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Abstract—As the capacity demand of mobile applications keeps
increasing, the backhaul network is becoming a bottleneck to
support high quality of experience (QoE) in next-generation
wireless networks. Content caching at base stations (BSs) is a
promising approach to alleviate the backhaul burden and reduce
user-perceived latency. In this paper, we consider a wireless
caching network where all the BSs are connected to a central
controller via backhaul links. In such a network, users can obtain
the required data from candidate BSs if the data are pre-cached.
Otherwise, the user data need to be first retrieved from the central
controller to local BSs, which introduces extra delay over the
backhaul. In order to reduce the download delay, the caching
placement strategy needs to be optimized. We formulate such
a design problem as the minimization of the average download
delay over user requests, subject to the caching capacity constraint
of each BS. Different from existing works, our model takes BS
cooperation in the radio access into consideration and is fully
aware of the propagation delay on the backhaul links. The design
problem is a mixed integer programming problem and is highly
complicated, and thus we relax the problem and propose a
low-complexity algorithm. Simulation results will show that the
proposed algorithm can effectively determine the near-optimal
caching placement and provide significant performance gains over
conventional caching placement strategies.

Index Terms—Wireless caching networks, caching placement,
download delay

I. I NTRODUCTION

The explosive growth of global mobile data traffic [1], espe-
cially mobile video streaming, has led to significant increases
in user latency and imposed a heavy burden on backhaul links
that connect local BSs to the core network. The congestion in
the backhaul may cause excessively long delays to the content
delivery, and thus degrades the overall quality of experience
(QoE). In order to support the increasing mobile data traffic,
one promising approach to reduce delivery time and backhaul
traffic is to deploy caches at BSs, thereby bringing frequently
requested bulky data (such as videos) close to the users [2]
in the hope of satisfying user requests without increasing the
burden over backhaul links. In this way, the backhaul is used
only to refresh the caches when the user request distribution
evolves over time. Usually, the refreshing process does not
require high-speed transmission and can work at off-peak times.

Caching capacity of local BSs can be regarded as a new
type of resources of wireless networks besides time, frequency
and space. However, the caching capacity is limited compared
with the total amount of mobile traffic. Thus sophisticated
caching placement strategies will be needed to fully exploit the
benefit of caching. With the knowledge of channel statistics

and file popularity distribution, the central controller isable to
determine an optimal caching strategy to cater for user requests
with locally cached content. Once caches are fully utilized,
the requirements for backhaul can be greatly reduced and the
download delay can be shortened, especially when the backhaul
links are in poor conditions.

So far, the design of caching placement has not been fully
addressed. Most of the previous studies fail to take physical
layer features into consideration. For example, it was assumed
in [3] and [4] that the wireless transmission was error-free.
In [5], delays of D2D and cellular transmissions were simply
set as constants and the proposed caching strategy was to
store as many different files as possible. However, when taking
multipath fading into consideration, storing the same content at
multiple BSs can actually provide channel diversity gains and
is perhaps more advantageous. The authors in [6] analyzed both
uncoded and coded femto-caching in order to minimize the total
average delay of all users. In their work, coded femto-caching
was obtained as the convex relaxation of the uncoded problem.
Nevertheless, it not only ignored physical layer features,but
also imposed a certain network topology requirement which
cannot be fulfilled in practice. Physical-layer operation includ-
ing data assignment and coordinated beamforming in caching
networks was considered in [7], but the caching placement was
given as a prior.

There are also works studying the dynamic caching place-
ment and update. In [8], the authors studied video caching
in the radio access network (RAN) and proposed caching
policies based on the user preference profile. Nevertheless,
they considered neither the variation of the wireless channel
during the transmission of a file nor the actual delay of
wireless transmission and backhaul delivery. The authors of [9]
concentrated on the caching content optimization in a single BS.
The file popularity was assumed unknown and their strategy
was optimized based on the observation of user request history
over time. However, this work did not consider the effect of
backhaul delays and assumed that the cache replacement was
of negligible duration and operated frequently.

In this paper, we present a wireless caching network model to
determine the optimal caching placement strategy for managing
random user requests. In particular, we aim at minimizing the
average download delay, which is one of the key QoE metrics,
by taking wireless channel statistics into account. Moreover, to
the best of our knowledge, the impact of backhaul delays on
caching placement is studied in this paper for the first time.
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The design of the caching placement strategy is formulated
as a mixed-integer nonlinear programming (MINLP) problem,
which is computationally difficult to solve. Thus we resort to
the relaxed formulation of the problem and provide a low-
complexity algorithm. Simulation results show that the strategy
derived from our proposed algorithm outperforms other well-
known caching placement strategies. Furthermore, we provide
some insights into the caching placement design. Specifically,
in the case where the backhaul delay is very small, the most
popular content has a higher priority to be cached. On the other
hand, when the backhaul delay is relatively large, it should
be encouraged to maximize thecaching content diversity, i.e.,
to cache as much different content as possible, to reduce the
chance of invoking backhaul transmission.

II. SYSTEM MODEL

In this work, we consider the downlink of a wireless caching
network, in whichK single-antenna BSs andU single-antenna
mobile users are uniformly distributed in the considered region.
Through backhaul links, the BSs are connected to a central
controller, which also acts as a file library server. The library
containsF files and each of them can be divided intoL
segments of equal size (withb bits). Each BS is equipped with a
storage unit of limited capacity. For simplicity, we assumethat
all users see channels with the same distribution. Without loss of
generality, we focus on one user for calculating the performance
metric of interest. A BS will be regarded as a candidate BS for
user i if it holds the content requested by useri, no matter
whether such content is previously cached or retrieved via the
backhaul. Useri has its cluster of candidate BSs, denoted as
Φi, which consists of BS indices and has cardinality|Φi|. The
system model and data retrieval process are illustrated in Fig.
1. The user will choose the BS of the best wireless channel in
Φi to communicate with, as shown in Fig. 1 (a). As for the
case that no BS holds the requested content, as shown in Fig.
1 (b), the central controller will pass such content to all BSs
and we shall have|Φi| = K.

A. File Transmission Model

We consider segmented file transfer [10] (also known as
multi-source file transfer), which has the advantage of allowing
a requested file to be sourced and downloaded from different
BSs in various time slots. Different segments of a requestedfile,
when reaching the user, will be decoded and assembled into a
complete file. Each segment can be as small as a single packet
or as big as a stream lasting for several minutes. We will first
discuss how to calculate the delay of downloading a segment,
which is typically quantified as the average number of required
time slots for a segment to be successfully decoded. Under the
assumption that the segments of a file are subsequently sent
over homogenous and ergodic channels, the download delay of
this file is indeed the sum of all segment-download delays.

We shall assume that time is partitioned intoτ -second-wide
time slots indexed bys. We will also assume that at each time
slot, useri communicates with the BS inΦi that provides the
highest signal-to-interference-plus-noise ratio (SINR), and this
BS is able to transmitN ≫ 1 complex symbols. Lethi [s] ∈ C
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Figure 1. System model and content retrieval process. (a) Content retrieval
from only local BSs,Φi = {2, 4}; (b) Content retrieval from the central
controller with extra backhaul delay,Φi = {1, 2, 3, 4}.

denote the channel coefficient between the selected BS and user
i, following the same distribution for alli and s. The channel
is assumed to be block-fading with block lengthτ , i.e., the
channel is constant for a duration ofτ seconds and different
channel block realizations are i.i.d.. At time slots, the transmit
signal from the selected BS to useri is denoted as

xi [s] , (xi1 [s] , . . . , xiN [s]) (1)

and the transmit power constraint isE
{

|xin [s]|2
}

≤ Pt for all

i ∈ {1, . . . , U}, n ∈ {1, . . . , N} ands.
The received signal of useri for time slot s can be written

as

yi [s] = hi [s]xi [s] + ni [s] , (2)

where yi [s] , (yi1 [s] , . . . , yiN [s]) and ni [s] ,

(ni1 [s] , . . . , niN [s]). The noise is complex white Gaussian,
i.e., ni [s] ∼ CN

(

0, σ2
)

.



The transmission of a segment to the intended user, in
accordance with an incremental redundancy (IR) hybrid-ARQ
protocol as adopted in LTE [11], will be presented below. Given
a well-designed Gaussian codebook, theb-bit file segment is
encoded into a channel codec = {c1| c2| . . . |cT }, whereT is
a given positive integer, which can be made arbitrarily large,
and each subcodecj , containingN complex symbols, can be
individually used to recover the original file segment. These
subcodes are further modulated into a series of signal bursts.
At each time slot, one signal burst is allowed to be sent. If this
burst is not decoded correctly, the user feeds back a negative
acknowledgment (NACK) message over an error-free and low-
latency channel. Once the BS receives this NACK message, the
next burst is sent at the next time slot. This process continues
until the BS receives an acknowledgement (ACK) message. If
the transmission starts from the first time slot and ends at theS-
th time slot, the effective coding rate isR/S, where the coding
rate is defined asR , b/N bits/sec/Hz as a complex symbol
can be transmitted approximately in 1 s and 1 Hz [12].

B. Caching Placement Strategy

In practice, the caching capacity at BSs cannot be arbitrarily
large. Thus, it is crucial to optimize the caching strategy to
exploit the limited caching capacity in order to maximize the
benefits brought by caching.

We denote the caching placement strategy as a three-
dimensional matrixC = [C1, . . . Ck, . . . , CK ] ∈ {0, 1}F×L×K

consisting of binary entries, whereCk, indicating the caching
placement of BSk, is defined as

Ck ,







ck11 . . . ck1L
...

. . .
...

ckF1 . . . ckFL






∈ {0, 1}F×L

, (3)

in which ckfl = 1 means that segmentl of file f is cached at
BS k in advance andckfl = 0 means the opposite. Since each
BS has a limited caching capacitȳC, we have

F
∑

f=1

L
∑

l=1

ckfl ≤ C̄, ∀k ∈ {1, . . . ,K} . (4)

When useri requests segmentl of file f , the number of
candidate BSs holding the segment is

NC
fl =

K
∑

k=1

ckfl. (5)

Note that there should be a constraint0 ≤ NC
fl ≤ K for ∀f ∈

{1, . . . , F} , ∀l ∈ {1, . . . , L} in order to avoid duplicate caching
for the same segment at a BS.

III. B ACKHAUL -AWARE CACHING PLACEMENT

The average download delay is a representative metric for
the system performance in wireless caching networks. In this
section, we will first derive an analytical expression of the
download delay. We will then formulate the problem of min-
imizing the download delay subject to constraints on caching
capacities.

A. Download Delay

We assume Rayleigh fading channels and no interference
among different users, e.g., they can be served by different
subcarriers with orthogonal frequency-division multipleaccess
(OFDMA). Denote the signal-to-noise ratio (SNR) from BSk
to useri as SNRki , and the probability density function (PDF)
of SNRk

i is given by

P (x) =
1

ρ̄
exp

(

−
x

ρ̄

)

, (6)

whereρ̄ is the average received SNR and we haveρ̄ = Pt/σ
2.

According to our previous assumption, at time slots, the
received SNR of useri can be obtained as

ρi = max
k∈Φi

SNRk
i . (7)

Hence, the PDF ofρi is

Pρi (x) =
|Φi|

ρ̄
exp

(

−
x

ρ̄

)(

1− exp

(

−
x

ρ̄

))|Φi|−1

. (8)

For simplicity, we omit the subscripti in the following
derivation.

In the IR scheme, each user has a buffer with sizem. Hence,
up to m of the most recent signal bursts can be stored and
used to decode the information. In practice,m is chosen to
reach a compromise between the decoding performance and
the implementation cost. If the buffer is big enough,m can
be regarded as infinity. If only the current burst is used for
decoding, we will havem = 1. It has been indicated in [12]
that the mutual information across multiple time slots can be
written as

R [s] =

s
∑

j=(s−m)++1

log2 (1 + ρ [j]) , (9)

whereρ [j] is the received SNR at time slotj. When employing
typical set decoding, the probability of decoding error foruser
i at time slots can be expressed as

q [s] = Pr{R [s] < R} . (10)

It is difficult to obtain a closed-form expression for the average
download delay. Hence, we shall derive a lower bound.

Theorem 1. For the IR hybrid-ARQ protocol, the average
download delay of a segment in this system model is lower
bounded by

E {Dseg} ≥
1

1−
(

1− exp
(

− 2R/m−1
ρ̄

))m|Φ|
.

Proof: For a given user, the probability that its download
delayDseg of a segment (b bits) is larger thand time slots is
given by

Pr{Dseg> d} = Pr{R [s] < R, for s = 1, 2, . . . , d}

= qd [s] .
(11)



The expected download delay for a segment can be obtained as

E {Dseg} =

+∞
∑

d=0

Pr{Dseg> d}

=
1

1− q [s]
.

(12)

From (9) and (10), we can get

q [s] = Pr







s
∑

j=(s−m)++1

log2 (1 + ρ [j]) < R







. (13)

Note that if log2 (1 + ρ [j]) < R
m for ∀j ∈ {1, . . . , s}, we have

∑s
j=(s−m)++1 log2 (1 + ρ) < R. As a result, we can get

q [s] ≥ Pr

{

log2 (1 + ρ [j]) <
R

m
, for ∀j

}

=

(

Pr

{

log2 (1 + ρ) <
R

m

})m

.

(14)

With (8), we can obtain the lower bound of the error probability
as

q [s] ≥

(

1− exp

(

−
2R/m − 1

ρ̄

))m|Φ|

. (15)

Substituting (15) into (12) yields the desired result.
Theorem 1 implies the download delay for a segment is a

function of |Φ|, R, m and ρ̄. We will adopt the lower bound
when calculating the average download delay of a segment,
which is given by

D (|Φi| , R,m, ρ̄) =
1

1−
(

1− exp
(

− 2R/m−1
ρ̄

))m|Φi|
. (16)

Note that if the requested segment has not been cached in
any BS, this segment will first be delivered to allK BSs
via backhaul and then the wireless transmission will follow
the same scheme as the above-mentioned cached segment
downloading. In that case, the number of candidate BSs isK,
i.e. , |Φ| = K, and an extra backhaul delay will be caused,
which is denoted asδ.

B. Problem Formulation and Relaxation

There are two cases when determining the candidate BSs. If
NC

fl 6= 0, we have|Φ| = NC
fl. Otherwise, whenNC

fl = 0, based
on our assumption, we have|Φ| = K and the segment download
delay isD (K,R,m, ρ̄) + δ. Accordingly, the download delay
of file f can be calculated as

L
∑

l=1

{

D
(

NC
fl, R,m, ρ̄

)

· 1
(

NC
fl 6= 0

)

+ [D (K,R,m, ρ̄) + δ] · 1
(

NC
fl = 0

)}

. (17)

We suppose that the filef is requested with probabilityPf and
thus

∑F
f=1 Pf = 1. The requests for segments of the same file

are of equal probability. Therefore, the average download delay
of all the files can be written as

f0 (C, R,m, ρ̄) =

F
∑

f=1

Pf

L
∑

l=1

{

D
(

NC
fl, R,m, ρ̄

)

· 1
(

NC
fl 6= 0

)

+ [D (K,R,m, ρ̄) + δ] · 1
(

NC
fl = 0

)}

. (18)

Our goal is to minimize the average download delay by
arranging the placement of segments at each BS subject to
the caching capacity limit, given physical layer constraints,
including the coding rate, the buffer size at users and the
received SNR target. With fixedR, m and ρ̄, the caching
placement problem is formulated as

P0 : minimize
C

f0 (C, R,m, ρ̄) (19)

subject to
F
∑

f=1

L
∑

l=1

ckfl ≤ C̄, ∀k ∈ {1, . . . ,K} (C1)

0 ≤
K
∑

k=1

ckfl ≤ K, ∀f, l (C2)

C ∈ {0, 1}F×L×K , (C3)

where constraint C1 stands for the caching capacity limit of
each BS and constraint C2 indicates that each segment can be
cached by at mostK BSs. It turns out that problemP0 is
an MINLP problem and thus it is highly complicated to find
the optimal solution. As a result, we will focus on developing
effective sub-optimal algorithms.

By further examining problemP0, we find that the optimiza-
tion of caching placement boils down to the determination ofthe
number of candidate BSs for each segment. In order to simplify
the notations, we define it as a vectorx = [xi] ∈ NFL, where
x(f−1)F+l = NC

fl =
∑K

k=1 ckfl. We shall take two caching
strategies as an example. That is,

C1 =

[[

1 0
1 0

]

,

[

1 1
0 0

]

,

[

1 0
1 0

]]

,

C2 =

[[

1 0
1 0

]

,

[

1 0
1 0

]

,

[

1 1
0 0

]]

.

If C1 is the optimal caching strategy, thenC2 is also optimal.
This is because bothC1 andC2 correspond to the same vector
x = [3, 1, 2, 0]

T, which determines the average download delay
of the two strategies. Therefore, (16) can be written as

D (xi) =
1

1− βxi
, (20)

with

β ,

(

1− exp

(

−
2R/m − 1

ρ̄

))m

. (21)

For xi > 0, we can find thatD (xi) is convex w.r.t.xi for
∀i ∈ {1, . . . , FL}.

For each segmentxi, for ∀i ∈ {1, . . . , FL}, its download
delay is

D (xi) · 1 (xi 6= 0) + [D (K) + δ] · 1 (xi = 0) . (22)

The indicator functions in (22) will cause the major difficulty
in designing the caching placement strategy. To resolve this



issue, we adopt an exponential functionaxi with 0 < a < 1
to approximate the indicator function1 (xi = 0). Then, we can
obtain an approximated functionf (x) to represent the average
download delay of a file as

f (x) =

FL
∑

i=1

P⌈ i
L⌉

{D (xi) · (1− axi) + [D (K) + δ] · axi}

= f1 (x) + f2 (x) , (23)

wheref1 (x) andf2 (x) are given by

f1 (x) =

FL
∑

i=1

P⌈ i
L⌉

{D (xi) + [D (K) + δ] · axi} (24)

and

f2 (x) = −
FL
∑

i=1

P⌈ i
L⌉

D (xi) a
xi . (25)

We can find thatf1 (x) is convex w.r.t.x andf2 (x) is concave
w.r.t. x, which means thatf (x) is the difference of the convex
(DC) functions.

With a fixed β, we consider an approximated problemP1

instead ofP0. That is,

P1 : minimize
x

f (x) (26)

subject to
FL
∑

i=1

xi ≤ KC̄

0 ≤ xi ≤ K, ∀i ∈ {1, . . . , FL}

x ∈ N
FL.

If we relax the integer constraint first, problemP1 turns out
to be a DC programming problem, which is not easy to solve
directly due to the non-convex smooth objective functionf (·).
The successive convex approximation (SCA) algorithm [13]
can circumvent such a difficulty by replacing the non-convex
object function with a sequence of convex ones. Specifically,
by starting from a feasible pointx(0), the algorithm generates
a sequence

{

x
(t)
}

according to the update rule

x
(t+1) = x

(t) + η(t)
(

x̂− x
(t)
)

, (27)

wherex(t) is the point generated by the algorithm at thet-th
iteration,η(t) is the step size for thet-th iteration, and̂x is the
solution of a convex optimization problemQ,

Q : minimize
x̂

g
(

x̂,x(t)
)

(28)

subject to
FL
∑

i=1

x̂i ≤ KC̄

0 ≤ x̂i ≤ K, ∀i ∈ {1, . . . , FL} .

g
(

x,x(t)
)

is an approximation off (x) at the (t+ 1)-th
iteration, which is defined as

g
(

x,x(t)
)

, f1 (x)+∇f2

(

x
(t)
)T (

x− x
(t)
)

+τ
∥

∥

∥
x− x

(t)
∥

∥

∥

2

2
(29)

Algorithm 1 : The SCA Algorithm

Initialization : Find a feasible pointx(0) and sett = 0.
Repeat

Solve problemQ and obtain the solution̂x;
Updatex(t+1) = x

(t) + η(t)
(

x̂− x
(t)
)

;
Set t = t+ 1;

Until stopping criterion is met.

and is a tight convex upper-bound off (x). The main steps
of the algorithm are presented in Algorithm 1. The solution
obtained from Algorithm 1 then should be rounded due to the
constraintx ∈ NFL.

IV. SIMULATION RESULTS

In this section, we present numerical results to examine the
performance of the proposed caching placement strategy andto
investigate the impact of backhaul delay.

Some previous studies have shown that in practical networks
the request probability of content can be fitted with some popu-
larity distributions. In this work, we assume that the popularity
of files follows a Zipf distribution with parameterγr = 0.6 (see
[14]) and the files are sorted in a descending order in terms of
popularity. We set the rate target asR = 2.5 bits/sec/Hz and
the average received SNR asρ̄ = 10 dB. We consider the case
where only the current burst is used for decoding at the user
side; i.e.,m = 1. The range of the backhaul delivery delayδ is
selected on the basis of a measurement operated on a practical
network, as was done in [8]. Their experiment implied that the
backhaul delay of a piece of content approximately ranges from
30% to 125% of its wireless transmit delay. To investigate the
impact of such delay, we chooseδ ∈ [0, 4].

First we compare the performance of the proposed algorithm
with exhaustive search. The file library has three files and each
of them is divided into three segments. There are four BSs
and each has a capacity of two segments. We adopt a step
size of η = 1 and the stopping criterion idistributions given
by

∥

∥x
(t+1) − x

(t)
∥

∥

2

/∥

∥x
(t)
∥

∥

2
< 10−4. Fig. 2 shows that the

results given by the proposed efficient algorithm are very close
to those obtained using the exhaustive search. It can also be
observed that a slight increase in cache sizeC̄ can significantly
reduce the download delay, which confirms that caching is of
great potential to enhance future wireless networks.

Next, we compare the proposed algorithm with two standard
caching placement strategies on a large-scale system, where
there are 50 BSs, each with a capacity of104 segments. The
file library has103 files, each of which is divided into103

segments. One standard strategy storesC̄ segments of the most
popular content (MPC) [8] in the cache memory of each BS.
The other one always placesKC̄ different segments in total
at all BS caches, which aims at the largest content diversity
(LCD) [5]. For the MPC policy,x1 = x2 = · · · = xK = C̄
and xK+1 = · · · = xFL = 0; and for the LCD policy,
x1 = x2 = · · · = xKC̄ = 1 and xKC̄+1 = · · · = xFL = 0.
The MPC policy is often adopted when multiple users access a
few pieces of content very frequently, such as popular movies
and TV shows. The LCD policy ensures that for most requests,
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Figure 2. Average download delay versus backhaul delivery delay.
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Figure 3. Performance comparison of various caching placement strategies.

part of the segments can be served by the local caches, instead
of having to be fetched from the remote central controller
through the backhaul. The step size and the stopping criterion
are the same as Fig. 2. Fig. 3 demonstrates that our proposed
strategy outperforms the other schemes, and important insights
are revealed. When the backhaul delay is small enough, it
can be regarded as equivalent to the case of infinite caching
capacity. In this case, the best way to save download time
is to maximize the channel diversity for each segment. As a
result, the proposed strategy and the MPC policy coincide atthe
point δ=0. When the backhaul delay increases, the advantage
of caching diversity emerges, and the LCD policy will surpass
the MPC policy. Our proposed strategy and the LCD policy
will converge when backhaul links are suffering from severe
delivery delays. This is because when there is a largeδ, even
a single delivery via backhaul will lead to a huge delay and
thus backhaul transmission should be prevented as much as
possible. Therefore, the strategy that can provide maximum
caching content diversity is favorable.

V. CONCLUSIONS

This paper presented a framework to minimize the aver-
age download delay of wireless caching networks. A caching
placement problem which takes into account physical layer

processing as well as backhaul delays was formulated to
fully exploit the benefit of caching. As the design problem
is an MINLP problem, we relaxed it into a DC optimization
problem and adopted the SCA algorithm to solve it efficiently.
Simulation results showed that our strategy can significantly
reduce the average download delay compared to conventional
strategies, and the proposed low-complexity algorithm can
achieve comparable performance to exhaustive search. More-
over, we demonstrated that the backhaul propagation delay
will greatly influence the caching placement. Specifically,when
the backhaul delay becomes very small or very large, our
proposed strategy will gradually evolve to the MPC and the
LCD strategy, respectively. In particular, for a practicalvalue
of the backhaul delay, the proposed caching placement serves
as the best strategy. Therefore, it can be concluded that our
work provides a promising model to formulate the download
delay for wireless caching networks, and important insights are
given for determining the optimal caching placement strategy
under different backhaul conditions.
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