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Abstract—In this work, we maximize the secrecy rate of the
wireless-powered untrusted relay network by jointly designing
power splitting (PS) ratio and relay beamforming with the
proposed global optimal algorithm (GOA) and local optimal
algorithm (LOA). Different from the literature, artificial noise
(AN) sent by the destination not only degrades the channel
condition of the eavesdropper to improve the secrecy rate, but
also becomes a new source of energy powering the untrusted
relay based on PS. Hence, it is of high economic benefits and
efficiency to take advantage of AN compared with the literature.
Simulation results show that LOA can achieve satisfactory
secrecy rate performance compared with that of GOA, but with
less computation time.

I. I NTRODUCTION

Recently, simultaneous wireless information and power
transfer (SWIPT) became an emerging solution for prolonging
the lifetime of energy-constrained wireless nodes and draw
significant attention in the cooperative transmission. Since
SWIPT enables receivers to harvest energy and encode in-
formation from the same wireless signal, it makes the most
efficient utilization of wireless spectrum for both information
and energy transfer. SWIPT has drawn a great deal of research
interests [1]–[4]. Two practical schemes, namely power split-
ting (PS) and time switching (TS), were proposed in [1] and
[2]. For TS, the receivers switch over time between infor-
mation decoding and energy harvesting. PS enables wireless
nodes to split some power for information decoding and use
the remaining power for energy harvesting. On the other hand,
energy harvesting powered relay systems have gained signifi-
cant interests, where the relays with SWIPT use their harvested
energy to power the forwarding of the sources’ information
without external power supplies. In [5], time switching based
relaying (TSR) protocol and power splitting based relaying
(PSR) protocol were proposed for wireless-powered relays
systems. The authors in [6] investigated energy harvesting
relays networks where relays switched over time between
harvesting energy and volunteering to forward the transmitter’s
information. In [7], a multiple-antenna relay system with
SWIPT was studied and a “harvest-and-forward” strategy was
proposed to maximize the achievable rate. The authors of [8]
investigated the beamforming design with simultaneous energy
harvesting to improve the max-min signal-to-interference-plus-
noise ratio (SINR) in a multiuser two-way multi-antenna relay

systems.
On the other hand, with the development of wireless net-

works, the issues of privacy and security have attracted much
interest and attention due to the broadcast nature of the wire-
less medium. The cryptographic approach using secret keys
at upper layers has been traditionally used for the securityof
communication systems. Due to the cost of the key distribution
and key management, information-theoretic security at the
physical layer became an important complementary to the
traditional cryptographic approach. Thus, substantial research
efforts have been dedicated to information-theoretic physical
layer security [9]–[18], the concept of which was defined
by Wyner [10]. By exploiting spatial diversity, a relay may
also provide the secrecy capacity by assisting the source-
destination transmission or acting as a jammer (e.g. [11]).
However, another security threat arises since the information
transmitted by the source may be eavesdropped by an untrusted
relay [12]. Interestingly, in [12], it was shown that the secrecy
rate may be enhanced even with the help of an untrusted relay.
In [13], the authors studied joint secure beamforming for an
AF untrusted relay system. The MIMO AF untrusted relay
beamforming was further extended to a two-way untrusted
relay system in [15]. To further improve the security of the
source-destination transmission, artificial noise (AN) (sent by
jammer [11], source [17] or destination [18]) was proposed in
[14] as another important solution for physical layer security.
Traditionally, AN is only used to degrade the channel con-
ditions of eavesdroppers, hence, it may not be efficient and
economic from the aspect of green communication.

More recently, a handful of works studied the SWIPT with
the consideration of physical layer security [19]–[22]. The
authors in [21] studied secure relay beamforming for SWIPT
in one-way relay systems with an external energy-harvested
receiver. In [22], the authors considered a wireless-powered
jammer system, where the jammer can harvest energy from the
wireless signal and use it to interfere with the eavesdropper.
In the present literature, the energy of AF relay, especially
the untrusted relay, is considered mostly to be supplied by the
power grid or battery. To the best of our knowledge, secrecy
issues in the wireless-powered untrusted relay systems have
not been studied yet, which motivates this work. And it seems
reasonable and intuitive to realize the energy harvest at the
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untrusted AF relay node to make full use of AN.
In this work, we consider a wireless-power untrusted relay

network and maximize its secrecy rate by jointly designing
PS ratio and relay beamforming with the proposed global
optimal algorithm (GOA) and local optimal algorithm (LOA).
The main difference from the literature is that AN sent by
the destination not only degrades the channel condition of the
eavesdropper to improve the secrecy rate, but also becomes a
new source of energy powering the PS based untrusted relay.
Hence, it is of high economic benefits and efficiency to take
advantage of AN compared with the literature.

Notation: We adopt the notation of using boldface for
column vectors (lower case), and matrices (upper case). The
hermitian transpose is denoted by the symbol(·)†. For a
complex scalarx, its complex conjugate is denoted byx∗.
E[·] andCN (·) denote the statistical expectation and complex
Gaussian distributions, respectively. For matrixX, vec(X),
X−1, XT , and Tr(X) represent the vectorization, inversion,
transpose and trace of matrixX, respectively, andX ⊗ Y

stands for the kronecker product ofX andY . For a vector
x, we use‖x‖2 to indicate itsℓ2 norm. AndI is the identity
matrix with corresponding dimensions.

II. SYSTEM MODEL

Consider a scenario with three nodes: an untrusted AF relay
(R), source S and destination D, where only R is equipped
with multiple antennas, and the scenario with single-antenna
R is regarded as a special case in this paper. Due to the space
limitation, the multi-antenna case where all the nodes own
multiple antennas is considered in the journal version.

In this paper, the considered relay R is untrusted and
assumed to eavesdrop the confidential signal of D when it
helps the SD transmission, and it can be treated as a legitimate
user [12]–[15] with different service from that of D. In Fig.1,
at the first hop, S transmits the confidential signal to R,
meanwhile, D sends AN to R to degrade the eavesdropping
channel of R. In contrast to the literature, R can not only
process the received signal, but also harvest energy from itas
the source of power for the next-hop transmission at the same
time. At the second hop, R transmits the processed signal to
D depending on the harvested energy. Notice that both R and
D are half-duplex, i.e., R and D can not receive and send
signal, simultaneously. Therefore, SD link is not under our
consideration.

Denote the channel vectors from S to R, from D to R, and
from R to D by hsr ∈ CNr×1, hdr ∈ CNr×1 and hrd ∈
CNr×1, whereNr is the number of antennas at R. At the
first hop, S transmits the signal to R, meanwhile D sends AN
to R with the purpose of confounding the eavesdropper. The
received signal at R is given by

yr = hsrxs + hdrxd + nr, (1)

wherenr ∈ CNr represents the additive white Gaussian noise
(AWGN) associated with relay node following the distribution
CN (0, σ2

rI), xs represents the secure information sent by S
to D, meanwhile,xd is AN sent by D to degrade the channel

Fig. 1. Simulation Scenario.

condition of R. Andxs ∈ C andxd ∈ C represent the transmit
symbol of S and D with powersE[xsx

∗
s ] = Ps andE[xdx

∗
d] =

Pd. ρ denotes the ratio of power split for the energy harvesting,
and the information processing is(1 − ρ) at the relay node.
Hence, the parts of received signal for energy harvesting and
information processing are written, respectively, as follows

ỹr =
√
ρ (hsrxs + hdrxd + nr) , (2)

y̆r =
√

1− ρ (hsrxs + hdrxd + nr) + nc. (3)

wherenc ∈ CNr is the additive noise vector introduced by
signal conversion from the passband to baseband with the
distributionCN (0, σ2

cI).
Based on [23], we denoteA(ρ) := (1−ρ)Pdhdrh

†
dr+(1−

ρ)σ2
rI + σ2

cI. Furthermore, we can rewrite (3) as

ŷr =
√

1− ρA− 1
2 (ρ)hsrxs +

A− 1
2 (ρ)

(

√

1− ρhdrxd +
√

1− ρnr + nc

)

,(4)

and the information rate achieved at the untrusted relay can
be given by

Rr(ρ) = log2
(

1 + (1− ρ)Psh
†
srA

−1(ρ)hsr

)

. (5)

Resorting to the PS scheme, we can briefly write the
expression of harvested energy at R as

P EH
r = η

{

ρPs ‖hsr‖22 + ρPd ‖hdr‖22 + ρσ2
rTr (I)

}

, (6)

whereη ∈ (0, 1] denotes the energy conversion efficiency from
signal power to circuit power.

Different from simply applying the amplified scalarα to
tackle the received signal at the single-antenna R in the
Remark 1, in this paper, we adoptF as the processing matrix
to deal with the received signal and forward it to D at relay
node. Subtracting the AN term

√
1− ρh†

rdFhdrxd sent by
itself, the received signal at D can be given by

yd = h
†
rdF

(

√

1− ρhsrxs +
√

1− ρnr + nc

)

+ nd, (7)

wherend is the AGWN introduced by the receiver antenna at
D with the distributionCN (0, σ2

d). For simplicity of descrip-
tion, we makeσ2

r = σ2
c = σ2

d = σ2 in the following parts.



The achievable rate of D can be expressed as

Rd(F,ρ)= log2


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III. PROBLEM FORMULATION FOR SECRECYRATE

MAXIMIZATION

To begin with our problem formulation, we will provide a
brief background on the introduction ofSecrecy Rate [11]–
[18]. In the presence of the eavesdropper, the secrecy rate is
the information rate that the source can securely transmit to
the legitimate user. In this section, we denoteRsr(F , ρ) as
the secrecy rate, given by

Rsr(F , ρ) =
1

2
[Rd(F , ρ)−Rr(F , ρ)]

+
, (9)

where [a]+ = max(0, a), and 1
2 is from the fact that the

source-destination transmission takes place in two time slots.
For the MIMO relay case, the optimization problem can be

written as

max
ρ,F

Rsr(F , ρ) (10)

s.t. (1−ρ)Ps ‖Fhsr‖22+(1− ρ)Pd‖Fhdr‖22+
(1− ρ)σ2

r ‖F ‖2F+σ2
c ‖F ‖2F ≤P EH

r ,

which can be briefly rewritten as

max
ρ,f

(

1+
f†B(ρ)f

f†C(ρ)f + f†Ef + σ2

)(

1

1 + (1 − ρ)Psh
†
srA

−1(ρ)hsr

)

s.t. f †T (ρ)f ≤ P EH
r , (11)

where

f = vec(F ),

B(ρ) = Ps(1− ρ)

[

(

hsrh
†
sr

)T

⊗
(

hrdh
†
rd

)

]

,

C(ρ) = (1− ρ)
[(

σ2I ⊗ hrdh
†
rd

)]

,

E = σ2
c

[(

I ⊗ hrdh
†
rd

)]

,

G(ρ) = (1− ρ)Ps

[

(

hsrh
†
sr

)T

⊗ I

]

,

J(ρ) = (1− ρ)Pd

[

(

hdrh
†
dr

)T

⊗ I

]

,

T (ρ) =
(

G(ρ) + J(ρ) + (1− ρ)σ2If + σ2
cIf

)

,

whereIf ∈ CN2
r×N2

r has the same dimension asG(ρ), and
the properties, such as vec(AXB) = (BT ⊗A)vec(X) and
Tr(XT

1 X2) = vec(X1)
T vec(X2), are applied to the above

equalities. Note that the energy constraint in (10) means that
the considered relay is wireless-powered, i.e., the relay is
powered by its harvested energy without any external energy
supplies.

Remark 1: When S, D and R are equipped with the single
antenna, the achievable rate of R and D are given by

Rr(ρ) = log2

(

1 +
(1 − ρ)Ps|hsr|2

(1− ρ)Pd|hdr|2 + (1− ρ)σ2
d + σ2

c

)

,

Rd(ρ) = log2

(

1 +
α2(1− ρ)Ps|h†

rdhsr|2
α2(1 − ρ)|hrd|2σ2

r + α2|hrd|2σ2
c + σ2

d

)

,

whereα is the amplified factor with the consideration of power

constraint at the relay,α =
√

P EH
r

(1−ρ)(Pr |hsr|2+Pd|hdr|2+σ2
r)+σ2

c
.

And the secrecy rate is

Rsr(ρ) =
1

2
[Rd(ρ)−Rr(ρ)]

+ , (12)

which is a function ofρ in the range of(0, 1), and can be
perfect solved by settingdRsr

dρ
= 0 (resorting to Matlab),

wheredRsr

dρ
is the derivative ofRsr(ρ) with respect toρ. Note

that there might be more than one point making the derivative
dRsr

dρ
equals zero, and we treat the one yielding the maximal

secrecy rateRsr(ρ
⋆) as the optimal PS ratioρ⋆. If there is no

point at which the derivative is zero, the secrecy rate is zero.

A. Global Optimal Solution

It is obvious that (11) is non-convex and difficult to solve
with the two variables(ρ,f ), simultaneously. In this sub-
section, we design the global optimal algorithm (GOA) for
problem (11) with one dimension search ofρ in the interval
of [0, 1]. In each round, the following optimization problem
with the givenρ̄ is considered to obtain the optimal solution
f⋆,

max
f

f†B(ρ̄)f

f†C(ρ̄)f + f†Ef + σ2
(13)

s.t. f†T (ρ̄)f ≤ P EH
r .

However, the above optimization problem is still a non-convex
problem. Hence, we resort to semidefinite relaxation (SDR) to
drop the rank-one constraint (rank(X) = rank(ff†) = 1), and
obtain the relaxed problem as follows

max
X

Tr(B(ρ̄)X)

Tr(C(ρ̄)X) + Tr(EX) + σ2
(14)

s.t. Tr(T (ρ̄)X) ≤ P EH
r ,

X � 0,

which is a quasi-convex problem. Thus, we adopt the Charnes-
Cooper transformation to make the quasi-convex problem (14)
into a convex SDP. To this end, we setX = Z

ξ
, ξ > 0, and

recast (14) as

max
Z,ξ

Tr(B(ρ̄)Z) (15)

s.t. Tr(C(ρ̄)Z) + Tr(EZ) + ξσ2 = 1,

Tr(T (ρ̄)Z) ≤ ξP EH
r ,

Z � 0, ξ > 0,



the optimal solution of which can be efficiently obtained by
solvers, e.g., CVX. Denote(Z⋆

ρ̄, ξ
⋆
ρ̄) as the optimal solution

of problem (15) with givenρ̄, and we achieve the optimal

solution ofX⋆
ρ̄ by X⋆

ρ̄ =
Z⋆

ρ̄

ξ⋆ρ̄
. Note that the optimalX with

rank-one property, is the sufficient and necessary condition for
the equivalence of problem (13) and (14), which is guaranteed
by the following lemma:

Lemma 3.1: [24, Theorem 2.1] Suppose thatΥ ∈ Hn is a
complex Hermitian positive semidefinite matrix of rankr, and
A1, A2 ∈ Hn be two given Hermitian positive semidefinite
matrices. Then, there is a rank-one decomposition ofΥ.

Υ =

r
∑

j=1

υjυ
†
j (16)

such that

υ
†
jA1υj=

Tr(A1Υ)

r
, υ†

jA2υj=
Tr(A2Υ)

r
, j=1, · · · , r. (17)

In our problem, if we want to guarantee the rank-one
property, the following equalities should be satisfied:

Tr(C(ρ̄)Z)+Tr(EZ)+ξσ2=Tr
(

C(ρ̄)ff†
)

+Tr
(

Eff †
)

+ξσ2,(18)

Tr(T (ρ̄)X) = Tr(R(ρ̄)ff †). (19)

Based on Lemma3.1, we can recover the rank-one solution
f⋆
ρ̄ from X⋆

ρ̄ = f⋆
ρ̄f

†⋆
ρ̄ with given ρ̄. For the sake of brevity,

denotef(ρ,f) , f1(ρ,f )f2[t(ρ)], where f1(ρ,f) = 1+
f †B(ρ)f

f †C(ρ)f+f †Ef+σ2
, and f2[t(ρ)] =

1
t(ρ) , in which t(ρ) :=

1+(1−ρ)Psh
†
srA

−1(ρ)hsr. And the optimal value of objective
function with given ρ̄ is denoted asf(ρ̄,f ρ̄). Hence, the
optimal solution(ρ⋆,f⋆) to problem (11) can be obtained by

(ρ⋆,f⋆) = arg max
ρ̄∈[0,1]

f(ρ̄,f ρ̄). (20)

The details of GOA is summarized in Algorithm 1 as

Algorithm 1: The global optimal algorithm
0: Define∆ρ = 1

M
= ǫ, whereM is a large constant.

1: For j = 1, · · · ,M , do Step S0∼S2,
and seek for the global optimal solution(ρ⋆,f⋆) for (11).
S0: Denoteρ̄ = j∆ρ. Solve problem (15) with the given

ρ̄, and denote(ξ⋆ρ̄ ,Z
⋆
ρ̄) as the optimal solution to (15);

S1: ObtainX⋆
ρ̄ by X⋆

ρ̄ =
Z⋆

ρ̄

ξ⋆ρ̄
. Do the following

procedures to obtain the rank-one solutionf⋆
ρ̄

If rank(X⋆
ρ̄)=1

The optimal value of problem (13) isf⋆
ρ̄, X⋆

ρ̄=f
⋆
ρ̄f

†⋆
ρ̄ ;

Else
Resort to Lemma (3.1) to seek for a rank-one
decomposition ofX⋆

ρ̄, i.e.,X⋆
ρ̄ = zz† andf⋆

ρ̄ = z,
which satisfies the equalities of (18) and (19).
f⋆
ρ̄ is the optimal solution with given̄ρ.

End If
S2: Remarkf⋆

ρ̄ andf(ρ̄,f⋆
ρ̄) as the optimal solution

and objective value for given̄ρ, respectively.
2: Choose the optimal solution from the following equation
(ρ⋆,f⋆) = argmaxρ̄∈[0,1] f(ρ̄,f ρ̄).

whereǫ is the given tolerant error.

B. Local Optimal Solution

Although the global optimal solution(f⋆, ρ⋆) can be found
as described in Section III-A, the high computation time of
one dimension search inρ is expensive. Hence, we want to
seek for some other algorithms which can better balance the
performance of system and the cost of computation. In this
section, a well-designed two-variable block coordinate decent
(BCD) method is introduced to solve problem (11) converging
to a local optimal solution, which is proved in [25, Theorem
4.1].

As it is mentioned above,σ2
d = σ2

r = σ2
c = σ2, then

A−1(ρ) =
[

(1 − ρ)Pdhdrh
†
dr + (2− ρ)σ2I

]−1

.

In order to get more insight ofρ, we make some transformation
of term A−1(ρ) to present it as the function ofρ instead of
matrix formulation, like

A−1(ρ)=
I + 1−ρ

(2−ρ)σ2 Pdh
†
drhdrI− 1−ρ

(2−ρ)σ2Pdhdrh
†
dr

(2− ρ)σ2 + (1− ρ)Pdh
†
drhdr

, (21)

the details of this procedure will be shown in Appendix A.
It is noted that different from the global optimal algorithm,

searchingρ⋆ to yield the maximal secrecy rate in the interval
[0, 1], the local optimal search forρ implies that we should
selectρ making the secrecy rate greater than zero to guarantee
the secure source-destination transmission. Notice that the
choice ofρ decides the nature of secure transmission in this
relay networks. For example, smallρ means that there is more
information eavesdropped by the untrusted relay (see (5)),
and less harvested energy for the second-hop transmission,
resulting in lower achievable rate for D. Meanwhile, although
the largeρ (approaches to 1) leads to more harvested energy
and less information leakage, the confidential informationis
weakened and difficult to be distinguished from the noise at
the destination.

Therefore, it is important to choose a suitableρ for this relay
networks. In this subsection, we resort to BCD to updateρ and
f in sequence. Due to the property of BCD, the initial point
has a great effect on the solution of problem (11). Hence, we
choose multiple initial points, such asρj andf j , j = 1, · · · , J ,
to achieve different objective values, and the maximal one is
set to be the local optimal value.

For each initial point (ρ, f ) (denoteρ = ρj andf = f j , ∀j
for simplicity), problem (11) with a given fixedfk to achieve
the temporary optimal solutionρ⋆k in thek-th iteration, can be
written as

max
ρ

(

1+
f

†

k
B(ρ)fk

f
†

k
C(ρ)fk+f

†

k
Efk+σ2

)(

1

1+(1 − ρ)Psh
†
srA

−1(ρ)hsr

)

s.t. f
†
kT (ρ)fk ≤ P EH

r . (22)

Plugging (21) in (22), it is easy to verify that the objective
function of problem (22) can be rewritten as an univariate
function of scalerρ with high order term, and the constraint
with respect toρ is convex. Therefore, the optimal solution



ρ⋆k of the above problem can be obtained. We check the
monotonicity of f(ρ,fk) with respect toρ (the details are
given in Appendix B), choose the points where the derivatives
of f(ρ,fk) with respect toρ equal to zero, calculate the values
of the objective function in (22) with those chosen points, and
select the one with the maximal value. If there is no point
making the derivative off(ρ,fk) with respect toρ equal to
zero in the range of[0, 1], it means thatf(ρ,fk) is monotonic,
and the point at the boundary of the constraint will be chosen
to be the optimal one. The reason is given in the Remark 2.

Remark 2: As f is a smooth function,∇f should be a
continuous function. We have that if∇ρf can not obtain0,
∇ρf must be positive or negative in the whole interval [0,1].
If not, let us assume that∇ρf(ρ1,fk) and∇ρf(ρ2,fk) have
different signs. Because of the continuity of∇ρf , there should
be a pointρ3 ∈ (ρ1, ρ2) such that∇ρf(ρ3, fk) = 0. This is a
contradiction.

Then we can updatef depending on the obtainedρk+1

(whereρk+1 := ρ⋆k) in the (k+1)-th iteration through solving
the following relaxed optimization problem referred to the
procedures of (14) to (15)

max
Zk+1,ξ

Tr(B(ρk+1)Zk+1) (23)

s.t. Tr(C(ρk+1)Zk+1) + Tr(EZk+1) + ξσ2 = 1,

Tr(T (ρk+1)Zk+1) ≤ ξP EH
r ,

Zk+1 � 0, ξ > 0,

the optimal solution of which can be efficiently obtained by
solvers, e.g., CVX. Denote(Z⋆

k+1, ξ
⋆) as the optimal solution

of problem (23) in the(k + 1)-th iteration, and we achieve

the optimal solution ofX⋆ by X⋆
k+1 =

Z⋆

k+1

ξ⋆
. Resorting

to lemma 3.1, we can get a rank-one decomposition from
X⋆

k+1 = f⋆
k+1f

⋆†
k+1, i.e., f⋆

k+1 is the optimal solution in the
(k + 1)-th iteration.

In the following, we present the procedures of the local
optimal algorithm (LOA) in Algorithm 2.

Algorithm 2: The LOA based on BCD method
0 (Initialization): Randomly generate feasible points(ρj ,f j),
∀j, and let the initial objective values bef(ρj ,f j), ∀j.
Do Step1-2 for eachj, denoteρ = ρj andf = f j

for simplicity, and setk = 0.
1 (Block Coordinate Maximization):

(1) Solve Problem (22) withf(ρ,fk), and
get optimal solutionρk+1;

(2) Solve Problem (23) withf(ρk+1,f), and
get optimal solutionfk+1 resorting to Lemma 3.1;

Set∆ = |f(ρk+1,fk+1)− f(ρk,fk)|/|f(ρk+1,fk+1)|.
2 (Stopping Criterion): Ifmax(0,∆) ≤ ǫ, stop and return
(ρk,fk); otherwise, setk := k + 1 and go to Step 1.

3 (Local Optimal Solution): Denote(ρjk,f
j
k) andf(ρjk,f

j
k)

as the solution and objective value of problem (11) with
the given initial point(ρj ,f j), hence the local optimal
solution is chosen by
(ρ⋆,f⋆) = argmaxj f(ρ

j
k,f

j
k).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

Power Splitting Ratio ρ

S
ec

re
cy

 R
at

e 
(b

ps
/H

z)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

30

Power Splitting Ratio ρ

V
al

ue
 o

f D
er

iv
at

iv
e

 

 

Secrecy Rate
Point with the maximal value

Derivative
Point where the derivative is 0

The same optimal ρ
on the horizontal axis

Fig. 2. Verification of Remark 1 that the optimalρ⋆ is obtained when the
derivative dRsr

dρ
(ρ⋆) equals zero,Ps = Pd = 40dBm.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed algorithms via numerical simulations. The path loss
model for the energy harvesting relay channel is Rayleigh
distributed and denoted by|β|2d−2, where|β| andd represent
the short-term channel fading and the distance between two
nodes (S and R, D and R, R and D).|β|2 follows the
exponential distribution with unit mean. We set the noise
powers asσ2

r = σ2
d = σ2

c = σ2 = 0dBm, ∀i, the number of
antennas at R as 2, and the energy conversion efficiencyη = 1.

To get more insight of Remark 1, we verify the conclusion
of Remark 1 using one channel realization. For the single-
antenna untrusted relay case, the optimal PS ratioρ⋆ can be
achieved by settingdRsr

dρ
= 0. As shown in Fig.2, the point

with the maximal secrecy rate in the upper subfigure corre-
sponds to the pointρ⋆ where dRsr

dρ
(ρ⋆) = 0 on the horizontal

axis in the second subfigure. In addition, we conclude that both
smallρ and largeρ (approaches to1) yield smaller secrecy rate.

The secrecy rate performances for GOA and LOA in MIMO
untrusted relay networks are given in Fig.3. In the low SNR
region, the performance achieved by LOA quite approximates
the one in GOA. The reason is that the key element affecting
the performance in that SNR region is the harvested energy
powering the next-hop transmission. Although we can get the
optimal ρ⋆ resorting to GOA, it just helps a little.

In contrast, the dominant factor for the performance is the
power splitting ratioρ in the high SNR region. It is the fact that
the higher the SNR, the larger gap between GOA and LOA for
the fixed AN power in Fig.3. Interestingly, as the power of AN
(Pd) increases, the performance of LOA is getting much closer
to that of GOA for the whole region of SNR. For instance, at
SNR=50dBm, the relative performance ratio is growing from
79.6% to 86.3% asPd raises from 40dBm to 50dBm.

The comparison of computation time for GOA and LOA
is shown in Table.I with different givenǫ. The results are
averaged among 100 channel realizations, and the unit of
measurement for computation time issecond(s). It is obvious
that LOA takes much less computation time than GOA. We
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TABLE I
COMPARISON OFTHE COMPUTATION T IME IN GOA AND LOA FOR PER

CHANNEL REALIZATION .

Method ǫ

10−2 10−3 10−4

Local Optimal Algorithm (LOA) 0.2896 2.9868 7.4535
Global Optimal Algorithm (GOA) 0.9706 6.1656 47.9588

can figure out that LOA is relatively efficient, and it can
achieve satisfactory secrecy rate performance compared to
GOA, especially whenPd is large, but with less computation
time.

To find more knowledge of the benefits of the wireless-
powered relay, we compare the performances between the
wireless-powered relay (WPR) and the external-powered relay
(EPR, i.e., the power of the relay is supplied by the power grid
or battery, rather than harvested from its received signal)in
Fig.3. We also show the relative power consumption of the
three algorithm (GOA, LOA and EPR) in Fig.4, and denote
GOA and LOA as WPR-GOA and WPR-LOA, respectively.
It is clear that WPR consumes less power than EPR because
the power of WPR is supplied by energy harvesting from the
received signal, rather than the external power for EPR case.

The secrecy rate of EPR with the given constant relay

power Pr = 43dBm is almost twice times than those of
GOA and LOA in the low region of SNR. Because WPR
can not harvest enough energy to achieve better performance
in that low SNR region compared with EPR. By contrast, in
the high SNR region, WPR can harvest sufficient energy to
support its next-hop transmission and obtain higher secrecy
rate performance with reasonable PS ratio for the information
processing, but consumes less energy compared with EPR
in Fig.4. As for EPR, more information is eavesdropped by
the untrusted relay as the source powerPs is increasing in
the high SNR region, hence, its secrecy rate performance is
reducing. From the aspect of secrecy rate performance, WPR
has advantage over EPR for the reason that it can harvest
energy from the wireless signal and adjust the PS ratio to
achieve better performance with less information leakage and
power consumption, especially in the high SNR region.

V. CONCLUSION

In this paper, we study the secrecy rate maximization
problem in the wireless-powered untrusted relay networks
according to joint power splitting and secure beamforming
design. We propose two algorithm named as Global optimal
algorithm (GOA) and Local optimal algorithm (LOA) with
well established convergence result to jointly optimize the PS
ratio and relay beamforming, and LOA can achieve satisfac-
tory secrecy rate performance compared to GOA, but with
less computation time. We also show that the wireless-powered
untrusted relay has advantage over external-powered untrusted
relay at the aspect of secrecy rate performance but with less
power consumption, especially in the high SNR region.

APPENDIX A
TRANSFORMATION OFA−1(ρ)

We rewrite A−1(ρ) to represent it as the function ofρ
instead of matrix formulation, as follows

A−1(ρ) =
[

(2− ρ)σ2I + (1− ρ)Pdhdrh
†
dr

]−1

=
1

(2 − ρ)σ2
I−

1
(2−ρ)σ2 I

[

(1−ρ)Pdhdrh
†
dr

]

1
(2−ρ)σ2 I

1 + (1− ρ)Pdh
†
dr

1
(2−ρ)σ2 Ihdr

=
I + 1−ρ

(2−ρ)σ2Pdh
†
drhdrI − 1−ρ

(2−ρ)σ2Pdhdrh
†
dr

(2− ρ)σ2 + (1 − ρ)Pdh
†
drhdr

, (24)

where the second equation comes form the definition of
Sherman-Morrison-Woodbury formula [26], which is

[

K + xy†
]−1

= K−1 − K−1xy†K−1

1 + y†K−1x
. (25)

APPENDIX B
THE DERIVATIVE OF f(ρ, f̄ ) WITH RESPECT TOρ

Recall the those denotations in Section III-A off(ρ,f),
f1(ρ,f) andf2[t(ρ)], we have the partial derivative off1 with



respect toρ like

∂f1(ρ, f̄)

∂ρ
=

−Psf̄
†
[

(

hsrh
†
sr

)T

⊗
(

hrdh
†
rd

)

]

f̄
(

f̄
†
Ef̄+σ2

)

(

f̄
†
C(ρ)f̄ + f̄

†
Ef̄ + σ2

)2 .(26)

And the derivative off2 with respect toρ, is given

∂f2[t(ρ)]

∂ρ
= − 1

t(ρ)2
∂t(ρ)

∂ρ

= − 1

t(ρ)2







−Psσ
2

(

(2− ρ)σ2 + (1− ρ)Pdh
†
drhdr

)2m+

Pdh
†
srhdrh

†
drhsr − Pdh

†
drhdrh

†
srhsr

(2− ρ)2σ2
n

]

,

where t(ρ), taking account of the new transformation of
A−1(ρ), is written as

t(ρ) = 1 +mn,

wherem =

h
†
srhsr+

1−ρ

(2−ρ)σ2
Pdh

†
drhdrh

†
srhsr−

1−ρ

(2−ρ)σ2
Pdh

†
srhdrh

†
drhsr,

andn = (1−ρ)Ps

(2−ρ)σ2+(1−ρ)Pdh
†

drhdr

.

The derivative off(ρ,fk) with respect toρ is given by

∂f(ρ⋆, f̄ )

∂ρ⋆
=
∂f1(ρ

⋆, f̄ )

∂ρ⋆
f2[t(ρ

⋆)]+
∂f2[t(ρ

⋆)]

∂ρ⋆
f1(ρ

⋆, f̄).(27)
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