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Abstract—In this paper, for the first time, we analytically
prove that the uplink (UL) inter-cell interference in frequency
division multiple access (FDMA) small cell networks (SCNs)
can be well approximated by a lognormal distribution under a
certain condition. The lognormal approximation is vital because it
allows tractable network performance analysis with closed-form
expressions. The derived condition, under which the lognormal
approximation applies, does not pose particular requirements on
the shapes/sizes of user equipment (UE) distribution areas as
in previous works. Instead, our results show that if a path loss
related random variable (RV) associated with the UE distribution
area, has a low ratio of the 3rd absolute moment to the variance,
the lognormal approximation will hold. Analytical and simulation
results show that the derived condition can be readily satisfied in
future dense/ultra-dense SCNs, indicating that our conclusions
are very useful for network performance analysis of the 5th
generation (5G) systems with more general cell deployment
beyond the widely used Poisson deployment. 1

I. INTRODUCTION

Small cell networks (SCNs) have been identified as one
of the key enabling technologies in the 5th generation (5G)
networks [1]. In order to gain a deep theoretical understanding
of the implications that SCNs bring about, new and more
powerful network performance analysis techniques are being
developed. In this context, new performance analysis tools can
be broadly classified into two large groups, i.e., macro-scopic
analysis and micro-scopic analysis [2-8].

The macro-scopic analysis assumes that both user equip-
ments (UEs) and small cell base stations (BSs) are randomly
placed in the network, often following homogeneous Poisson
distributions [2,3]. The micro-scopic analysis is usually con-
ducted assuming that UEs are randomly dropped and the BSs
are deterministically deployed, i.e., the BS positions in the
considered cellular network are known. Generally speaking,
the macro-scopic analysis investigates network performance on
a high level [2,3], while the micro-scopic analysis gives more
detailed results for specific networks [4-8]. Note that both
analyses are related to each other. The average performance
of micro-scopic analyses conducted over a large number of
realizations of BS deployments should be equal to that of the
macro-scopic analysis, provided that the examined realizations
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of the deterministic BS deployments follow the BS distribution
assumed in the corresponding macro-scopic analysis.

In this paper, we focus on the micro-scopic analysis, and
in particular, we consider an uplink (UL) frequency division
multiple access (FDMA) SCN. Note that the analysis of a UL
FDMA system is more involved than its downlink counterpart
due to the power control mechanisms used at UEs. For the
UL micro-scopic analysis, existing works either use

• Approach 1, which provides closed-form but complicated
analytical results for a network with a small number of
interfering cells, each cell with a regularly-shaped UE
distribution area, e.g., a disk or a hexagon [4];

• Approach 2, which makes a empirical conjecture on the
UL interference distribution and on that basis derives ana-
lytical results for a network with multiple interfering cells
placed on a regularly-shaped lattice, e.g., a hexagonal
lattice [5], [6];

• Approach 3, which conducts system-level simulations to
directly obtain empirical results for a complex network
with practical deployment of multiple cells placed on
irregular locations [1], [7], [8].

Obviously, Approach 1 and Approach 3 lack generality and
analytical rigorousness, respectively. Regarding Approach 2, it
has been a number of years since an important conjecture was
proposed and extensively used in performance analysis, which
stated that the UL inter-cell interference with disk-shaped UE
distribution areas could be well approximated by a lognor-
mal distribution in code division multiple access (CDMA)
SCNs [5] and in FDMA SCNs [6]. This conjecture is vital
since it allows tractable network performance analysis with
closed-form expressions. However, there are two intriguing
questions regarding this conjecture: (i) Will the approximation
still hold for non-disk-shaped UE distribution areas? (ii) Will
it depend on the sizes of the UE distribution areas? In this
paper, we aim to answer those two questions, and thus making
significant contributions to constructing a formal tool for the
UL micro-scopic analysis of network performance.

Compared with the previous works [5,6] of the micro-scopic
network performance analysis based on empirical studies, the
contributions of this paper are as follows:

1) Our work, for the first time, analytically proves the
conjecture in [6], i.e., the UL inter-cell interference in
FDMA SCNs can be well approximated by a lognormal

ar
X

iv
:1

50
5.

01
92

4v
3 

 [
cs

.N
I]

  2
6 

Se
p 

20
17

http://ieeexplore.ieee.org/document/7417160/


distribution under a certain condition.
2) The derived condition, under which the lognormal

approximation applies, does not rely on particular
shapes/sizes of UE distribution areas and can be readily
satisfied in future dense/ultra-dense SCNs, indicating
that conclusions derived using this framework are very
general and useful for network performance analysis.

3) Based on our work, we propose a new approach to
fill an important theoretical gap in the existing micro-
scopic analysis, which either assumes very simple BS
deployments or relies on empirical results. Specifically,
we directly investigate a complex network with prac-
tical deployment of multiple cells placed on irregular
locations. In order to do that we provide a theoretical
framework based on the lognormal approximation of
the UL interference distribution, supported by rigorous
theoretical analysis, as well as the conditions under
which the approximation should be valid.

II. NETWORK SCENARIO AND SYSTEM MODEL

In this paper, we consider UL transmissions and assume
that in one frequency resource block (RB) at a time slot, only
one UE is scheduled by each small cell BS to perform an UL
transmission, which is a reasonable assumption in line with
the 4th generation (4G) networks, i.e., the UL single-carrier
FDMA (SC-FDMA) system and the UL orthogonal FDMA
(OFDMA) system in the 3rd Generation Partnership Project
(3GPP) Long Term Evolution (LTE) networks [9] and in the
Worldwide Interoperability for Microwave Access (WiMAX)
networks [10], respectively.

Regarding the network scenario, we consider a SCN with
multiple small cells operating on the same carrier frequency
as shown in Fig. 1. In Fig. 1, a total of B small cells
exist in the network, including one small cell of interest
denoted by C1 and B − 1 interfering small cells denoted by
Cb, b ∈ {2, . . . , B}. We consider a particular frequency RB,
and denote by Kb the active UE associated with small cell Cb
using that frequency RB. Moreover, we denote by Rb the UE
distribution area of small cell Cb, in which its associated UEs
are distributed.

Fig. 1. A schematic model of the considered SCN.

The distance (in km) from the BS of Cb to the BS of C1,
b ∈ {1, . . . , B} and the distance from UE Kb to the BS of Cm,
b,m ∈ {1, . . . , B} are denoted by Db and dbm, respectively.
In this paper, we consider a deterministic deployment of BSs,
and thus {Db} is assumed to be known. However, the position
of UE Kb is assumed to be randomly and uniformly distributed
in Rb. Hence, dbm is a random variable (RV), the distribution
of which cannot be readily expressed in analytical form due
to the arbitrary shape of Rb.

Based on the definition of dbm, the path loss (in dB) from
UE Kb to the BS of Cm is modeled as

Lbm = A+ αlog10dbm, (1)

where A and α are the path loss at the reference distance
dbm = 1 and the path loss exponent, respectively. Note that
Lbm is a RV due to the randomness of dbm. In practice, A
and α are constants obtainable from field tests [12].

The shadow fading (in dB) from UE Kb to the BS of
Cm is denoted by Sbm (b,m ∈ {1, . . . , B}), and it is usually
modeled as a zero-mean Gaussian RV because the linear
value of Sbm is commonly assumed to follow a lognormal
distribution [12]. Hence, in this paper, we model Sbm as an
independently identical distributed (i.i.d.) zero-mean Gaussian
RV with variance σ2

Shad, expressed as Sbm ∼ N
(
0, σ2

Shad

)
2.

The multi-path fading channel vector from UE Kb to the
BS of Cm is denoted by hbm ∈ CN×1, where we assume
that each UE and each BS are equipped with 1 and N omni-
directional antennas, respectively. All channel coefficients are
assumed to experience uncorrelated flat Rayleigh fading, and
they are modeled as i.i.d. zero-mean circularly symmetric
complex Gaussian (ZMCSCG) RVs with unit variance.

The normalized maximal ratio combining (MRC) reception
filter denoted by fm =

hH
mm

‖hmm‖ is considered at the BS of Cm,
where hH

mm is the Hermitian transpose of hmm. According
to [11], the effective channel gain associated with the link
from UE Kb to the BS of Cm (b,m ∈ {1, . . . , B} , b 6= m),
defined as |fmhbm|2 and denoted by Hbm, follows an i.i.d.
exponential distribution exp (1) with the mean equal to 1.

The transmit power of UE Kb is denoted by Pb. In practice,
Pb is usually subject to a semi-static power control (PC)
mechanism, e.g., the fractional pathloss compensation (FPC)
scheme [12]. Specifically, based on this FPC scheme, Pb in
dBm is modeled as3

Pb = P0 + η (Lbb + Sbb) , (2)

2A more practical assumption would be the correlated shadow fading [13],
which constructs Sbm and Sjm (b, j,m ∈ {1, . . . , B} , b 6= j) as correlated
RVs, and the correlation coefficient should decrease with the increase of the
distance from UE Kb to UE Kj . Such assumption of the correlated shadow
fading will greatly complicate the analysis since it is difficult to characterize
the distribution of the inter-UE distance. For the sake of tractability, in this
paper, we assume i.i.d. shadow fading for the UE-to-BS links.

3In practice, Pb is also constrained by the maximum value of the UL power
and affected by the per-UE signal-to-interference-plus-noise ratio (SINR)
target. The power constraint is a minor issue for UEs in SCNs since they
are generally not power-limited due to the close proximity of the UEs and the
associated SCN BSs [12]. The per-UE SINR target, on the other hand, will
greatly complicate the analysis since it is difficult to model the distribution
of the target SINRs. For the sake of tractability, in this paper, we model Pb
as (2), which is widely adopted in the literature [3,6-8,11].



Table I
DEFINITION OF RVS.

RV Description Distribution

dbm The distance from Kb to Cm related to Rb
Lbm The path loss from Kb to Cm related to Rb
Sbm The shadow fading from Kb to Cm i.i.d. N

(
0, σ2

Shad
)

Hbm The channel gain from Kb to Cm i.i.d. exp (1)
Pb The UL transmission power of Kb related to Rb

where P0 is the power basis in dBm on the considered
frequency RB, η ∈ (0, 1] is the FPC factor, Lbb has been
defined in (1), and Sbb ∼ N

(
0, σ2

Shad

)
.

For clarity, the defined RVs in our system model are
summarized in Table I.

III. ANALYSIS OF UL INTERFERENCE

Based on the definition of RVs listed in Table I, the UL
received interference power (in dBm) from UE Kb to the BS
of C1 can be written as

Ib
(a)
= Pb − Lb1 − Sb1 + 10 log10Hb1

= P0 + (ηLbb − Lb1) + (ηSbb − Sb1) + 10 log10Hb1

4
= P0 + L+ S + 10 log10Hb1, (3)

where (2) is plugged into step (a) of (3). Besides, L and S

are defined as L
4
= (ηLbb − Lb1) and S

4
= (ηSbb − Sb1),

respectively. In particular, since Sbb and Sb1 (b ∈ {2, . . . , B})
are i.i.d. zero-mean Gaussian RVs, it is easy to show that S
is also a Gaussian RV with a distribution N

(
µS , σ

2
S

)
, where{

µS = 0

σ2
S =

(
1 + η2

)
σ2

Shad
. (4)

From the definition of Ib in (3), the aggregated interference
power (in mW) from all interfering UEs to the BS of C1 is

ImW =

B∑
b=2

10
1
10 Ib . (5)

In the following, we analyze the distribution of ImW

in three steps. First, we investigate the distribution of
(S + 10 log10Hb1) shown in (3). Second, we approximate the
distribution of Ib as a Gaussian distribution. Third, we show
that the distribution of ImW can be further approximated as a
lognormal distribution.

A. The Distribution of (S + 10 log10Hb1) in (3)

According to [14], the product of a lognormal RV and an
exponential RV can be well approximated by another lognor-
mal RV. Therefore, in our case, the sum (S + 10 log10Hb1)
can be well approximated by a Gaussian RV G, because 10

1
10S

is a lognormal RV and Hb1 ∼ exp (1). The mean and variance
of G can be respectively computed as [14]{

µG = µS + µoffset

σ2
G = σ2

S + σ2
offset

. (6)

In [14], µoffset and σoffset are suggested to be −2.5 and
5.57, respectively. Note that the approximation is very accurate
when σ2

S > 36 [14]. Such requirement is readily satisfied in
practical SCNs, e.g., it is recommended in [12] that σ2

Shad =
100 and hence σ2

S > 100 > 36 because of (4).

B. The Distribution of Ib in (3)

In the following, we will prove that under a certain con-
dition, Ib can be well approximated by a Gaussian RV. First,
based on the approximation discussed in Subsection III-A, we
reform (3) into

Ib ≈ P0 + L+G. (7)

Note that the probability density function (PDF) and cumula-
tive density function (CDF) of L are generally not tractable
because L is a RV with respect to dbb and db1, which jointly
depend on the arbitrary shape of Rb.

Next, we analyze the distribution of Ib by investigating
the condition under which the sum of a Gaussian RV and
an arbitrary RV, i.e., (L+G), can be well approximated by
another Gaussian RV. To that end, we denote by µL and σ2

L

the mean and variance of L, respectively, define a zero-mean
RV as L̃ = L− µL, and further define another zero-mean RV
as G̃ = G− µG. As a result, (7) can be re-written as

Ib ≈ L̃+ G̃+ (P0 + µL + µG) . (8)

1) The distribution of
(
L̃+ G̃

)
in (8):

Obviously, if
(
L̃+ G̃

)
in (8) can be well approximated by

a Gaussian RV, then Ib can also be well approximated by the
same Gaussian RV with an offset (P0 + µL + µG). In order
to prove that

(
L̃+ G̃

)
indeed can be well approximated by

a Gaussian RV, we introduce the Berry–Esseen theorem in
Theorem 1.

Theorem 1. [Theorem 1, 15] The Berry–Esseen theorem: Let
X1, X2, . . . , XM be M independent RVs with E {Xi} = 0,
E
{
X2
i

}
= σ2

i > 0, and E
{
|Xi|3

}
< ∞, i ∈ {1, 2, . . . ,M}.

Also, let X =
∑M

i=1Xi√∑M
i=1 σ

2
i

. Denote by FX (x) and Φ (x) the

CDF of X and the CDF of the standard normal distribution.
Then, we have

sup
x∈R
|FX (x)− Φ (x)| ≤ C0ψ0, (9)

where ψ0 =
∑M

i=1 E{|Xi|3}(√∑M
i=1 σ

2
i

)3 and C0 = 0.56.

In Theorem 1, C0ψ0 is the upper bound of the maximum
gap between FX (x) and Φ (x). Therefore, Theorem 1 shows
how good the sum of M independent RVs can be approxi-
mated by a Gaussian RV. As long as C0ψ0 is reasonably small,
we can say that the approximation is good. Based on Theo-
rem 1, we propose Lemma 2 to address the question: Under
what condition can

(
L̃+ G̃

)
in (8) be well approximated by

a Gaussian RV?



Lemma 2. Considering the zero-mean RV
(
L̃+ G̃

)
given

by (8), we define a normalized RV as Y = L̃+G̃√
σ2
L+σ2

G

. Denote by

FY (y) and Φ (y) the CDF of Y and the CDF of the standard
normal distribution. Then, we have

sup
y∈R
|FY (y)− Φ (y)| ≤ τ, (10)

where τ =
C0E

{
|L̃|3

}
(√

σ2
L+σ2

G

)3 and C0 = 0.56.

Proof: In order to make use of Theorem 1 to prove
Lemma 2, we construct M − 1 zero-mean Gaussian RVs by
breaking the zero-mean Gaussian RV G̃ into the sum of M−1
i.i.d. zero-mean Gaussian RVs {Gi} , i ∈ {1, 2, . . . ,M − 1},
i.e., G̃ =

∑M−1
i=1 Gi. The variance of each Gi is σ2

Gi
=

σ2
G

M−1 .
Hence, the constructed M − 1 zero-mean Gaussian RVs {Gi}
and the RV L̃ form the set of M i.i.d. RVs required to invoke
Theorem 1. Denote the normalized sum of the M RVs as
Y =

L̃+
∑M−1

i=1 Gi√
σ2
L+
∑M−1

i=1 σ2
Gi

. Then, we can evaluate the upper bound

of the maximum gap between FY (y) and Φ (y) by checking
the metric C0ψ0 using Theorem 1.

According to Theorem 1, the metric C0ψ0 for Y becomes

C0ψ0
(a)
= C0 ×

E
{∣∣∣L̃∣∣∣3}+

∑M−1
i=1 E

{
|Gi|3

}
(√

σ2
L +

∑M−1
i=1 σ2

Gi

)3

= C0×
E
{∣∣∣L̃∣∣∣3}+

(M−1)(
√

2)
3
Γ(2)

√
π

(√
σ2
G

M−1

)3

(√
σ2
L + σ2

G

)3 , (11)

where E
{
|Gi|3

}
=

(
√

2)
3
Γ(2)

√
π

(√
σ2
G

M−1

)3

[16] has been

plugged into step (a) of (11). Since the value of M is
arbitrary in Theorem 1, we let M approach infinity, and
thus the first term of the numerator of ψ0 in (11), i.e.,
(M−1)(

√
2)

3
Γ(2)

√
π

(√
σ2
G

M−1

)3

, will diminish to zero and as a

result C0ψ0 converges to τ given by

τ =

C0E
{∣∣∣L̃∣∣∣3}(√

σ2
L + σ2

G

)3 . (12)

Our proof is thus completed.

An important note on the proof of Lemma 2 is that the de-
composition of G̃ into the sum of M−1 i.i.d. zero-mean Gaus-
sian RVs {Gi} allows the diminishing of

∑M−1
i=1 E

{
|Gi|3

}
,

which quickly reduces C0ψ0 in (11) to τ , thus making it much
easier for the Gaussian approximation to be valid. According
to Theorem 1, if τ in (12) takes a reasonably small value, then(
L̃+ G̃

)
can be well approximated by a Gaussian RV.

From Lemma 2, we can see that τ decreases with the
decrease of E

{∣∣∣L̃∣∣∣3} and with the increase of σ2
G and σ2

L.

Therefore, if the
E
{
|L̃|3

}
σ2
L

associated with UE distribution area

Rb is low, then τ tends to be a small value, and hence the

approximation holds. Intuitively speaking, if
E
{
|L̃|3

}
σ2
L

is low,
then the interfering UEs will be basically concentrated in a
small area of Rb. As a result, the geometrical randomness
of the interfering UEs is reduced, and hence the dB-scale
shadow fading, usually modeled as Gaussian distributions,
will dominate the dB-scale UL interference distribution. Also,
a larger σ2

G allows a better approximation due to the more
dominance of the Gaussian distribution of the dB-scale shadow
fading. It is important to note that although the PDF and
CDF of L and L̃ are difficult to obtain, if not impossible,

the values of σ2
L, E

{∣∣∣L̃∣∣∣3} can be easily computed using

numerical integration over the UE distribution area Rb. We
will briefly discuss the calculation of τ in the next subsection.

To sum up, according to Lemma 2, if τ is reasonably small
for the considered SCN, e.g., around 0.01 (an error about 1
percentile),

(
L̃+ G̃

)
can be well approximated by a zero-

mean Gaussian RV. Then, Ib in (8) can be well approximated
by a Gaussian RV Qb, the mean and the variance of which
can be computed by{

µQb
= P0 + µL + µG

σ2
Qb

= σ2
L + σ2

G

. (13)

2) The calculation of τ :
Considering the definition of L, L̃ respectively in (3)

and (8), we can directly evaluate τ using (12) based on the

results of µL, σ2
L and E

{∣∣∣L̃∣∣∣3} computed by

µL=

ˆ
Rb

LdZ

=

ˆ
Rb

(ηLbb − Lb1) dZ

=

ˆ
Rb

(
(η − 1)A+ αlog10

dηbb
db1

)
dZ. (14)

σ2
L=

ˆ
Rb

(L− µL)2 dZ

=

ˆ
Rb

(
(η − 1)A+ αlog10

dηbb
db1
− µL

)2

dZ. (15)

E
{∣∣∣L̃∣∣∣3}=

ˆ
Rb

|L− µL|3 dZ

=

ˆ
Rb

∣∣∣∣(η − 1)A+ αlog10
dηbb
db1
− µL

∣∣∣∣3dZ. (16)

C. The Distribution of ImW in (5)

According to [17], the sum of multiple independent log-
normal RVs can be well approximated by a lognormal RV.
Considering the expression of ImW in (5), if each Ib, b ∈
{2, . . . , B} can be approximated by the Gaussian RV Qb,
we can conclude that ImW can be well approximated by a
lognormal RV, denoted by ÎmW = 10

1
10Q. The RV Q is a

Gaussian RV and its mean and the variance are denoted by
µQ and σ2

Q, respectively. According to [17], µQ and σ2
Q are

obtained by solving the following equation set,




Ψ̂Q (s1) =

B∏
b=2

Ψ̂Qb
(s1)

∆
= C1

Ψ̂Q (s2) =
B∏
b=2

Ψ̂Qb
(s2)

∆
= C2

, (17)

where Ψ̂X (s) is the approximated moment generating func-
tion (MGF) evaluated at s for a lognormal RV defined as
10

1
10X . Such approximated MGF is formulated as

Ψ̂X (s) =

M0∑
m=1

wm√
π

exp

(
−s exp

(√
2σ2

Xam + µX
ζ

))
, (18)

where ζ = 10
ln 10 , M0 is the order of the Gauss-Hermite

numerical integration, the weights wm and abscissas am for
M0 up to 20 are tabulated in Table 25.10 in [18]. Usually, M0

is larger than 8 to achieve a good approximation [17].
In (17), s1 and s2 are two design parameters for generating

two equations that can determine the appropriate values of
µQ and σ2

Q. Generally speaking, when s1 and s2 take smaller
(larger) values, the mismatch in the head (tail) portion between
the actual CDF and the approximated one can be reduced [17].
The basic idea of (17) is to let the two concerned RVs,
i.e., ImW and ÎmW, statistically match with each other in
the sense of having two equal points on their MGFs. The
solution of (17) can be readily found by standard mathematical
software programs such as MATLAB.

Based on this lognormal approximation, the approximated
PDF and CDF of ImW can be respectively expressed as [16]

fImW (v)≈ ζ

v
√

2πσ2
Q

exp

{
− (ζ ln v − µQ)

2

2σ2
Q

}
, (19)

and
FImW (v)≈ 1

2
+

1

2
erf

ζ ln v − µQ√
2σ2

Q

 , (20)

where erf (·) is the error function.
D. Summary of the Proposed Analysis of UL Interference

To sum up, we highlight the steps in our proposed analysis
of UL interference in the following. First, we use (14), (15)

and (16) to calculate µL, σ2
L and E

{∣∣∣L̃∣∣∣3} for each Rb, b ∈
{2, . . . , B}. Then, based on the calculated results, we check
whether τ given by Lemma 2 is reasonably small. If it is the
case, we can approximate Ib as a Gaussian RV Qb according
to the discussion in Subsection III-B. Finally, we approximate
the RV ImW in (5) as a lognormal RV ÎmW = 10

1
10Q, with the

distribution parameters µQ and σ2
Q obtained from solving the

equation set (17). The chain of approximation to obtain ÎmW

is summarized in Table II shown on the top of next page.

IV. SIMULATION AND DISCUSSION

In order to validate the results from the proposed micro-
scopic analysis of UL interference, we conduct simulations

considering two scenarios, with a single interfering cell and
with multiple interfering cells, respectively. According to the
3GPP standards [12], the system parameters in our simulations
are set to: A = 103.8, α = 20.9, P0 = −76 dBm, η = 0.8,
and σ2

S = 100. Besides, the minimum BS-to-UE distance is
assumed to be 0.005 km [12]. Regarding the equation set (17)
to determine µQ and σ2

Q, we choose the parameters as s1 = 1,
s2 = 0.1 and M0 = 12 as recommended in [17].

A. The Scenario with a Single Interfering Cell

In this scenario, we consider B = 2, as shown in Fig. 2. The
x-markers indicate BS locations, where the BS location of C1

has been explicitly pointed out. The dash-dot line indicate a
reference disk to illustrate the reference size of small cell C2.
The radius of such reference circle is denoted by r, and the
distance between the BS of C1 and the BS of C2, i.e., D2, is
assumed to be 1.5r. In our simulations, the values of r (in km)
are set to 0.01, 0.02 and 0.04, respectively. In this scenario, the
interfering UE K2 is randomly and uniformly distributed in an
irregularly shaped UE distribution area R2, as illustrated by
the area outlined using solid line in Fig. 2. The shape of R2 is
the intersection of a square, a circle and an ellipse, which has
a complicated generation function. Examples of the possible
positions of K2 within R2 are shown as dots.
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 (
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)
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R
b

Fig. 2. Illustration of R2 (irregular shape, r = 0.04).

Table III
RESULTS OF THE PROPOSED ANALYSIS (B = 2).

The value of r τ µQ2 σ2
Q2

r = 0.01 0.0082 -97.10 205.25
r = 0.02 0.0122 -99.69 207.73
r = 0.04 0.0184 -101.54 211.44

Despite of the complicated shape of R2, our proposed
lognormal approximation of the UL interference still works.
Specifically, from (14), (15), (16) and Lemma 2, we can

calculate µL, σ2
L, E

{∣∣∣L̃∣∣∣3} and τ , respectively. The results

of τ are tabulated for various values of r in Table III. From
Table III, we can observe that, when r = 0.01 or 0.02, the
values of τ are around 0.01. Consequently, it indicates a good
approximation of I2 as a Gaussian RV. Note that r = 0.01
and r = 0.02 correspond to the typical network configurations
for future dense/ultra-dense SCNs [1], which shows that the
derived condition in Lemma 2 can be readily used to study
future dense/ultra-dense SCNs.

To confirm the accuracy of the proposed approximation
summarized in Table II, we plot the approximated analytical



Table II
THE CHAIN OF APPROXIMATION TO OBTAIN ÎMW .

Original RV Approximated RV Approximated distribution Distribution parameters

S + 10 log10Hb1 in (3) G Gaussian See (6)
Ib ≈ P0 + L+G in (7) Qb Gaussian See (13)
ImW =

∑B
b=2 10

1
10
Ib in (5) ÎmW Lognormal The solution of (17)
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Fig. 3. The simulation and approximation of I2 (irregular shape of R2).

results and the simulation results of I2 for the considered R2

in Fig. 3. Also, the numerical results of µQ2 and σ2
Q2

are
shown in Table III. As can be seen from Fig. 3, the proposed
Gaussian approximation of I2 is indeed very tight for the
considered R2 with such an irregular shape. Note that the
approximation appears to be very good even for r = 0.04
(despite a relatively large value of τ at around 0.02), which
implies that the derived condition in Lemma 2 might be too
strict and the proposed approximation might be extended to
more general conditions. Hence, it is our future work to find
a way to relax the sufficient condition proposed in Lemma 2
to allow for a wider application of the proposed analysis.

B. The Scenario with Multiple Interfering Cells

The lognormal approximation of the UL interference for a
network with multiple interfering cells placed on a hexagonal
lattice has been validated in [6]. As a significant leap from
the hexagonal network, in this subsection, we apply the pro-
posed framework on a more complex network with practical
deployment of multiple cells and provide the approximation of
the UL interference distribution.

Here, we consider a 3GPP-compliant scenario [12], as
shown in Fig. 4. In Fig. 4, B is set to 84 and all small cell
BSs are represented by x-markers. Particularly, the BS of C1

has been explicitly pointed out. The reference UE distribution
area for each small cell is a disk with a radius of r [12]. In
our simulations, the values of r (in km) are set to 0.01, 0.02
and 0.04, respectively. The reference disk-shaped areas can be
easily seen in Fig. 4 from any isolated small cell. However, due
to the irregular positions of the cells, the actual UE distribution
areas of the considered cells are of irregular shapes due to cell
overlapping. The irregularly shaped UE distribution areas are
outlined in Fig. 4 by solid lines. Interfering UEs are randomly
and uniformly distributed in those areas. An important note
is that the considered network scenario is different from that
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Fig. 4. Illustration of a practical deployment of multiple cells (r = 0.04).

adopted in [2,3], where UE distribution areas are defined as
Voronoi cells generated by the Poisson distributed BSs and
those Voronoi cells cover the whole network area. In practice,
small cells are mainly used for capacity boosting in specific
populated areas, rather than provision of an umbrella coverage
for all UEs. Therefore, the 3GPP standards recommend the
hotspot SCN scenario depicted in Fig. 4 for UE distribution
in the performance evaluation of practical SCNs. Nevertheless,
the proposed micro-scopic analysis of UL interference can
still be applied on a particular Voronoi tessellation, since the
derived condition in Lemma 2 does not rely on particular
shapes/sizes of UE distribution areas.

To the best knowledge of the authors, the micro-scopic
analysis of UL interference for such complex network as
shown in Fig. 4 has never been attempted before in the
literature. Now, we investigate the considered network with
the proposed approach of performance analysis. First, we use

(14), (15) and (16) to calculate µL, σ2
L and E

{∣∣∣L̃∣∣∣3} for each

Rb, b ∈ {2, . . . , 84} displayed in Fig. 4. Then, based on the
calculated results, we check the value of τ for each Rb using
Lemma 2. The maximum values of the 83 Rb-specific τ ’s for
various r values are presented in Table IV. It is shown in
the table that when r = 0.01 and r = 0.02 the maximum
τ is below or around 0.01, and thus each Ib can be approx-
imated by a Gaussian RV Qb according to the discussion in
Subsection III-B. Again, note that r = 0.01 and r = 0.02
correspond to the typical network configurations for future
dense/ultra-dense SCNs [1], which indicates the usefulness of
the proposed approach of the micro-scopic analysis in future
5G SCNs. Finally, we approximate the RV ImW in (5) as a
lognormal RV ÎmW = 10

1
10Q, with the distribution parameters

µQ and σ2
Q obtained from solving the equation set (17). The



numerical results of µQ and σ2
Q are provided in Table IV.

Table IV
RESULTS OF THE PROPOSED ANALYSIS (B = 84).

The value of r Maximum τ µQ σ2
Q

r = 0.01 0.0066 -75.09 17.77
r = 0.02 0.0125 -77.21 18.30
r = 0.04 0.0176 -78.76 18.55

To validate the accuracy of our results on the UL inter-
ference, we plot the approximated analytical results and the
simulation results of ImW in dBm for the considered network
in Fig. 5. As can be seen from Fig. 5, the resulting lognormal
approximation of ImW is reasonably good for practical use.
Note that the approximation shown in Fig. 5 is not as tight
as that exhibited in Fig. 3. The noticeable approximation
errors in Fig. 5 are mostly caused by the inaccuracy of
approximating the sum of multiple lognormal RVs as a single
lognormal RV in [17]. Note that the parameters of s1 = 1 and
s2 = 0.1 recommended by [17] allow for an overall match
between the actual CDF and the approximated lognormal CDF,
though the approximation in the head portion and the tail
portion of the CDF are compromised to some extent. Hence,
a straightforward way to improve the approximation of UL
interference shown in Fig. 5 is to approximate the CDF of ImW

as a piece-wise lognormal CDFs, because smaller (larger) s1

and s2 are helpful to increase the quality of approximation in
the head (tail) portion of the considered CDF [17]. Regarding
the individual approximation of Ib as a Gaussian RV Qb,
we find that it is tight for every considered Rb. Due to
space limitation, we omit the investigation on the Gaussian
approximation for each Ib, which is quite similar to the
discussion in Subsection IV-A.
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Fig. 5. The simulation and approximation of ImW in dBm.

A final note on the proposed network performance analysis
is that our approach is very powerful to obtain the analytical
results in an efficient manner. The computational complexity
is mainly attributable to the numerical integration to obtain

the values of µL, σ2
L and E

{∣∣∣L̃∣∣∣3} for the 83 interfering

cells. In contrast, the simulation involves a tremendously
high complexity. Specifically, in our simulations, around one
billion of realizations of Ib have been conducted for the 83

interfering cells in order to go through the randomness of
all the RVs listed in Table I. This shows that the proposed
micro-scopic analysis of network performance is elegant and
computationally efficient, which makes it ideal to study future
5G systems with general and dense small cell deployments.

V. CONCLUSION

The conjecture of approximating the UL inter-cell inter-
ference in FDMA SCNs as a lognormal distribution is vital
because it allows tractable network performance analysis with
closed-form expressions. Compared with the previous works
based on empirical studies, our work, for the first time, analyti-
cally proved that the conjecture is conditionally correct and the
derived condition does not rely on particular shapes/sizes of
UE distribution areas. Based on our work, we proposed a new
approach to directly and analytically investigate a complex
network with practical deployment of multiple cells based on
the approximation of the UL interference distribution. The
proposed approach has the following merits.

1) It can deal with any shape of UE distribution area, which
tolerates more practical assumptions, e.g., irregular hot-
spots, overlapped small cells, etc.

2) It measures the quality of approximation using a closed-
form expression and the simulation results validate the
tightness of the approximation.

3) It can cope with a large number of small cells by a low
computational complexity of analysis.

As future work, we will find a way to relax the derived
condition of valid approximation to allow for a wider applica-
tion of the proposed analysis. Besides, we will consider non-
uniform UE distribution and other types of multi-path fading,
e.g., Rician fading or Nakagami fading, in our analysis. Also,
we will further investigate alternative distributions of the sum
of multiple lognormal RVs to make our analysis more accurate.
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