwidth equal to B = W/L Hz,
referred to as sub-channels. The boundaries of the sub-channels
are denoted by f0 < f1 < · · · < fL.

Suppose that the vector r ∈ RN is the discrete representation
of the analog signal r(t), where N corresponds to the Nyquist
rate. Let x = Fr be the spectrum of r with only K << N non-
zero elements and F is the N×N unitary Fourier matrix. Since
r(t) is a real signal, the spectrum x is conjugate symmetric.
Therefore, we only focus on the positive frequency elements
of x, denoted by +x.

In the context of spectrum sensing, the spectrum is block
sparse, i.e., at any given time, each sub-channel is occupied
with probability α << 1 independent of the other sub-channels.
We refer to α as the sparsity ratio. Let u(i) be the ith segment
of +x, which corresponds to the elements in the range [fi−1, fi),
and f (i)

c = (fi + fi−1)/2 be the center frequency of the ith sub-
channel. Therefore, we can write +x = [(u(1))T , · · · , (u(L))T ]T .
We also assume that the magnitude of non-zero elements of x

follows a distribution, f .
In the noiseless scenario, the measurement vector y ∈ RM

can be mathematically written as, y = Φr = ΦF−1x = Θx,
where Θ is the sensing matrix and Φ ∈ RM×N is the mea-
surement matrix. Since Θ = ΦF−1 and Φ is a real matrix,
each row of Θ has conjugate symmetry. Let +Θ denote the
M ×N/2 matrix including the last N/2 elements of each row
of Θ. In this paper, we assume that Θ is a random block sparse
matrix in row with L blocks, in correspondence with the blocks
of +x, and that only a few randomly selected blocks out of L
blocks are non-zero and the rests are zero.2 In Section IV, we
will explain how a sensing matrix with this structure can be
constructed. Assume that the magnitudes of all elements of a

2The sparse +Θ keeps the complexity low and improves the performance
of the recovery algorithm, as becomes evident later.
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Fig. 1: (a) The general structure of an AIC, (b) Sampling waveforms
of the AIC for a block sparse sensing.

non-zero block +Θ(l)
m follow a distribution g , where +Θ(l)

m be
the lth block of the mth row of +Θ. The mth element of y can
be written as

ym = 2<

(
L∑
l=1

+Θ(l)
m .u

(l)

)
, m = 1, . . . ,M, (1)

where “.” denotes the inner product. Now, the problem is to
detect the maximum number of spectrum holes from a given
number of measurements M . Note that here, we are interested
in very small values of M , i.e., M << L. Such values of M
can be much smaller than typical values that are of interest in
conventional CS frameworks where M is small in comparison
with N (not L).

The relationships in (1) for m = 1, . . . ,M , can be represented
by a bipartite graph, referred to as a sensing graph, with L VNs
and M MNs. In this model, a VN is a sub-vector of B = N/(2L)

complex elements.

IV. DESIGN OF AN AIC WITH BLOCK SPARSE SENSING
MATRIX

In Fig. 1(a), the general structure of an AIC with M parallel
branches of mixers and integrators (BMIs) is shown [17]. In this
section, the objective is to generate the sampling waveforms
φi(t) of Fig. 1(a) to create a block sparse sensing matrix.

Suppose, Θm and Φm are the mth row-vectors of Θ and
Φ, respectively. We have Θ†m = (F−1)†Φ†m,∀m. Since, F is a
unitary matrix and Φ is a real matrix, we will have Θ†m =

FΦT
m, ∀m. In other words, Θm is the conjugate of the Fourier

transform of Φm. Therefore, Θ will have block sparse rows,
when the rows of the measurement matrix are block sparse in
the frequency domain.

Fig. 1(b) demonstrates how to generate the sampling wave-
forms φi(t), i = 1, . . . ,M , in Fig. 1(a) to have a block sparse
sensing matrix. In Fig. 1(b), the input signal, pc(t), is a noise
generator with a rate equal to or higher than W/L. Then, we
filter the input signal by a low-pass (LP) filter with the cut-
off frequency of W/2L to result in a baseband signal with
frequency range of [−W/2L,W/2L]. Finally, using the carrier
frequencies f (1)

c , f (2)
c , · · · , f (L)

c , the signal is modulated. Now,
we can generate M sampling waveforms φm(t) using a linear
combination of the resulted waveforms vl(t), l = 1, . . . , L, based
on a properly designed mapping. Note that a mapping with

sparse linear combinations is needed to create a sparse sensing
matrix.

The mapping in Fig. 1(b) can be constructed by the sensing
graph described in Section III. Therefore, we can make a corre-
spondence between the VNs and waveforms vl(t), l = 1, . . . , L,
and between the MNs and sampling waveforms φm(t), m =

1, . . . ,M , as follows

φm(t) =
∑

l∈V(m)

vl(t),

where |V(m)| = d(m). Let φ̃m(f) and ṽl(f) denote the Fourier
transforms of φm(t) and vl(t), respectively. Therefore, φ̃m(f) =∑

l∈V(m)
ṽl(f), i.e., Θm, which consists of the samples of φ̃∗m(f),

would be block sparse with d(m) non-zero blocks in +Θm.
In Fig. 1(b), L multipliers are required. We can generate the

sampling waveforms using only M multipliers, if we modulate
the output signal of the LP filter by

∑
i∈V(m)

cos(2πf (i)
c t), m =

1, . . . ,M .

V. PROPOSED SPECTRUM HOLE DETECTION SCHEME

A. Noiseless Scenario: Proposed Scheme and Its Analysis

A.1. Proposed Scheme

The following lemma is the foundation of the proposed zero
block detection in the absence of noise.

Lemma 1: If ym = 0 in (1), the sub-vectors of +x cor-
responding to the non-zero blocks of +Θm, are zero, with
probability one.

Proof: The proof simply follows from the continuity of at
least one the distributions f or g , described in Section III. �

Based on Lemma 1, the proposed scheme detects a zero
block in the sensing graph, if that block is connected to a zero
measurement node. We refer to this simple detection scheme
for zero blocks (vacant sub-channels) as zero measurement
detection (ZMD). In order to quantify the performance of the
proposed method, we define two measures:
(i) Probability of zero block detection (PZD): the ratio of the

number of zero blocks detected correctly to the total number of
zero blocks that exist in the spectrum.

(ii) Probability of wrong zero block detection (PWZD): the ratio
of the number of occupied blocks detected falsely as vacant to
the total number of the blocks detected as zero.

Since PWZD indicates the level of interference to the PUs,
it is an important measure from the standpoint of PUs. Note
that in the noiseless case, based on Lemma 1, PWZD = 0 and
the objective is to design a sensing graph in order to maximize
PZD.

A.2. Analysis

In this section, we first consider bi-regular sensing graphs. In
such graphs, the MN m ∈Mz, if and only if, all dM neighboring
VNs belong to Vz. Therefore, the probability that m is zero is
calculated by

P (m ∈Mz) = (1− α)dM . (2)

Therefore, E(|Mz|) = M (1− α)dM .



On the other hand, the zero VN, v, is recovered by the
ZMD method, if and only if, at least one of the neigh-
boring MNs is in Mz. By definition, PZD is the ratio of
the expected number of detected zero variables to the total
number of zero VNs. Therefore, it is clear that PZD is the
probability that the zero VN, v, is recovered by ZMD, i.e.,
PZD = P (|Ev,Mz | ≥ 1|v ∈ Vz) = 1− P (|Ev,Mz | = 0|v ∈ Vz).

For calculating this probability, let the edge e connect a VN
in Vz to a MN in M. We first calculate the probability p0 that
the edge e connects a VN in Vz to a MN in Mz. Let te and he
be the tail node and the head node of the edge e in M and V,
respectively. Therefore, we can write

p0 = P (te ∈Mz|he ∈ Vz)

=
P (te ∈Mz, he ∈ Vz)

P (he ∈ Vz)
=

P (te ∈Mz)

P (he ∈ Vz)

=
E (|EV,Mz |) /|EV,M|
E (|EVz,M|) /|EV,M|

=
E (|EV,Mz |)
E (|EVz,M|)

=
dME(|Mz|)
dV |Vz|

=
dMM (1− α)dM

dV L(1− α)
= (1− α)dM−1 , (3)

where the last equality comes from the fact that in bi-regular
graphs, dV = MdM/L. Thus, the probability that the zero
variable node v does not have any connection to Mz, i.e., all
dV neighboring MNs belong to Mnz, is (1− p0)dV . Therefore,

PZD = 1− P (|Ev,Mz | = 0|v ∈ Vz)
= 1− (1− p0)dV = 1−

(
1− (1− α)dM−1

)dV . (4)

We also can simply generalize the analysis of bi-regular
sensing graphs to the case of irregular ones with the constraint
that the VNs and MNs follow the degree distributions λ(x) and
ρ(x), respectively. After following the same steps as the ones
for regular graphs, we can obtain PZD as

PZD = 1−
∑
i

λi(1− p′0)i, (5)

where p′0 =
∑

i
iρi (1− α)i−1/

∑
i
iρi.

B. Noisy Scenario: Proposed Scheme and Its Analysis

B.1. Proposed Scheme
In practice, the measurements are corrupted by noise, i.e.,

y = Θx + n, where n is an M × 1 vector whose elements are
independent and identically distributed (i.i.d.) zero-mean Gaus-
sian random variables with variance σ2

n, N (0, σ2
n). Therefore,

the mth measurement can be written as

ym = 2<

( ∑
i∈V(m)

+Θ(i)
m .ui

)
+ nm . (6)

Noise has a destructive effect on the application of ZMD
method. In other words, if the noise-free measurement is equal
to zero, its noisy version is not equal to zero with probability
one. This will, in effect, disable ZMD method as described
for noiseless scenarios. Here, we propose a test to detect zero
measurements and we also show that in the high SNR regime,
the test is translated to a thresholding approach, and in this
regime, we obtain the optimum threshold, analytically. Using
the thresholding technique, the problem is reduced to one
similar to the noiseless scenario.

We consider an irregular sensing graph. For the analysis, we
assume that the real and imaginary parts of non-zero elements
of the sub-vectors u(i) both come from a Gaussian distribution
N (0, σ2

s), in an i.i.d. fashion. We consider d(m) hypotheses Hi
for i = 0, . . . , d(m), where Hi represents the scenario that the
measurement m is connected to i non-zero blocks and d(m)− i
zero-blocks. Therefore, the a priori probability of Hi is

P (Hi) =

(
d(m)

i

)
αi(1− α)d(m)−i, i = 0, . . . , d(m). (7)

Furthermore, suppose that only one of the neighboring blocks
of the mth MN (e.g., the jth block) out of d(m) blocks is non-
zero and d(m)−1 neighboring blocks are zero (i.e., Hypothesis
H1 is true). In this case, we have

ym = 2<
(

+Θ(j)
m .u(j)

)
+ nm

= 2

D∑
i=1

<(+Θ(j)
m,i).<(u(j)

i )−=(+Θ(j)
m,i).=(u(j)

i ) + nm, (8)

where +Θ(j)
m,i and u(j)

i are the ith element of the sub-vector
+Θ(j)

m and the ith element of the sub-vector u(j), respectively.
The probability density function of ym under this assumption
(H1) is

P(ym|H1) = N
(
0, 4‖+Θ(j)

m ‖22σ2
s + σ2

n

)
. (9)

Based on the structure of the AIC presented in Section IV,
‖+Θ(j)

m ‖22 = cte, ∀j. Without loss of generality, we assume
that ‖+Θ(j)

m ‖22 = 1. Therefore, P(ym|H1) = N (0, 4σ2
s + σ2

n).
Similarly, the probability density function of ym under the
hypothesis Hi is given by

P(ym|Hi) = N
(
0, 4iσ2

s + σ2
n

)
, i = 0, . . . , d(m). (10)

In ZMD, we need to determine whether the noise-free version
of ym, i.e., ynfm , is zero or not. If ynfm is zero, H0 is true with
probability one. Otherwise, Hi for i = 1, . . . , d(m) is true (H̄0

is true), i.e., H0 is false. To make a decision on whether ynfm is
zero or not, we use the likelihood ratio test (LRT). The LR is
defined by

Λ(ym) =
P(ym|H̄0)

P(ym|H0)
, (11)

and the test is performed as follows:

if Λ(ym) < c : accept H0;

if Λ(ym) ≥ c : reject H0 (accept H̄0), (12)

where c is a properly selected threshold.
We can calculate P(ym|H̄0) in (11) by

P(ym|H̄0) =
1

P(H̄0)

d(m)∑
i=1

P(ym|Hi)P(Hi). (13)

Therefore, using (7), (10), (11) and (13), we have

Λ ( ym) =

∑d(m)

i=1

(
d(m)

i

)
αi(1− α)d(m)−iN (0, 4iσ2

s + σ2
n)∑d(m)

i=1

(
d(m)

i

)
αi(1− α)d(m)−iN (0, σ2

n)

=

∑d(m)

i=1

(
d(m)

i

)
αi(1− α)d(m)−i

√
σ2
n

4iσ2
s+σ2

n
exp{ 2iσ2

sy
2
m

(4iσ2
s+σ2

n)σ2
n
}

1− (1− α)d(m)
.

(14)



In the high SNR regime, where σ2
s >> σ2

n, we can neglect
σ2
n against σ2

s in (14). We can thus simplify the decision for H0

(i.e., Λ(ym) < c) to

|ym| < c′, (15)

where c′ is determined by the target PWZD as described in the
next section. In other words, if |ym| < c′, we decide ŷnfm = 0

and if |ym| ≥ c′, we decide ŷnfm 6= 0.

B.2. Analysis

Based on the likelihood ratio test, the measurement values
are partitioned into two regions:

R0 = {ym : |ym| < c′}, and R1 = {ym : |ym| ≥ c′}. (16)

Based on the correct or the erroneous detection of zero/non-
zero measurements, we can partition the set of measurements
M into four different sets: Mc

z, Mw
z , Mc

nz and Mw
nz. The set

Mw
z represents the set of non-zero measurements which are

detected erroneously as zero, Mw
z = {ym : ym ∈ R0, H̄0}. Sim-

ilarly, Mc
z = {ym : ym ∈ R0,H0}, Mw

nz = {ym : ym /∈ R0,H0}
and Mc

nz = {ym : ym /∈ R0, H̄0}. In the following, we first
consider the case where the sensing graph is regular.

The probability of false alarm (for zero measurements) PFA
is defined as the probability that a measurement ym is detected
as zero while at least one of its neighboring VNs belongs to Vnz,
i.e., PFA =

∫
y∈R0

P(y|H̄0)dy. For the signal model considered
here, by using (13), we have

PFA =

∑dM
i=1

(
dM
i

)
αi(1− α)dM−i

∫
y∈R0

P(y|Hi)dy
1− (1− α)d(m)

=

∑dM
i=1

(
dM
i

)
αi(1− α)dM−ierf( c′√

2(4iσ2
s+σ2

n)
)

1− (1− α)d(m)
, (17)

where erf(x) :=
(
2/
√
π
) ∫ x

0
e−t

2
dt.

Probability of detection (for zero measurements), PD, is
defined as the probability that a zero measurement is detected
correctly as zero, i.e., PD =

∫
y∈R0

P(y|H0)dy. For our signal
model, PD is given by

PD = erf( c′√
2σ2

n

). (18)

Clearly, E(|Mc
z|) = MP(H0)PD = M(1 − α)dMPD and

E(|Mw
z |) = MP(H̄0)PFA = M(1 − P(H0))PFA = M(1 − (1 −

α)dM )PFA.
Now, we obtain PWZD and PZD of the VNs based on the PD

and PFA of the MNs. Based on the definition, we have

PWZD = P
(
v ∈ Vnz||Ev,Mc

z∪M
w
z
| ≥ 1

)
=

P
(
|Ev,Mc

z∪M
w
z
| ≥ 1|v ∈ Vnz

)
P (v ∈ Vnz)

P
(
|Ev,Mc

z∪M
w
z
| ≥ 1

) . (19)

Since, with probability one, Ev,Mc
z

= ∅ for v ∈ Vnz, we can
write

P
(
|Ev,Mc

z∪M
w
z
| ≥ 1|v ∈ Vnz

)
= P

(
|Ev,Mw

z
| ≥ 1|v ∈ Vnz

)
= 1− P

(
|Ev,Mw

z
| = 0|v ∈ Vnz

)
= 1− (1− P (te ∈Mw

z |he ∈ Vnz))dV , (20)

where P (te ∈Mw
z |he ∈ Vnz) = PFA.

For the denominator of (19), we have

P
(
|Ev,Mc

z∪M
w
z
| ≥ 1

)
= 1− P

(
|Ev,Mc

z∪M
w
z
| = 0

)
= 1− (1− P (te ∈Mc

z ∪Mw
z ))dV ,(21)

where

P (te ∈Mc
z ∪Mw

z ) =
E(|Mc

z|) + E(|Mw
z |)

M
= (1− α)dMPD + (1− (1− α)dM )PFA. (22)

Since, P (v ∈ Vnz) = α, from (20) and (21), PWZD is calcu-
lated by

PWZD = α
1− (1− PFA)dV

1−
(
1− (1− α)dMPD − (1− (1− α)dM )PFA

)dV .

(23)
The probability of zero detection, PZD, can be calculated by

PZD = P
(
|Ev,Mc

z∪M
w
z
| ≥ 1|v ∈ Vz

)
= 1− P

(
|Ev,Mc

z∪M
w
z
| = 0|v ∈ Vz

)
= 1− (1− P (te ∈Mc

z ∪Mw
z |he ∈ Vz))dV , (24)

where

P (te ∈Mc
z ∪Mw

z |he ∈ Vz) =
P (te ∈Mc

z ∪Mw
z , he ∈ Vz)

P (he ∈ Vz)

=
E(|EVz,Mc

z
|) + E(|EVz,Mw

z
|)

E(|EV,M|)
.

1

(1− α)

=
E(|Mc

z|)dM+E(|Mw
z |)

∑dM
i=1

(dM−i)(
dM
i )αi(1−α)dM−i/P(H̄0)

MdM (1−α)

= (1− α)dM−1PD + (1− (1− α)dM−1)PFA. (25)

Therefore,

PZD = 1−
(

1− (1− α)dM−1PD −
(
1− (1− α)dM−1

)
PFA

)dV
. (26)

When the measurements are noiseless, PD = 1 and PFA = 0.
With these values for PD and PFA, PWZD in (23) will be zero
and PZD in (26) is reduced to (4). With a large value for the
threshold c′, all the measurements are detected as zero, which
results in PD = 1 and PFA = 1. We see from Equations (23)
and (26) that, in this case, PWZD = α and PZD = 1, which are
expected.

For given values of dM , dV , σs and σn, the threshold c′ can
be chosen to provide a target PWZD. We can then obtain PZD
using this threshold level. It is important to note that while
PD and PFA depend on the signal model, PWZD and PZD do
not. Therefore, Equations (23) and (26) can be applied to other
signal models.

The above results can be generalized to irregular sensing
graphs (matrices). The derivation of PZD and PWZD is similar
to (19)-(26). For irregular sensing matrices, we have

PWZD =

α

(
1−

∑
i
λi (1− PFA)i

)
1−

∑
i
λi
(
1− PFA − (PD − PFA)

∑
j
ρj(1− α)j

)i ,
and

PZD = 1−
∑
i

λi

(
1− PFA − (PD − PFA)

∑
j
jρj(1− α)j−1∑

j
jρj

)i
.

In noiseless scenario, when PD = 1 and PFA = 0, from the
above equations, we have PWZD = 0 and PZD reduces to (5).



C. Complexity of the Proposed Algorithm

In terms of the complexity, the proposed scheme has very low
complexity as it only needs to identify the zero measurement
nodes and verify the adjacent variable nodes as vacant sub-
channels. This is negligible in comparison with any of the
existing algorithms for the recovery of block sparse signals. In
particular, one of the most powerful algorithms for the recovery
of block sparse signals, in terms of performance/complexity
trade-off, is AMP with James-Stein’s estimator (AMP-JS) [13].
In terms of complexity, the complexity of AMP-JS is O(MN),
which is much higher than the minimal complexity of the
proposed scheme.

VI. SIMULATION RESULTS

In this section, we present some simulation results to demon-
strate the effectiveness of the proposed method for detecting
the spectrum holes in both noiseless and noisy cases. We
consider an N dimensional signal with the positive frequency
range of [0 : N/2], containing L non-overlapping channels
of equal bandwidth N

2L
. We use an N-point unitary Fourier

matrix to map the input signal from the time to the frequency
domain. To model the block sparse spectrum, each block is
independently selected to be non-zero with probability α (from
positive frequency elements). We assign the real and imaginary
parts of the elements of non-zero blocks from a Gaussian
distribution N (0, σ2

s) in an i.i.d. fashion. In our simulations,
we set σs = 1. It is important to note that the choice of these
continuous distributions does not affect the performance of the
ZMD method, in either noiseless or noisy scenarios.

A. Noiseless Measurements

Fig. 2 shows PZD, obtained both analytically and by simu-
lations, versus dM for different sparsity ratios. In this figure,
PZD of ZMD is depicted for the regular graphs with L = 1000

and M = 500. Thus, dV = dM/2. As seen from this figure,
simulation and analytical results match perfectly. Furthermore,
for each sparsity ratio, the optimum dM is depicted in terms
of maximizing PZD. We see that for smaller sparsity ratios,
larger dM is required to maximize PZD and with increasing
the sparsity ratio, the optimum value of dM decreases. In
particular, for larger sparsity ratios, the best degree distribution
is (dV , dM) = (1, 2).

Fig. 3 shows PZD versus number of measurements, M , for
different algorithms in a case with L = 500 and α = 0.25. Note
that the x-axis is in log scale. In this figure, we see PZD of the
regular graphs with dV = 1 when dM is obtained by dV L/M

for each M , as well as the regular graphs with dM = 4 when
dV is obtained by dMM/L for each M . We have also plotted
the curve corresponding to a graph, where each measurement
node is connected to only one variable node and each variable
node is connected to at most one measurement node. This case
is denoted by “1to1” in Fig. 3.

In Fig. 3, we have also plotted PZD of AMP-JS, which is
known as the-state-of-the-art in block sparse signal recovery,
for two different block lengths 3 and 5. For AMP-JS, the
sensing matrix is selected to be a dense matrix randomly
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Fig. 2: PZD obtained by both analysis (dashed lines) and simulations
(solid lines) versus dM for different sparsity ratios for bi-regular
graphs with L = 1000 and M = 500. The stars are the maximum
PZD for each sparsity ratio.
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Fig. 3: PZD versus M for a signal with α = 0.25 and L = 500, for
different algorithms and sensing graphs.

constructed with i.i.d. elements, where each element is a zero-
mean Gaussian random variable with variance 1/M . In the
AMP-JS, there is a thresholding function based on the `2-
norm of each block. Thus, the zero and non-zero blocks can
be detected easily. Since in the noiseless scenario, unlike the
case for the proposed ZMD scheme, the PWZD of AMP-JS is
not necessarily zero, PZD of AMP-JS is plotted only for the M
values in which PWZD < 0.1%. We see that with increasing the
block length, the required number of measurements by AMP-
JS is increased for a target PZD. However, the performance of
the proposed method does not depend on the block length. The
comparison shows the superior performance of the proposed
scheme, particularly for regular graphs with dV = 1. For very
low number of measurements, the 1to1 graph outperforms the
others.

B. Noisy Measurements

In Fig. 4, the probabilities of false alarm (PFA), detection
(PD), wrong zero detection (PWZD) and zero detection (PZD)
are plotted versus the threshold c′. Both analytical and simula-
tion results are presented. The sensing graphs are regular graphs
with degrees dV = 1 and dM = 2. The number of blocks L is
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threshold, c′, when the sensing graph is regular with degree distribution
(1, 2) for L = 1000, α = 0.25 and SNR= 25 dB. The markers and
the dashed lines correspond to the simulation and analytical results,
respectively.
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Fig. 5: PZD versus sparsity ratio for different noise levels with regular
sensing graphs with the degree distribution of (1,2) for L = 1000 and
M = 500.

1000 and α = 0.25, and the curves are plotted for SNR= 25

dB. As seen in this figure, the simulation and analytical results
match closely.

Fig. 5 shows PZD versus sparsity ratio for different noise
levels when PWZD is limited below 2%. The curve for the
noiseless scenario is also provided for reference. The sensing
graphs are regular with degree distribution equal to (1,2),
L = 1000 and M = 500. Fig. 5 shows that the performance
improves with increasing SNR, and at each SNR, the PZD drops
rapidly when the sparsity ratio in increased beyond a certain
threshold. Before such a threshold is reached, the performance
is practically the same as that of the noiseless case, but, when
this threshold is passed, the PZD curve demonstrates a waterfall
behavior down towards PZD = 0. This waterfall region (for
a given SNR) corresponds to the values of α for which the
threshold c′ has to be decreased rapidly (with increasing α) to
maintain PWZD below 2%. As a consequence, PZD is decreased
sharply.

VII. CONCLUSION

A novel zero-block detection scheme in the context of wide-
band spectrum sensing was proposed. For this, an analog to in-
formation converter (AIC) with block sparse sensing matrix was

designed. Analytical and simulation results for both noiseless
and noisy scenarios were presented. The results demonstrated
the effectiveness of the proposed scheme in reliable detection
of spectrum holes with minimal complexity even in scenarios
where the number of measurements were relatively small.
In particular, it was shown that, at the presence of noise,
performance similar to the noiseless case can be achieved at
higher SNR values and smaller sparsity ratios. Probably one of
the most important contributions of this work was to introduce
a new compressed sensing paradigm in which one is interested
in reliable detection of (some of the) zero blocks rather than
the recovery of the whole block sparse signal. Future work
includes the optimization of irregular degree distributions for
sensing matrix (graph) to maximize PD for a given PWZD.
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