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Abstract—In the present paper, a simplified two-dimensional ~ Observing the behavior of the channel model will help to
magnetic recording (TDMR) channel model is proposed in clarify the characteristics of TDMR channels. The secora go
order to capture the qualitative features of writing and read- of the present paper is to present a method for evaluating
back processes of TDMR systems. The proposed channel model the symmetric mutual information. The evaluation of mutual
incorporates the effects of both linear interference from ajacent information is not a trivial problem for a channel with signa
bit-cells and signal-dependent noise due to irregular grai bound- dependent noise, but the problem is worth pursuing because i

aries between adjacent bit-cells. The simplicity of the prposed . o
model enables us to derive the closed form of the conditional IS Closely related to the areal density limit of TDMR systems

PDF representing the probabilistic nature of the channel. he
conditional PDF is Gaussian distributed and is parameteried by
a signal-dependent covariance matrix. Based on this condimnal
PDF, a Monte Carlo method for approximating the symmetric

mutual information of this channel is developed. The symmetic S . . . .
mutual information is closely related to the areal density imit we will discuss a two-bit-cell model in this section. Altrgiu

for TDMR systems. The numerical results suggest that we may this channel m_odel is simple, it provides insight for a TOMR
need low-rate coding, e.g., 2/3 or 1/2, when the jitter-likenoise ~ channel and this model has a number of features that a TDMR

becomes dominant. channel model must possess. For example, this channel model
can handle signal-dependent noise generated by the iaregul
boundary between two adjacent bit-cells.

II. TwoO BIT-CELL MODEL

Before introducing the simplified TDMR channel model,

. INTRODUCTION
I — . . . A number of grains of a magnetizing material are spread
Continuing demand for high-density magnetic reCOrdIngover the surface of the recording medium. In the writing jghas

requires novel technology for realizing higher areal den- writing head maanetizes each arain uoward or downward
sity. The emergence of shingled writing promotes researc 9 g . gran up LD
epending on the information to be written. A magnetization

into advanced signal processing because narrowing inter- g ! .
track pitch causes severe inter-track interference anek-jit pracess of each grain is determined according to the stiengt

like noise around track edges. Under such circumstances, tWdlstrlbu'uon of magnetic flux emitted from a writing head and

dimensional signal processing based on multiple readiagsie the magnetic sensitivity of the grain. The first approximati

is becoming a hot research topic in this field. For exampleh su 'r?]gogggg%& tr?:s pa:ﬁSgQ;thJFprGerclterhSltatrhghgegd lil%?:]%rlmt tﬁ]:a
a system requires linear interference cancellation in Itio¢h magnetic field induced b gwritin ghead hag ;';m effec){’ on
cross-track and down-track directions. 9 y 9

the rectangular area. This approximation helps to simpkigy

In the near future, the size of bit-cells will likely shrinkt channel modeling process described below. This rectangula
be comparable to grains of a magnetizing material. As suctgrea is referred to herein ashbit-cell. Some of the grains
highly advanced two-dimensional signal processing will belie between two adjacent bit-cells and cause irregularngrai
required to handle strong linear interference from adjabén  boundary between adjacent bit-cells. Since a read-bactkrays
cells and signal-dependent noise due to irregular graimébou has no knowledge on the positions of grains, such an irregula
ary between adjacent cells. The concept of two-dimensionarain boundary incurs jitter-like signal-dependent naiisat
magnetic recording (TDMR) advocated by Wood et al. [4]makes it difficult to achieve reliable detection in TDMR
has inspired research in this field. Related research ioto, f systems.
example, signal processing [3], detection algorithims §hd

simplified channel model$|[5] has been conducted for TDMR A re_e_ld_-back si_gnal_is Obtaimd by taking the convoIL_Jtion of
systems. a sensitivity function (i.e., 2D-impulse response) of adieg

head and a magnetic field pattern caused by magnetized grains
One goal of the present paper is to develop a simpl®n the surface of a recording medium. A sample sequence
mathematical model for TDMR systems that is useful forof the read-back signals is sent to a signal processing and
performance evaluation of detection algorithms and for thaletection unit to estimate the written data. In a TDMR system
design of two-dimensional codes. Thimplified TDMR chan- two adjacent bit-cells in a grid of bit-cells are closelyaarged
nel modelpresented herein incorporates the effects of bottand a reading head with a wide (compared to the size of a bit-
linear interference from adjacent bit-cells and signglatelent  cell) footprint is often considered in a TDMR system. Two-
noise. Although the channel model is fairly simple, the modedimensional linear interference consisting of both irtgmbol
shows the complicated nature of signal-dependent channelsterference (ISI) and inter-track interference (ITl)s&s in
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2-D low-pass filter is not realizable), we expect the model to
reflect the qualitative nature of an actual TDMR system.

If there is no system noise or jitter-like noise due to the
irregular grain boundary between two bit-cells, the folliogv
read-back signals can be obtained:

Head 1

|
\

\“_’(‘: Head 2 3 + 1 3 +
eal = =X =T = =T —X1.
\ Y1 51T 52, Y2 g%2 T 5T
x2 Some of the grains located in the middle of the bit-cell

boundary have the same polarity as the valuegfwhereas
others have the polarity same as the valuenfThe balance
of contributions of such grains are modeled by a Gaussian
random variablen; in the proposed model. We adopt a
Fig. 1. Two bit-cell model Gaussian model for representing this balance for two reason
1) as described later herein, a Gaussian model leads to a
mathematically tractable probability density functiob@® of
such a system and should be appropriately processed talprovireceived signals, and 2) since the balance of anga=onsists
high reliability of estimated data. of contributions from several grains (i.e., addition of el
random variables), it is natural to model the balance ofsarea
n; by a Gaussian random variable.

Media |regular grain boundary

A. Details

. o . We can rewrite the model](1) in vector form, as follows:
The two-bit-cell model, which is an abstraction of a part of 1)

a TDMR system, is shown in Fig] 1. This model contains two Y1 _ 1731 L) (™
adjacent bit-cells, and the information written to thegeckils Y2 2.1 3 T2 ng

is denoted byrq,z2 € {41, —1}. Between two bit-cells, we 1 —1 1

assume that an irregular grain boundary exists. We alsorgssu + ny ( 1 -1 ) ( o ) . 3)

that two overlapping footprints (denoted by Head 1 and Head
2 in Fig.[1) of a reading head are exploited to yield the twoThe first term on the right-hand side of the above equation
read-back signals. represents a linear interference that occurscormnd z,, and
) ) the second term on the right-hand side is the system noise.
In the two-bit-cell model, the two read-back signglsand  The third term on the right-hand side indicates the jittiee-|

y2 are given by noise due to the irregular grain boundary. Note that the last
1 1 term on the right-hand side disappearscif = x5. Namely,
o= x1+ <§ + nj> 1+ <— - ng'> T2 +n1 when two bit-cells have the same polarity, an irregularrgrai

boundary has no harmful effect regarding detection. The las

Y2 = a2+ <l _ nj> Ty + <l + nj> z1 +mns. (1)  termon the right-hand side, representing the signal-cixren
2 2 noise, introduces a certain difficulty in designing detatti
Note that the read-back signals are assumed to be appedpriat 2/90rithms, codes, and evaluating the capacity of the atlann
scaled so as not to m_troduce additional s_cale parameth_es. T Figure[2 indicates signal constellations regarding the- two
symbolsm andns are |nde2pendentGau55|an random variable$)it_cell model. The transmitted symba(s;, z») are depicted
with mean0 and variancer; that represent system noises. Th_ein Fig.[2 (left), and the received symbdig, y») in a noiseless
symboln; is an independent Gaussian random variable Withyse are indicated as black dots in Fif. 2 (right). Due to the
mean0 and variance; that corresponds to the irregular grain jinear interference, we can see that the received symbels ar
boundary between two bit-cells. In other words, we intr@luc |5cateqd at the corner points of a diamond-shaped region. The
a stochastic model for expressing the effects of an imregulayqteq circles around the black dot represent the contdurs o
grain boundary. the PDFPy (y1,2)(Y = (y1,%2)). The exact form of the PDF
The following is an implicit assumption to derive the above Wil be discussed in the next subsection. Note that _the shape
model of the read-back signals. L¢(a,b) be the vertical ©f the contours around the dots depends on the signals. For
component of magnetic flux induced by the media at poinfX@mPple, the noiseless received signals, y») = (+2,+2)
(a,b) € R. For simplicity, it is assumed that(a,b) = 2; €  correspond to the transmitted signals , ) = (+1, +1). In
{+1,—1} if (a,b) is in the magnetized area corresponding totNiS €ase, no jitter-like noise appears in the detectiorspha
bit-cell 1; otherwise,f(a,b) = x5 € {+1,—1} is assumed. and only system noisén, ns) disturbs the rece|vgd signals.
Under this setting, the read-back signalis obtained by On the other hand, whefu,z2) = (+1, 1), the irregular

grain boundary is as depicted in Fig. 2 (right).
Yi = / f(a,b) da db. (2)
_ Head i _ B. Conditional probability density function of receivedrsals
A read-back signal can be considered as an output from a
concatenated system of a 2-D low-pass filter with a rectamrgul ~ One of the advantages of the two-bit-cell model is its math-

window (i.e., head footprint) followed by a 2-D sampler. ematical tractability. It can be shown that the conditioRBIF
Although this assumption is based on an ideal case (such @ the received symbols are Gaussian distributed (detadls a



for a channel model containing a number of bit-cells. Anothe

x2 y2
observation we can make from this figure is that we may
' 2.1 (e need a non-linear detector instead of a linear detector in
+1 order to approximate the exact ML detector with reasonable
e @ e o1 computational complexity.
(41 x1 : t : : y1
x1 ! ® |- @ x1 2 [y ) *2

° 2
X2

Fig. 2.  Signal constellations (left: transmitted symbdis;,z2), right:
received symbolgyi,y2) in a noiseless case)

discussed in the next section). The conditional ARk (y|x) o = 0.01
i =0.

(x = (z1,22)",y = (y1,92)") is given by
1
P, = —(y - Ax)TS(x)"1(y - A
Y‘X(Y|X) 2m4/1S(x)| P ( v x)7 S0y X)) " Fig. 3. ML decision region (horizontal and vertical axesresgnty; (—6 <
y1 < 46) andy2(—6 < yo < +6), respectively. The red dot indicates the

where the matrixA is the interference coefficient matrix received points in the noiseless case.)

0 = 0.25

defined as )
A=l ( 3 1 ) . @)
2\ 1 3 I1l.  SIMPLIFIED TDMR CHANNEL MODEL

The covariance matri¥(x) is given by In this section, we generalize the two-bit-cell model dis-

2(z1 — 22)? + 02 2(31 — )2 cussed in the previous section into a more general two-

S(x) = < G\ T2 T Os O\ TR ) . (5) dimensional channel model that is referred to as a simplified

o (21 —x2) oj(x1 —w2)* + 0y TDMR channel model.
From Py x(y|x), the noise vectoy — Ax is Gaussian In the following discussion, we will assume that bit-cells

distributed, and the covariance matifx) is dependent on @re arranged on grid points in a rectangular area, as shown in
the transmitted signat. This observation matches the contoursFig-[4. The area of interest is called thitable regionthat

shown in Fig[® (right). consists off rows andJ columns. Each bit-cell has its index
i(i € [1,n],n = I.J), and the bit-cell with index is denoted
C. Maximum likelihood detection by B;. As in the case of the two-bit-cell model, each bit-cell

- _ can take the value-1 or —1. The notationa, b] represents the
We have had the exact conditional PDF for the two-bit-cellset of consecutive integers fromto b.

model. The conditional PDF leads to the explicit formula for
maximum likelihood detection for this channel. At a glance, J cells
the two-bit-cell model appears to be a simple model, but this
model possesses properties that are not so intuitive. B thi
subsection, we will observe such properties in terms ofaign
detection.

Let us define a distance measupéy|x) as
D(ylx) = (y — Ax)"S(x) " (y — Ax) + log |S(x)[, (6) T cells

which is derived by taking the negative logarithm to the
conditional PDF of the channel. Using this distance measure
the maximum likelihood (ML) detection rule can be written as

[ ]

X = argye(q1,-1}2 Min D(ylx). (7 0O 11

Figure[3 shows the decision regions of the two-bit-cell
model for this ML detection rule in théy,y>) plane. From  Fig. 4. Writable area and bit-cells: (= 25)
left to right, the cases of standard deviatioms = 0.01
and 0.25 are depicted. Unlike a conventional linear inter-  The set of indices of bit-cells adjacent to the bit-cB|lis
ference channel, we can see that two decision regions fatenoted byN (i)(: € [1,n]). For example, in the case of Fig. 4,
(y1,92) = (+1,41),(—1,—1) become closed sets as the we haveN(13) = {8,12,14,18}. The boundary between two
standard deviatiow; increases. The peculiar shape of theseadjacent bit-cells is referred to as adge The edge between
decision regions suggests the difficulty of a direction pgob  bit-cells B; and B; is represented by; ;, or equivalentlyE; ;.



The head footprintH; corresponding to bit-celB; (i € [1,n])

. . . . Te — TylZ
provides a received symbg] by reading a certain area around e al%e.a

B;. Here, we assume that the head footprint has a crisscross
shape, as shown in Figl 5.
p Te — Tg|Ze,d \a [Te — | 2e

PN

X ]

]

. e d§ e /b
By | B | By / o
Te — T¢ Ze,c

Fig. 6. Expressing irregular grain boundary with Gaussemom variable

Fig. 5. Head footprintH, (gray area corresponds to the head footpfif coefficients andy(x) denotes the noise term

= (X)), 10
In the simplified TDMR channel model, the received signal q(x) = (%), 2(x), - 4n(x)) (10)
y:(i € [1,n]) corresponding to the head footprid{; is  where the explicit form ofj;(x) is given by

modeled b
y qi(x) = Z |l‘l - $j|2i7j + z;. (12)
yl:aarl—i—ﬂ Z T; + Z |I1‘—.§Cj|2i_’j—|—zi. (8) JEN(i)
JEN(3) JEN(Y)
The first and second moments of the noise tef(x)(i €
[1,n]) can be immediately derived as follows. The second
moment ofg;(x) is evaluated as

The real constantsyx and 8 are scale parameters for the
intended signal and the linear interference coming from ad
jacent cells, respectively. The noise tetgris a Gaussian i.i.d.

random variable with mean 0 and variangg and represents Elo? _ 2 E[2 El:2 (12
a system noise. An ii.d. random variable; is identical g7 ()] Z (i — @) Eleiy] + Blz] - (12)

to z;; and represents jitter-like noise due to the irregular REN ()
grain boundary around edgg; ;. The random variable; ; = Y (wi—am)0} +ol. (13)
follows the one-dimensional Gaussian PDF with méaand kEN(3)

varianceo—?. Of course, it is easy to provide more flexibility he ab derivati he ind d d
by introducing more parameters. For example, the coeftisien " the above derivation, the independenceszpf and z;

of linear interference from the adjacent cells can be dact are epr0|ted.‘In a §|m|lgr manner, the second cross moment
dependent. However, we will avoid introducing too manyE[qz'(x)q-f(x)](l # J) s given by

parameters so as not to complicate the following discussion (z; — x;)%02, B; and B; are adjacent
Once the following argument is grasped, modification of theE[qi(x)g;(x)] = { 0 R otherwisej

model would be straightforward. ’

. , . . __In summary, the covariance matrix regardiax), which is
As in the case of the two-bit-cell model, jitter-like noise jenoted byS(x) = {S; ;(x)}, is given by

occurs around an edge between two bit-cells having distinct

polarities (Fig.[). When the size of a bit-cell becomes Skeney (@i —wx)?0; +oF, i=j
comparable to the average diameter of grains, the effect of S; ;(x) = ¢ (z; — z;)%02, Jj € N(i)

an irregular grain boundary around an edge tends to be the 0, otherwise
dominant source of noise that degrades the overall detectio (14)

performance of a system. The proposed model includes the Th be obtained b ltilvi |
effect of the irregular grain boundary by introducing ranmo he vectorq(x) can be obtained by multiplying a rea
variables corresponding to each edge in the writable afea. [Ipatrlx to a vector of independent Gaussian random variables

; ; his implies thatq(x) obeys the multi-dimensional Gaussian
x; andz; have the same value (i.e., same polarity), the ter L :
expressing the jitter-like noiser; — x; |2, disappears. On anF. We therefore have the conditional PDF given by

the other hand, whem; andz; have opposite polarities, the 1
term|z; — x|z ; influences the received signgl as a signal- Pyx(ylx) = (V2m)™ /IS (x)]
dependent noise. 1
T g—-1
For the following analysis, it is convenient to introduce a X €Xp <_§(y —Ax)" ST (x)(y ~ AX)) (15)

vector notationy = Ax + q(x) to express the mode[l(8) of

the received signals, where It is trivial to see that the conditional PDF of the two-béHc

model is a special case of this conditional PDF (15).

T T
= ) )t ) = ) R M 9 H . . e
x = (@122 )" ¥ = (92 yn) © As an example, let us consider the case in which the writing
The matrix A € R™ "™ represents the linear interference area consists df x 2 bit-cells. When all four bit-cells have the



same polarity, the corresponding covariance matrix besame where the conditional PDPy x (y|x) is given in [I5). The
diagonal matrix with the diagonal elemerit because no jitter- entropy ofY is thus given by the following multi-dimensional
like noise occurs. The worst pattern in terms of noise vagan integration:

is the checker-board-like pattern (i.e., any pair of adjdxt-

cells have distir_lct polarity) _because every edge between tw H(Y)=- / Py (y)log, Py (y)dy. (19)
bits causes an irregular grain boundary effect. In such a,cas yeRn®
the covariance matrix has the following form: The entropy H of a multi-dimensional Gaussian random
o2 + 802 402 0 402 variable with a covariance matrik [6] is given by
s J J J
2 2 2 2 n
doj  o;+80;  doj 0 . (16) H = (1/2)log, ((2me)"|K]) . (20)
0 40% 0% + 807 40% _ _ : .
4o2 0 402~ o2 4+ 802 Using this formula, we can derive the conditional entropy
J J s J

H(Y|X) as follows:

IV. EVALUATION OF SYMMETRIC MUTUAL INFORMATION HYX) = - ZPx(X) / Pyix (y1%) logs Pyix (y]x)dy
Evaluation of the capacity of the simplified TDMR channel x y

is of practical importance. The capacity indicates #real n 1 n

density limit for the TDMR channel without making any = 2 Z§1°g2((2m) 1S(x)]) - (21)

assumptions on coding and detection methods and may also x

give us insight into the design of a read-back system inolyidi The range of summatior € {+1,—1}"is hereafter omitted.

detection algorithms and coding. The symmetric mutual information, denoted Wy, is thus

In the previous section, we have derived the closed fornP'VeN by
expression of the conditional PDF that perfectly character Iq

izes the channel model. Therefore, in principle, we have / (Zx PYX(ylx))1 (Zx PY|X(Y|X)>d
- — on |08\ — 4, | 4Y
yeRn,

sufficient information to evaluate the capacity of the clkdnn = on on

given asC = maxp, I(X;Y). The random variableX = 1
(X1, Xo,..., X)), Y = (Y1, Ya,...,V,,)" represent wiiten ~ _ o—n > = log, ((2me)"[S(x)]) - (22)
signals in a writable area and read-back signals, respgdgctiv 2

The symboll(X;Y) is the mutual information defined by

I(X;Y) = H(Y) — H(Y|X). 17)

X

B. Monte Carlo method for evaluation éf

H th bl f luating th itv of thi In order to circumvent the numerical difficulty of high-
r:)wevelr,_ etp:c_) 'eImO? eévalualing the c?pam¥ 0 . I;‘:’dimensional numerical integration, we use a Monte Carlo
channel IS not trivial. course, maximization of mutual jethog to evaluate the symmetric mutual information. The

information[(X;Y) i.n.terms of the prior distributiorleis pseudo code of the Monte Carlo method is summarized as
a computationally difficult problem. Even the evaluation OfAIgorithm 1

the mutual information itself is not a simple problem beeaus
we need to handle signal-dependent noise that results in . .
nonuniform conditional PDF. Another computational diffigu Algorithm 1 Monte Carlo method for evaluation dk
comes from the intrinsically high dimensionality of the nebd 1 According to [21), evaluaté/ (Y |X) exactly.
High-dimensional integrations are required for evaluptine 20 1:=0;5:=0

mutual information. 3 while t <14, do , o
4: Generatex according to the uniform distribution.

In the present paper, we will focus on the symmetric mutual 5:  Generate a received vectgr= Ax + q(x).
information instead of the channel capacity. The symmetric 6.  According to [I8), evaluat®y (y) exactly.
mutual information is the mutual information under the as- 7. s.— — log, Py (y)
sumption that the written sign® is equiprobable. From the g ¢.=¢4+1
definition of the capacity, it is clear that the symmetric oalt 9: end while
information is a lower bound of the capacity and can be usedg: ¢ := 5 /tmaz
as an approximate value of the capacity. This simplificationi1: Qutputd — H(Y|X) as an estimate of.
makes the problem computationally tractable. In this secti
we present a Monte Carlo method for evaluating the symmetric
mutual information of the simplified TDMR channel model.

The parametet,,., iS a given positive number that indi-
cates the number of iterations. In the following, we explain
the important steps in Algorithm 1. In line 1 in Algorithm 1,

A. Symmetric mutual information H(Y|X) is evaluated according t6(21). Since the number of
Under the assumption tha is equiprobable, the proba- Summands of[(21) ig", this step requires time complexity
bility Py (y) is given by O(2™). The step at line 6 is also a time consuming part of the
algorithm that require®(2")-time for evaluation. Note that
Py(y) = Z Py x(y|x)Px (x) the evaluation ofPy (y) is repeated,., times. Thus, this
XE{+1,—1}n part dominates the overall computation time. The quarttity

is an approximate value d#(Y) as

27" Y Pyx(yl), (18)
xe{+1,—-1}n 0 ~ Epy [~ log, Py(y)] = H(Y).



There is a tradeoff relationship between the computation-co
plexity and accuracy of the approximation regardihgThe
accuracy improves as the number of iterations, increases
but a largert,, .. results in a longer computation time.

V. NUMERICAL RESULTS

rmation (bits)

In this section, several numerical results obtained by thes
Monte Carlo method proposed in the previous section WI||—
be presented. Figufd 7 shows the plots of symmetric mutuaE
information as a function of the standard deviation of the =
system noisers. The curves of two cases such thgt= 0.4
and o; = 0.8 are shown in Figll7. In this case, numerical
integration can be performed in order to obtain the symmetri
mutual information because the number of bit-cells is small
We thus plot the results of numerical integration and thaltes
of the Monte Carlo method in Fi§l 7. The number of iterations
is set t0t,,.: = 10000 in the Monte Carlo simulations.
Although certain statistical fluctuations are observed tfa
curves obtained by the Monte Carlo simulations, the curves
obtained by the two methods are in reasonable agreement. We

Fig. 8.
as a function ofos (9 bit-cells,a = 1.0, 8 = 0.5, tymaz = 1000)

M'onte—Ca'rIo(sigmé:O.S) —
85 Monte-Carlo(sigma;=0.6)
~—

8 \
7.5

7
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6
55

5 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

sigmag

Symmetric mutual information of simplified TDMR cheel model

can also observe a tendency whereby the symmetric mutuadethod for approximating the symmetric mutual information

information decreases ag increases.

The symmetric mutual information is closely related to the

areal density limit for a TDMR system without making any

8.3 T T
TR Monte- Carlo(5|gmaJ=0 3) ——
1.9 — ntegration(sigm 1j=0.4) |
) Monte-Carlo(sigma;=0.8) -
g ntegration(sigma;=0.8)

. 18 * ? '
g 17 g X
c o,
S 75 :
g 1.6 e
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“:E l.;
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sigmayg

. . : . . . 2
Fig. 7. Symmetric mutual information of two bit-cell moded a function

of o5 (numerical integration and Monte Carlo method)

Figure [8 includes the curves of the symmetric mutual [3]
information of a simplified TDMR channel consisting of nine
bit-cells. The interference coefficients = 1.0,8 = 0.5 are
assumed. The number of iterations is setttQ,, = 1000.

In the case ofo; = 0.8, the symmetric mutual information el
rate (mutual information divided by the number of bit-cglls
approacheg/3 ato, = 0.3.

(5]

VI.

In order to capture the qualitative features of the writing
and read-back processes of TDMR systems, we propose
a simplified TDMR channel model. The simplicity of the
proposed model enable us to derive the closed from of the
conditional PDF representing the probabilistic nature e t
channel. The conditional PDF is Gaussian distributed and
is parameterized by the signal-dependent covariance xmatri
Based on this conditional PDF, we developed a Monte Carlo

CONCLUSION

assumptions on coding or detection schemes. The numerical
results presented herein suggest that a low-rate codirdy, su
— as 2/3 or 1/2, may be necessary when jitter-like noise besome
dominant. The channel model is useful not only for estinmatio
of the capacity of TDMR systems but also for the development
of efficient detection algorithms and for the design of two-
dimensional codes suitable for a TDMR channel.
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