Predictive Eviction: A Novel Policy for Optimizing
TLS Session Cache Performance

Ryan Stevens and Hao Chen
University of California, Davis

{rcstevens, chen} @ucdavis.edu

Abstract—Transport Layer Security (TLS) is the most com-
monly used security protocol to encrypt web traffic. TLS
connections are computationally expensive to set up, so the
TLS protocol supports session resumption, where previously
negotiated connection parameters can be used to short-circuit
the TLS handshake. The server assigns new sessions a session
identifier (ID) and caches each session by its ID so it can be
retrieved later. As clients come and go, sessions in the server’s
cache will have to be evicted according to the server’s eviction
policy. We find that first-in-first-out (FIFO) and least-recently-
used (LRU) are the most common session cache eviction policies
among popular TLS libraries, however, for applications whose
clients connect at regular intervals, such as mobile advertising,
the performance of these policies may be far worse than randomly
evicting policies from the cache. To handle this, we propose a
novel eviction policy for TLS session caches, predictive eviction,
that relies on the server knowing the next time each client will
connect again. Using a real-world application of such a policy,
Android in-application advertising, we build a client that is able
to simulate the behavior of a large number of devices requesting
mobile advertisements over TLS. We use this simulated client to
benchmark the hit rate of the predictive policy compared with
eviction policies found in popular TLS library implementations.
In addition, we demonstrate that our policy can be implemented
efficiently by benchmarking its performance in transactions per
second compared with OpenSSL’s session cache implementation,
and compared with TLS session tickets (an alternative to session
caching for resuming TLS sessions). We find that our policy has
better hit rate performance than other eviction policies, and can
achieve comparable performance to session tickets. To the best
of our knowledge, this is the first study of the performance of
TLS session resumption strategies.

I. INTRODUCTION

TLS (and its predecessor SSL) is a collection of crypto-
graphic protocols that are designed to support confidentiality,
integrity, and authenticity of network connections. It is the de
facto standard for securing Internet communications such as
web browsing (HTTPS) and email (SMTP over TLS). As TLS
connections are computationally expensive to set up, because
they require public key cryptography, TLS supports session
resumption, where parameters of a previous connection can be
reused to avoid the cost of establishing a new connection with
a returning client. If the client and server both have stored
session information from a previous connection, they can
resume the previous session without public key cryptography

and using fewer messages than a full handshake, making
resuming sessions much cheaper than creating new ones.
To resume sessions, clients and servers must store recently
negotiated sessions. Whereas clients only need to store a
handful of sessions, one for each TLS server with which the
client has recently communicated, servers may need to store
a large number of sessions if they have many active clients,
but the memory required to store these sessions may exceed
the server’s capacity or degrade the server’s performance.
Moreover, sessions become stale over time as clients terminate
and purge their session information, either because sessions are
held in memory or because it would be insecure to continue
using session information for long periods of time. To handle
these problems, a TLS server provides session caches to store
recently negotiated sessions and evicts sessions when the cache
overflows.

To decide which session to evict, the server uses an eviction
policy. The simplest policy is random eviction. To improve the
cache hit rate, more elaborate policies are used — e.g., first-in-
first-out (FIFO) and least-recently-used (LRU) — where the
server tries to speculate which session is the least likely to
be used in the near future based on past observations. These
policies have been shown to improve the cache hit rate over
the random policy and are used in lieu of the random policy
in most cases.

However, the popularity of web and mobile ads creates a
type of traffic that both FIFO and LRU may handle poorly.
Ad traffic has the following properties:

o Ad requests are often sent at constant intervals (when ads
are refreshed).

o Ad clients (the browser or mobile app) often terminate
or become inactivate without notifying the ad server.

To understand why both FIFO and LRU may handle such
traffic poorly, consider a TLS server with a session cache size
of two that has three clients which connect at the same regular
interval. If the server evicts sessions with FIFO or LRU policy,
every request will result in a cache miss (we can generalize
this observation to a cache of any fixed size n when there
are greater than n clients). On the other hand, if the server
uses a random eviction policy, the cache hit rate would be
33%. Finally, the optimal eviction policy would keep the first
two sessions in the cache even when the third client connects,
resulting in a cache hit rate of 66%. Since ad servers must

be able to handle a large number of clients concurrently and
swiftly, they must keep their cache miss rates low. Clearly,
neither FIFO nor LRU can reliably achieve this.

A. Predictive Cache Eviction Policy

We propose a novel eviction policy for TLS session caches,
predictive eviction, when the server knows when each client
will connect again. This policy can be applied in two cases:
1) when clients connect periodically, such web and mobile
ads, allowing the server to know the next connection time
without any information from the clients, or 2) when clients
can predict their next connection time and must explicitly
send this information to the server. In our evaluation, we
use approach (2), and include the next connection time as
an HTTP header. By knowing when clients will connect, the
server is able to evict sessions that will be used again farthest
in the future. In a special case, if the new session is also
the one that will be used again farthest in the future, it will
not be added to the cache and no session will be evicted.
We demonstrate the advantage of the predictive policy over
FIFO, LRU, and random: When the number of active clients
is equal to or less than the cache size, the cache hit rate of
the predictive policy is almost 100%. When the total number
of active clients increases beyond the cache size, the cache hit
rates of both FIFO and LRU precipitate to near zero, whereas
the cache hit rate of the predictive policy decreases gracefully.
Although the cache hit rate of the random policy also decreases
gracefully as the cache size decreases, it always underperforms
the predictive policy considerably.

We evaluate our policy on one practical application of it:
mobile application advertising. Android applications (apps)
which include advertisements (ads) will often regularly request
a new ad to show to the user. These requests have been shown
to contain sensitive user data, such as device identifiers or
location information, and should be encrypted to protect this
data, but rarely are [15, 8]. Serving ads over TLS using the
predictive policy would narrow the performance gap between
TLS and unencrypted ad traffic, incentivising ad providers to
adopt encryption. Based on our knowledge of Android app
advertising, we build a client to model the behavior of many
Android devices which periodically come online and request
new ad content at regular intervals. We use these client traffic
models to benchmark the performance of our eviction policy
compared to other commonly adopted eviction policies and
TLS session tickets, an alternative way to implement TLS
session resumption without a server cache. We find that our
policy has significantly better hit rate performance than other
eviction policies and can be implemented efficiently, such that
it rivals TLS tickets in terms of transactions per second for
reasonable cache sizes.

II. BACKGROUND
A. Transport Layer Security (TLS)

Transport Layer Security (TLS) [6] contains two main
protocols: the handshake protocol and the record protocol.
The handshake protocol is used to negotiate the parameters

of a connection while the record protocol is responsible for
transferring the application data to and from the server once
the connection is established. During the handshake protocol,
the cipher suite is negotiated, the server (and sometimes client)
is authenticated, and the master secret is transferred using
a public-key encryption scheme. The number of messages
transferred during the handshake varies depending on which
features the server or client want to use (for example, client
authentication requires three additional messages). For a full
handshake with server authentication but no client authenti-
cation, a total of nine messages must be transferred before
any application data is sent. The ClientKeyExchange and
Certificate messages require public key operations, and
are the most computationally expensive part of the handshake.

1) TLS Session Resumption: To avoid the cost of perform-
ing a full handshake when the client connects to the server
again, the TLS protocol supports an abbreviated handshake
using TLS sessions. When a client first connects, the server
assigns a new session ID to the connection and sends it
in the ServerHello message. Once the master secret is
transferred, both the client and server store the master secret
and the session ID. If the client connects again, it can send
the session ID as part of the ClientHello, indicating it is
able to reuse that session. If the ServerHello contains the
same session ID in response, then the handshake skips to the
ChangeCipherSpec message, without the need to send a
new master secret or authenticate the server. This avoids all
public-key operations, saving computation at the server and
client, and reducing the number of messages sent.

2) TLS Tickets: RFC 5077 defines an extension to TLS
which allows for session resumption without the need for
the server to store session information [12]. To do so, the
TLS server produces a TLS session ticket, which is stored by
the client and contains all the information needed to resume
the session. The ticket is encrypted and signed by the server
using an ephemeral key, and sent during the handshake using
a NewSesssionTicket message. The client can use this
ticket to resume the session by including it as part of the
ClientHello. The format of the ticket, as well as the way
it is encrypted and signed, is not specified by the RFC and
can vary by implementation.

III. CASE STUDIES

In order to better understand how TLS session caches are
implemented, we manually analyzed a number of popular
TLS libraries. For each library, we determine whether the
library provides a server session cache implementation, and
if so which eviction policy is used. Additionally, we observe
whether or not the library supports TLS tickets. We find
that there is a wide variety of ways that session caches are
implemented. Three libraries use a fully associative (FA) cache
to store sessions, guaranteeing that all of the space allocated
to the session cache will be available to store each session.
Fully associative caches have the highest hit rate (in theory),
however they suffer from reduced concurrency as the entire
cache must be locked when accessed. Of the fully associative

TLS Library Eviction Policy Ticket Support
OpenSSL (v1.0.1) FA-FIFO Yes
GnuTLS (v3.2.3) n/a Yes
NSS (v3.15) SA-FIFO Yes
JSSE (v1.7) FA-LRU No
CyaSSL (v2.8.0) SA-FIFO No
PolarSSL (v1.3.1) FA-FIFO Yes

TABLE I: Session cache eviction policies and TLS ticket support for
various TLS libraries. Each session cache is either fully-associative
(FA) or set-associative (SA), and uses first-in-first-out (FIFO) or least-
recently-used (LRU) as its eviction policy.

cache implementations, two use FIFO to evict sessions, while
the JSSE library uses LRU. On the other hand, two of the li-
braries we investigated use set associative (SA) session caches.
Set associative caches allow for more concurrent access, as
only one of the sets needs to be locked when the cache is
accessed, however the full size of the session cache may not be
used, depending on how sessions are allocated to each set. The
eviction behavior of SA caches depends on the number of sets
and the associativity of the cache. Both libraries which used
SA caches evict sessions from each set according to FIFO,
but CyaSSL supports caches with nearly 6,000 sets and only
11 entries per set. Assuming sessions are allocated to sets
uniformly at random, the behavior of such a cache is closer to
RR than FIFO. In general, the lower the associativity of the
cache, the more the eviction policy will behave like RR, with
the extreme case being direct mapped caches. Lastly, many
libraries allow for the built in session cache to be overridden
by a custom one. One library, GnuTLS, provides no session
cache implementation at all, requiring that a custom session
cache be specified to enable session resumption. The results
of our manual analysis are summarized in Table I.

IV. PREDICTIVE EVICTION ALGORITHM

To improve server session cache hit rate, we propose an
eviction policy that tries to evict sessions whose next use
is farthest in the future. To do so, the server must know
when each client is supposed to connect again, and so we
call our policy the predictive (PRED) eviction policy. Each
entry in the server’s session cache contains the session ID,
the next connection time of the client (we call this the next-
connect time), and the session data. Upon a cache hit, the
server updates the next-connect time of the found session in
the cache to the new next-connect time (generally the current
time plus the request period of the client). Upon cache misses,
the server attempts to insert the new session into the cache.
When the cache is full, the server evicts sessions according to
our eviction algorithm (see Algorithm 1). First, the eviction
algorithm attempts to evict sessions for clients that are no
longer actively making requests by looking for sessions whose
next-connect time is in the past. To prevent the server from
wrongly evicting sessions due to network delays, the server
should give sessions a grace period during which sessions are
still considered active even after their predicted next-connect
time has passed. If all sessions are active, the server then

Algorithm 1 Predictive eviction algorithm (PRED).

1: function EVICT(new_session)

2 cur_time < time()

3 old_session < cache.get_session_by_min_next_connect()

4: if old_session.next_connect + GRACE_PERIOD < cur_time then
5: cache.remove(old_session)

6: cache.add(new_session)

7 end if

8 old_session < cache.get_session_by_max_nexi_connect()

9: if new_session.next_connect < old_session.next_connect then
10: cache.remove(old_session)
11: cache.add(new_session)
12: end if

13: end function

selects the session from the cache with the largest next-connect
time and compares this next-connect time with that of the new
session to be added. If the new session will make its next
connection sooner than the session selected from the cache,
the selected session is evicted from the cache and the new
session is added; otherwise, the new session is not added to
the cache and no session is evicted.

This algorithm can be thought of as an approximation of
Bélady’s algorithm, which is the optimal page replacement
algorithm for virtual memory management [2]. Bélady’s algo-
rithm states that the page to be replaced should be the page
whose next access will be farthest in the future. When clients
notify the server (e.g., by the setting next-connect time to
infinity) before they become inactive, PRED is equivalent to
Bélady’s algorithm. However, when clients become inactive
without notifying the server, which is common for ad clients,
PRED becomes an approximation of Bélady’s algorithm, as
PRED can only detect that a client has become inactive after
the client has missed its next scheduled connection. This
approximation should not decrease the cache hit rate of PRED
much, because if the inactive session’s next-connect time is
short, PRED will detect its inactivity after this short period
and make it a candidate for eviction (Line 4 in Algorithm 1);
on the other hand, if the inactive session’s next-connect time
is long, it will become a likely candidate for eviction because
PRED evicts the session with the largest next-connect time
(Line 9 in Algorithm 1).

A. TLS Tickets

Here we consider an alternative to using a TLS session
cache: TLS tickets. TLS tickets provide a way for the server
to offload storing the TLS session state to the client by
encrypting and signing the session state with an ephemeral
key. The primary performance benefits of this approach are
twofold. First, sessions stored in tickets can always be resumed
as long as the server still has the ephemeral key used to
encrypt and sign the ticket. Second, tickets do not require
that separate connections share a centralized cache, allowing
for more concurrency in some applications. The performance
drawback to tickets, however, is that the server must decrypt
and verify the ticket for each connection request, which
may be more computationally expensive than a lookup in a

cache. In addition, tickets are an extension to TLS and are
not supported by all TLS implementations, as we found in
Section III. Finally, tickets make it more difficult to provide
perfect forward secrecy with TLS, as the single ephemeral key
used by the server to distribute tickets also allows an attacker
to decrypt these tickets to get the master secret of previous
connections, should the key ever be compromised [10]. On
the other hand, session caching uses a separate ephemeral key
per session, and so compromise of the server only allows an
attacker to decrypt sessions whose information is currently in
the cache, not every session that the server had negotiated since
starting. We empirically measure the performance of session
tickets compared to session caching in Section VI.

V. EXPERIMENTAL SETUP

In order to evaluate the performance of PRED, we imple-
ment a TLS server and client to benchmark the performance of
different session resumption strategies. We model the client’s
behavior based on one possible application of the PRED
eviction policy: Android in-application advertising. Android
applications (apps) often include advertisements (ads) that are
shown to the user while the application is being used. These
ads are fetched from an ad server over the Internet and are
regularly refreshed so that the user is shown fresh content.
The frequency that the ads are refreshed varies between apps,
however it will remain consistent while the app is running,
which allows the server to reliably predict the next-request
time of clients. Apps which contain advertisements include
an ad library that is responsible for communicating with the
ad server and displaying the ads to the user. Normal ad
serving expects the vast majority of requests to be ad requests
(usually the click rate of ads is less than one percent). It is
impressions which we are interested in encrypting, as they
contain potentially sensitive user data used for ad targeting.
Encrypting these requests would protect this user data from
being read by network sniffers (e.g., [8, 15]). We do not
consider encrypted click requests in our evaluation for the
following reasons: 1) clicks usually only contain the ID of the
impression that generated them and not any sensitive user data,
and 2) clicks are rare and would not impact performance much.
For the purpose of our benchmark, our TLS server represents
the ad server, while our TLS clients represent Android devices
running apps that use the ad server’s ad library.

A. Modeling Client Behavior

To model the behavior of many Android devices, we assume
that the ad server has a pool of ¢ devices in the wild which
contain apps that make regular requests to the ad server while
they are being run by the user. When the device is making
requests to the ad server, we consider it to be in the running
state, otherwise it is waiting. Each device switches between
the running and waiting states based on a Poisson process. A
device waits for some amount of time according to an expo-
nential distribution with parameter \,,, after which it runs for
some amount of time according to an exponential distribution
with parameter A,.. Given enough time, the expected ratio of

1
time spent running to total time is —2*—, which we will

consider to be the steady state. While ai‘hning, the device
connects and requests an ad at some regular interval p, which
may vary between devices, but will not vary while the device
is running. P, the distribution of p, depends on the value of
p for different apps, as well as the popularity of each app.

B. Modeling Server Behavior

To model the server, we assume the ad server will accept
ad requests from clients on some interface and respond to
each client with a chosen ad. In practice, ad requests are
typically performed over HTTP and have a mean size 7y,
while responses have a mean size r,. If the ad server uses a
TLS session cache, its session cache size is n. If the ad server
uses the PRED eviction policy, it must also choose a grace
period g, as described in Section IV. We note that the value
of ¢ is independent of the other parameters, and should be
chosen based on network delays. After running for some fixed
amount of time 7', the server’s performance is measured by
the server’s session cache hit rate and the average transactions
per second during the time period.

C. Picking Parameters

To better understand ad request patterns of Android apps,
we downloaded the top 100 apps from the Google Play
market which contain one ad library (to simplify analysis). We
determined how many ad libraries an app had by unpacking
the app and observing the included libraries, comparing the
included libraries with a list of Android ad libraries from [8].
We manually ran each app in an Android emulator and
captured its network traffic. By observing the app’s user
interface and network traffic, we were able to determine how
frequently each app refreshes its ads'. From this, we built P,
the distribution of request intervals, weighting each interval by
the number of downloads from the associated apps with that
interval. Additionally, from the network captures we observed
the values of 7., and r,., to be 773 Bytes and 1,405 Bytes,
respectively.

We chose the values of)\, and A, based on observed
Android application usage behavior from BShmer et al [4].
The authors found that the average length of time an app is
used in one sitting differs significantly by category of app.
We chose to use the “games” category for our benchmark, as
games commonly have ads, which have a average app session
length of about 120 seconds, giving us a A, of ﬁ. The authors
also noted that the average app usage on a device is about 1
hour per day. Assuming that the usage is distributed evenly
throughout the day (it isn’t, but this discrepancy shouldn’t af-
fect the relative performance of session resumption schemes),
we derive A\, to be ﬁ (see Appendix A). To get a better
understanding of how our choice of parameters affects the

In total, 38 of the apps auto-refreshed ads. 23 of these used an interval
of 60 seconds, 13 used 30 seconds, and 2 used 15 seconds. 41 apps would
not display any ad, 12 crashed on startup, and 9 did not automatically refresh
ads.

Parameter Symbol Real Value Simulated Value
Test Time T 3,600 seconds 600 seconds
Run Parameter Ar 1%% %

Wait Parameter Aw 5760 160
Timing Distribution P P P x %
Request Size Treq 773 Bytes 773 Bytes
Response Size Tresp 1,405 Bytes 1,405 Bytes
Grace Period g 2 seconds 2 seconds

TABLE II: Parameters used in our experiment to model Android
application advertising.

behavior of clients, we ran a simple test program that simulates
client request behavior without making any requests. From
this, we determined that the average number of clients running
at a time is approximately 0.04c, with a standard deviation
of 0.005¢, and the expected maximum number of sessions
that will actively be in use at any time is about 0.065¢ (c
is the number of devices defined in Section V-A). For our
benchmark, we wish to select a value for 7' which is large
enough to ensure that a steady state is reached. Our chosen
value of T' which satisfies this constraint is 1 hour (3600
seconds), determined via our test program. Because 1 hour
is too long to run a large number of benchmarks, we chose
to speed up our simulation by a factor of 6, allowing us to
model one hour of requests in 10 minutes. The final values of
our parameters are summarized in Table II.

VI. EVALUATION

We evaluate the performance of different session cache
eviction policies by measuring the session cache hit rate of a
server using the policy, while varying the size of the server’s
session cache. To evaluate how efficiently the PRED policy
can be implemented, we measure the transactions per second
of the server while varying the number of clients.

A. Implementation

We implement the client and server using OpenSSL’s TLS
implementation [11]. OpenSSL is a popular encryption li-
brary that is used in both server implementations (Apache’s
mod_ssl, for example) and is available as a Java security
provider on Android, making it an appropriate choice for our
benchmarks.

We implemented the TLS server as a multi-threaded server
in C. To benchmark different session cache eviction policies,
we override OpenSSL’s default session cache with our own,
implemented as an in-memory SQLite database [14]. This
allows us to describe each policy as a simple SQL query. For
benchmarking transactions per second, we implement PRED
using a hash table and sorted skip list. The hash table allows
for constant time lookups of session IDs, while the skip list
keeps track of the next-request times of each session. Skip lists
have similar performance to binary search trees, but allow for
constant time access of the first and last elements, which is
used for the PRED eviction algorithm.

The client is implemented in C, and simulates each device
in its own thread. Although our tests simulate over 100k

Cache Hit Rate (%)

T I
1500 2000

I I
500 1000
Cache Size (n)

o

Fig. 1: Comparison of hit rates for various session cache eviction
policies on Android application advertising. The size of the pool of
clients, ¢, is 20, 000.

devices, threads spend a majority of the time sleeping (in
the waiting state) or blocked waiting for the server, so the
high concurrency is not a problem in practice. Once a test is
complete, each thread writes a summary of its transactions to
a file, which can be analyzed to determine the session cache
hit rate and transactions per second. When computing cache
hit rate, the first request from each thread is not considered,
as these will be compulsory misses.

The client ran on a desktop machine with an Intel Xeon
W3530 processor (2.8 GHz 4-core CPU) with 24 GB of RAM.
To ensure that the client can saturate the server, the server ran
on a less powerful desktop machine with an Intel Pentium 4
CPU (3.2 GHz 2-core CPU) with 2 GB of RAM. Neither
machine supports encryption instructions in hardware. The
machines were connected with a gigabit Ethernet connection,
to ensure that network bandwidth was not a bottleneck.

B. Hit Rate Results

We benchmark the hit rate of four cache eviction policies:
first-in-first-out (FIFO), least-recently-used (LRU), random-
replacement (RR), and our proposed policy (PRED). Addi-
tionally, we benchmarked the least-frequently-used (LFU) and
most-recently-used (MRU) policies, but do not report on their
performance as it was significantly worse than other policies.
This is because both LFU and MRU tend to keep sessions
which are no longer in use in the cache indefinitely, which
is very detrimental to performance. Each session cache is
implemented as a fully associative cache, as fully associative
caches have higher hit rates than an equivalent size set
associative cache. We perform the benchmark by keeping the
pool of clients, c, consistent while increasing the cache size, n,
incrementally. We chose c to be 20, 000: less than the number
of clients required to saturate our TLS server when no session
resumption is enabled, ensuring that server load did not impact
hit rate measurements. The results are presented in Figure 1.

1) RR: The hit rate of the random policy increases consis-
tently when the cache size increases.

2) FIFO and LRU: When the cache size is smaller than
the average number of clients that will be running at a time
(about 800, with a standard deviation of about 100, determined
via our test program from Section V-C), both FIFO and LRU
perform poorly. In fact, increasing the cache size within this
range has negligible impact on improving the cache hit rates
of FIFO and LRU, as explained in the introduction.

As the cache size grows larger than the average number of
clients that will be running at a time, the hit rates of FIFO
and LRU experience a big jump because now the cache is
often large enough to hold the sessions of all the running
clients. However, as clients come and go, FIFO and LRU will
have to evict sessions from the cache to add newly established
sessions. An optimal policy would evict sessions which are no
longer in use because the client is no longer running. Since
older sessions are more likely to no longer be in use, FIFO
performs better than LRU because LRU will be more likely
to evict sessions that are just about to be used again.

As the cache size grows larger than the expected maximum
number of sessions that will be in use at a time (about 1, 300,
with a standard deviation of about 100, also determined via
our test program), LRU achieves close to 100% hit rate, while
FIFO’s hit rate only increases modestly as the cache size
increases. We can explain the different behavior between LRU
and FIFO as follows. If each client’s interval between requests
is the same, then LRU and PRED are equivalent when the
cache size is larger than the maximum number of sessions
active at any time; in both cases the sessions that are evicted
are those that remain unused longer than the request interval
of the clients. Since PRED is close to an optimal policy, the
fact that FIFO deviates from this behavior explains its sub-
optimal performance for large cache sizes, as it may make
incorrect decisions about which session to evict. For example,
long-running clients would be subject to having their session
evicted from a FIFO cache while the client is still active.

3) PRED: PRED is superior to RR, FIFO, and LRU under
all cache sizes. For smaller cache sizes, the performance of
the common FIFO and LRU policies varies greatly with the
number of running clients. This could be problematic if a
server experiences a sudden increase in the number of running
clients, putting much greater load on the server as cache misses
cause more full TLS handshakes. By comparison, the hit rate
of PRED and RR degrade gracefully as the ratio of clients
to cache size increases. However, RR results in a hit rate
consistently about 20% lower than PRED, until the cache size
grows very large.

C. Transaction Per Second Results

In the previous section, we showed that PRED achieves
superior session cache hit rates compared to other eviction
policies. We would now like to demonstrate that it can
be implemented efficiently, so that the hit rate benefits are
not offset by using a more complicated policy. To do so,
we benchmark the server’s performance in transactions per
second as the number of clients, ¢, increases. We compare the
performance of our implementation of PRED with TLS tickets

o
S_]
® || — PRED

—— TLS Tickets
8 1| — OpenSSL
© None

Transactions Per Second
490

[[[I I
40000 60000 80000 100000 120000
Number of Clients (c)

I
0 20000

Fig. 2: Performance of each of our server implementations in trans-
actions per second. For session caching schemes, the cache size, n,
is 6, 750.

and OpenSSL’s default cache implementation. Obviously, the
performance of session caches is dependent on the cache size,
which leads to the difficulty of selecting a cache size such
that session caching and tickets can be reasonably compared.
Based on our results from the previous section, we chose n to
be 6,750, which is large enough so that PRED will achieve
100% hit rate up to 90,000 clients, the number of clients
needed to saturate our TLS server using tickets. Connections
used 1024-bit RSA as the public key cipher, 256-bit CBC-
AES as the bulk cipher, and SHA1 as the hash algorithm. TLS
tickets in OpenSSL are encrypted with 128-bit CBC-AES and
signed with HMAC-SHA256, which is not configurable. We
benchmark four session resumption approaches: PRED, TLS
tickets, OpenSSL’s default session cache implementation, and
no session resumption. The results of our test are presented in
Figure 2.

The servers which had session resumption enabled all
experienced decreased performance as the number of clients
increased beyond what was needed to saturate the server. This
is because having a larger pool of clients means that more
connections will be from clients which have not been assigned
a session ID or ticket, and thus require a full handshake.
Session caching schemes experienced greater slowdown than
tickets once the server became saturated due to the limited
size of the session cache, as increasing the number of clients
reduces the hit rate of the cache. Regardless, the PRED policy
was able the achieve comparable performance to TLS tickets
and OpenSSL’s cache implementation, up to the point the
server became saturated. This lends credence to our claim that
the PRED policy can be implemented efficiently, although we
hesitate to draw too many conclusions from comparing PRED
with tickets, as it is difficult to conclude how the effects of
locking the session cache would effect the server performance
in other deployments. For highly concurrent applications, it
may be worth using a set-associative cache to allow concurrent
writes to the cache. In our case, 780 transactions per second is
a hard limit of what our server can achieve: setting OpenSSL’s
cache to be large enough to hold sessions for all clients does

not surpass this limit.

VII. RELATED WORK

Prior work measures the performance benefits of SSL ses-
sion caching, finding the server response time is significantly
faster when sessions are reused [7]. The impact of various
hardware configurations (including the hardware cache size)
on SSL performance is documented in [9]. The cost of various
parts of the TLS protocol can be determined by replacing
operations with no-ops [5], or profiling system usage of a
TLS server while running web benchmarks [1]. The former
confirmed the benefits of abbreviated handshakes, but found
that cache lookup times did not have a significant impact on
server performance. Similarly, Zhao et al. investigate the most
time consuming operations of commonly used cryptographic
algorithms in TLS [16]. Analyzing the performance of SSL
connections for mobile devices is done by [3] and [13]. Unlike
our work, this focuses on the cost of connections for mobile
clients, not servers which communicate with mobile clients.

VIII. CONCLUSION

We proposed PRED, a predictive eviction policy that can
achieve nearly optimal cache hit rates when the server is able
to know the next time each client will connect. Our evaluation
shows that PRED outperforms other common eviction policies
(such as random, FIFO, and LRU) and can achieve comparable
throughput to session tickets.

REFERENCES

[1] George Apostolopoulos, Vinod Peris, and Debanjan Saha.
“Transport Layer Security: How much does it really cost?”
In: INFOCOM'’99. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings.
IEEE. Vol. 2. IEEE. 1999, pp. 717-725.

[2] Laszlo A. Belady. “A study of replacement algorithms for
a virtual-storage computer”. In: IBM Systems journal 5.2
(1966), pp. 78-101.

[3] Diana Berbecaru. “On measuring SSL-based secure data
transfer with handheld devices”. In: Wireless Communication
Systems, 2005. 2nd International Symposium on. IEEE. 2005,
pp. 409-413.

[4] Matthias Bohmer, Brent Hecht, Johannes Schning, Antonio
Krger, and Gernot Bauer. “Falling asleep with Angry Birds,
Facebook and Kindle: a large scale study on mobile ap-
plication usage”. In: Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile
Devices and Services. ACM. 2011, pp. 47-56.

[5] Cristian Coarfa, Peter Druschel, and Dan S Wallach. “Perfor-
mance analysis of TLS Web servers”. In: ACM Transactions
on Computer Systems (TOCS) 24.1 (2006), pp. 39-69.

[6] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246 (Proposed Standard). Updated
by RFCs 5746, 5878, 6176. Internet Engineering Task Force,
Aug. 2008. URL: http://www.ietf.org/rfc/rfc5246.txt.

[71 Arthur Goldberg, Robert Buff, and Andrew Schmitt. “Secure
Web server performance dramatically improved by caching
SSL session keys”. In: Workshop on Internet Server Perfor-
mance (held in conjunction with SIGMETRICS9S). Citeseer.
1998.

[8] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-
Reza Sadeghi. “Unsafe exposure analysis of mobile in-app
advertisements”. In: Proceedings of the fifth ACM conference
on Security and Privacy in Wireless and Mobile Networks.
ACM. 2012, pp. 101-112.

[9] Krishna Kant, Ravishankar Iyer, and Prasant Mohapatra. “Ar-

chitectural impact of secure socket layer on internet servers”.

In: Computer Design, 2000. Proceedings. 2000 International

Conference on. IEEE. 2000, pp. 7-14.

Adam Langley. How to Botch TLS Forward Secrecy. 2013.

URL: https://www.imperialviolet.org/2013/06/27/botchingpfs.

html.

OpenSSL: The Open Source Toolkit for SSL/TLS. 2013. URL:

http://www.openssl.org/.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport

Layer Security (TLS) Session Resumption without Server-Side

State. RFC 5077 (Proposed Standard). Internet Engineering

Task Force, Jan. 2008. URL: http://www.ietf.org/rfc/rfc5077.

txt.

Youngsang Shin, Minaxi Gupta, and Steven Myers. “A Study

of the Performance of SSL on PDAs”. In: INFOCOM Work-

shops 2009, IEEE. 1EEE. 2009, pp. 1-6.

SQLite. 2013. URL: http://www.sqlite.org/.

Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson,

and Hao Chen. “Investigating user privacy in android ad

libraries”. In: Workshop on Mobile Security Technologies

(MoST). 2012.

Li Zhao, Ravi Iyer, Srihari Makineni, and Laxmi Bhuyan.

“Anatomy and performance of SSL processing”. In: Perfor-

mance Analysis of Systems and Software, 2005. ISPASS 2005.

1IEEE International Symposium on. IEEE. 2005, pp. 197-206.

[10]

(1]

(12]

[13]

(14]
[15]

[16]

APPENDIX

Here we describe how we determined the client wait pa-
rameter, \,,, used for our experiments. Given A, and A, the
expected amount of time a client will run for in a time period
of length T is given by:

1
a=—2r %xT (1)
T

From Bohmer et al [4], we determined the value of A, to be
ﬁlo. Additionally, the authors found that the average app usage
time per device is about 1 hour per day. Assuming app usage
is evenly distributed throughout the day, we use this finding
to set T' to be 86,400 seconds (the number of seconds in a
day) and a to be 3,600 seconds (the number of seconds in
an hour). Filling in these values from Equation 1 allows us to
derive \,:

120
———— % 86400 = 3600
120 + &

1

120 + — = 2880
Aw

1
Ao = moe
2760

Which is the value presented in Table II. For our benchmark,
we simulated a speedup of time by a factor of 6. Redoing the
derivation with a T" of 14,400, a of 600, and A, of 2—10 yields

the simulated \,, value of 5.

