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Abstract

In this paper, we study the performance of a TCP connection over cognitive radio networks. In these

networks, the network may not always be available for transmission. Also, the packets can be lost due to

wireless channel impairments. We evaluate the throughput and packet retransmission timeout probability

of a secondary TCP connection over an ON/OFF channel. We firstassume that the ON and OFF time

durations are exponential and later extend it to more general distributions. We then consider multiple

TCP connections over the ON/OFF channel. We validate our theoretical models and the approximations

made therein via ns2 simulations.

Index Terms

TCP, ON-OFF channels, cognitive radio.

I. INTRODUCTION

In this paper, we analyze performance of TCP connections over channels which are not always

available for transmission. We call such channels ON-OFF channels. We limit ourselves to TCP
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Reno. On wireless channels misinterpretation of random packet losses as congestion losses can

lead to poor performance of TCP. Besides these losses, in certain scenarios such as cognitive

radio networks, the channel may not always be available [1],[2]. These lead to frequent timeouts

and the TCP performance is adversely affected.

The primary motivation for this work is cognitive radio (CR)networks [3]. Cognitive radio is

an emerging technology which intends to use the spectrum more efficiently. Huge portions of the

spectrum are licensed but lay underutilized. Cognitive radio permits devices called secondary

devices to utilize the channel when the primary user of the channel (the user to whom the

channel is licensed) is not utilizing the channel. One can model this behaviour with an alternating

ON-OFF channel, with ON periods corresponding to the primary being inactive and hence the

channel being available for transmission by secondary users and OFF durations correspond to

the primary busy periods where the channel is unavailable tothe secondary for transmission.

A practical example of TCP over an ON-OFF channel is cellulardata boost [4] in cellular

networks where non-real time or delay tolerant traffic such as email, FTP etc, (which use TCP)

can be offloaded from the cellular network to a cognitive radio network of white space hot-spots

to meet the QoS requirements of delay sensitive traffic. Besides CR networks, there are other

networks where the links can be modeled as ON-OFF channels. Intermittent loss of connectivity

also happens in cellular networks due to hand-offs, in mobile ad-hoc networks [5] due to link

failures, in satellite networks [6] and in 802.11 networks due to collisions.

The performance of TCP has been widely studied in the literature. In [7], the authors develop

a performance model for TCP and verify their model through simulations and measurements. In

[8], the authors provide an expression for TCP Reno throughput under Bernoulli packet losses

using a Markov model. In [9], the authors study the performance of TCP over multi-hop wireless

channel. They observe that link-layer contention causes packet drops and propose changes to

the backoff mechanism of the link layer to improve TCP performance.

The performance of secondary users in a CR network has been studied in [1] and [2]. In [1],

the authors compute the channel availability probability and the throughput for CR nodes in

MIMO CR networks. In [2], the authors use Markov models to derive the stability condition for

the secondary users in a multi-channel CR network. In [10], the authors discuss properties and

research challenges posed by cognitive radio. They suggestchanges that need to be incorporated

into the transport layer protocols for operation over CR channels. In [11], the authors compare the
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performance of TCP SACK, TCP New Reno and TCP Vegas over dynamic spectrum access links

using ns2 simulations. In [12], the authors study the effectof spectrum sensing duration, primary

user interference and channel bandwidth variation on different TCP variants using simulations.

In [13], the authors use relay selection, power allocation and adaptive modulation and coding

schemes to improve secondary user TCP performance over CR channels. In [14], the authors

look at the impact of secondary sensing and primary activityon TCP throughput. In [15], the

authors model the system as a M/G/1 queue with the primary users getting priority over the

secondary users and provide expressions for throughput fordata traffic and mean delay for voice

traffic of secondary users. Transport layer protocols for cognitive radio have been developed in

[16]–[19].

From above we see that there is considerable literature on performance analysis of secondary

users in a CR network. However most analytical results address the problem at the MAC layer

ignoring the impact of TCP dynamics and the studies of TCP behaviour are mostly simulation-

based. In this paper, we provide a theoretical model for TCP connections over a CR channel.

We compute the throughput and probability of retransmission timeout for a secondary TCP

connection. Our work complements [15]. In [15], the authorsconsider the case where ON and

OFF durations are of the order of round trip time (RTT) and hence they ignore TCP timeouts. In

our work, we consider the case where the ON and OFF durations are larger than RTT where the

effect of TCP timeouts cannot be ignored. Such a scenario canoften happen in CR networks and

then the timeouts can significantly affect the TCP throughput. We note that [14] also considers

the impact of primary user activity on TCP throughput due to timeouts. However they consider

a slotted model, where the primary user if active at the beginning of the slot stays active for the

entire slot and if inactive stays inactive for the entire slot. We do not consider a slotted system

and consider more general primary user behaviour.

This paper is organized as follows. In Section II, we describe our system model. In Section

III, we develop a Markov model for TCP behaviour in an ON-OFF channel with exponential ON

and OFF periods. In Section IV, we develop models for ON and OFF periods with more general

distributions using regenerative theory. In Section V, we consider the system with multiple

secondary TCP connections. Section VI concludes this paper.



4

Source
TCP

TCP

∆

Receiver

ON OFF channel

C

TCP packet

Lost TCP packet

ACKs

TCP Packets

ACK packet

Fig. 1. TCP connection through ON/OFF channel

II. SYSTEM MODEL

We consider a single TCP New Reno flow going through an ON-OFF channel as shown in

Figure 1. In the Figure, the packets in red are TCP packets lost due to the channel going OFF.

As the channel alternates between ON and OFF, the TCP receiver receives packets intermittently.

The TCP flow could be of a secondary device in a cognitive radionetwork using opportunistic

spectrum sharing so that the OFF periods correspond to the primary using the channel and the

ON periods correspond to the time when the channel is available for the secondary user. The

overall RTT of the TCP flow is fixed and equalsR seconds. (This corresponds to negligible

queuing. We will extend this assumption later.) Any transmission (of a window load of packets)

when the channel is ON goes through, although the packets mayexperience transmission error.

The next window of packets will be transmitted after RTT, i.e., R secs. However a transmission

attempted during an OFF period results in loss of all the packets of that window and hence

causes a retransmission timeout (RTO) and the TCP source hasto wait for its RTO timer to

expire before it can attempt the next retransmission. It is possible that the channel becomes OFF

while a secondary transmission is going on. Such an event is likely if the average ON and OFF

periods are of the order of RTT or lesser. This case has been studied in [15]. Here we consider

the case where the average ON and OFF periods are larger than the RTT of the flow with high

probability.
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Fig. 2. Cognitive radio channel with one secondary TCP source.

If during the ON period, the transmission error probabilityis small, after an error the next

transmitted packets (i.e., packets in the window succeeding the packet in error) may be received

successfully causing transmission of duplicate ACKs. In response to these losses, the secondary

TCP reduces its window size. In Figure 2, we show the window size evolution for a TCP flow

over an ON-OFF channel. In the ON period, the TCP window size increases, however random

losses over the channel cause reductions in the window size even during the ON periods.

Let Sk ∈ {0, 1} be the channel state at thekth transmission of a window load of packets,

where1 corresponds to the channel being ON and0 corresponds to the channel being OFF. Let

Jk ∈ D denote the duration between thekth and the(k+1)st transmission of a window load of

packets. The duration between successive transmissions inthe ON period is equal to the RTT,

R, of the flow. However, on encountering a timeout, TCP uses a binary exponential back-off

strategy. The first RTO is set toM = max{R, Tmin}, whereTmin is the minimum value that a

timeout duration can be. If a failed transmission (one whichleads to a timeout) is immediately

followed by another, TCP doubles the timeout duration. The timeout duration is bounded above

by Tmax. ThereforeD = {R,M, 2M, 4M, · · · , Tmax}. The TCP timeout mechanism is illustrated

in Figure 2.

Let Wk be the window size at the end of thekth transmission of a window of packets and

Hk be the value for the corresponding slow start threshold of TCP. The window evolution of

TCP New Reno is as follows. If there is no packet loss between the kth transmission and the

(k + 1)st transmission of windows, we have

Wk+1 = Wk + 1, if Wk ≥ Hk

= 2Wk, if Wk < Hk.
(1)
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If there is a packet loss, TCP retransmits the lost packet andreduces the window size. If TCP

detects the loss through duplicate ACKs, then it reduces thewindow size by half and sets the

slow start threshold to that value. This is called recovery through fast retransmit[20]. In that

case,

Wk+1 =
Wk

2
, Hk+1 =

Wk

2
. (2)

If the loss is detected through a timeout (this will happen probably because channel is OFF),

we have

Wk+1 = 1, Hk+1 =
Wk

2
. (3)

The TCP window size is usually restricted by the buffer size available at the receiver. Considering

this, the window sizeWk and the thresholdHk are restricted toWmax <∞.

In the rest of the paper, we develop theoretical models for TCP over an ON-OFF channel and

compute the probability of retransmission timeout and the throughput and compare our results

to ns2 simulations. We then show how these results can be usedwhen there are multiple TCP

connections.

III. A NALYSIS FOR EXPONENTIAL ON-OFF

We assume that the OFF and ON periods are i.i.d. exponential with parametersλ0 and λ1

respectively. This is reasonable as the PU activity is usually modeled as exponential [10]. We

will generalize these assumptions in Section IV.

We denote the state of the system at the beginning of thekth transmission of a window

workload by(Sk, Jk,Wk, Hk). Since we assume that the ON and OFF durations are exponential,

the process,{(Sk, Jk,Wk, Hk)} forms a finite state, discrete time Markov chain. In Figure 3,we

illustrate the single-step transitions from generic ON andOFF states.

Let S(t) be the state of the channel at timet with S(t) = 0 if channel is OFF and1 if it

is ON. In the ON period, packets can be dropped due to losses onthe wireless channel with

probability p independently of others. LetPt(i, j) be the probability of channel stateS(t) at

time t being in statej given that it was in statei at time0. Once we knowPt(i, j), we can find

the transition probabilities for the Markov chain{(Sk, Jk,Wk, Hk)}. Proposition (1) provides

Pt(i, j) explicitly via renewal theory.
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(1, R,W, T ): typical ON state; (0,mM, 1, T ): typical OFF state.

Fig. 3. Single-step transitions for the{Sk, Jk,Wk,Hk} Markov chain.

Proposition 1. We have fori 6= j,

Pt(i, i) =
λj + λie

−(λ0+λ1)t

λ0 + λ1
. (4)

Proof: Let Xi be exponentially distributed with parameterλi, i = 0, 1 andX0 independent

of X1. Let Y = X0 + X1. Let us denote the density function ofY by fY . By renewal theory

arguments [21], we have,

Pt(0, 0) = P(X0 > t) +

∫ t

0

Pt−x(0, 0)fY (x)dx. (5)

Taking Laplace transform, we have

P̂s(0, 0) =
1

λ0 + s
+ P̂s(0, 0)f̂Y (s). (6)

The Laplace transform,̂fY of fY (t) is given by,

f̂Y (s) =
λ0λ1

(λ0 + s)(λ1 + s)
. (7)

From equations (6) and (7), we have

P̂s(0, 0) =
λ1

λ0 + λ1

1

s
+

λ0
λ0 + λ1

1

s+ λ0 + λ1
. (8)

Taking inverse Laplace transform,

Pt(0, 0) =
λ1

λ0 + λ1
+

λ0
λ0 + λ1

e−(λ0+λ1)t. (9)

Similarly we can derive expression forPt(1, 1).



8

The Markov chain,{(Sk, Jk,Wk, Hk)} is finite. Therefore it has at least one positive recurrent

communicating class. Suppose the channel is ON. Then once the ON period ends, an OFF period

large enough so that we have at least two timeouts, followed by an ON period, large enough to

accommodate one transmission attempt, ensures that the state (1, R, 1, 1) is hit. Similarly, when

the channel is OFF, an OFF period large enough so that we have atotal of at least two timeouts,

followed by an ON period, large enough to accommodate one transmission attempt, ensures that

the state(1, R, 1, 1) is hit. Thus, the state(1, R, 1, 1) can be reached from any state in the state

space with positive probability. Therefore the state(1, R, 1, 1) is positive recurrent and any state

that can be reached from(1, R, 1, 1) is positive recurrent and the remaining states are transient.

Also if the probability of packet loss during the ON period isgreater than0 (which happens if

we assume that packets are in error, independently when transmitted during ON periods, e.g., for

wireless channels), the state(1, R, 1, 1) has a self loop. Therefore the Markov chain is aperiodic

and has a unique stationary distributionπ. Also, starting from any initial state the chain converges

exponentially to the stationary distribution in total variation.

The probability of retransmission timeout,Po, i.e., the fraction of packets that are timed out

is

Po =
Eπ[1{S=0}]

Eπ[W ]
, (10)

where 1{A} is an indicator function of setA and Eπ denotes mean under stationarity. The

throughput,λ (in packets/sec) of the TCP connection, using Palm calculus[22], is

λ =
Eπ[W1{S=1}]

Eπ[D]
. (11)

A. Extension to Channels with Non-negligible Queuing

The above analytical model assumes that the round trip time for the secondary TCP connection

is constant. If the queuing is non-negligible, the model maynot be accurate. In that case, we can

use the above model with a minor modification. In the state space of the process{Sk, Jk,Wk, Hk},

if the channel is ON at the end of thekth transmission, i.e., ifSk = 1, we setJk = max{∆, Wk

µ
},

where∆ is the constant component of the round trip time which includes the propagation delay

and processing delays at the nodes andµ is the link speed of the channel in packets/second.

Such an approximation has been used before in [23], [24]. Oursimulation results below justify

the approximations made in this analytical model.
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B. Simulation Results

We now compare the probability of timeout and throughput obtained from our model with

ns2 simulations. We have modified ns2 code so as to simulate anON-OFF channel. We generate

a sequence of alternate ON and OFF periods and drop all packets that arrive in the OFF period.

The packet sizes are1050 bytes. We set the link speed of the ON-OFF channel to5 Mbps. The

other links that the flow traverses have link speeds1 Gbps. In practice, the ON-OFF channel

could be a wireless link connecting a wireless device to an access point or a base station. The

base station/access points are then connected to the Internet through well-provisioned optical

fiber links.

We denote the fraction of time that the channel is OFF byα. We plot the probability of

retransmission timeout (RTO),Po and the secondary TCP throughput in Figure 4. We setα = 1/3

and vary the average channel OFF duration,E[Yoff ]. The probability of packet transmission error

in the ON period is set to0.01. The maximum window size,Wmax is 100 packets. We see that as

RTT increases, the probability of retransmission timeout increases and throughput decreases. Our

model results match well with ns2 simulations and the errorsare less than5% in most cases. The

errors are larger when the average ON and OFF durations are ofthe order of RTT. However,

even for these cases the errors are less than11%. Our analytical model results show that in

an ON-OFF channel we can not approximate TCP throughput by multiplying the throughput

expressions for TCP Reno (which may be found in [8]) by(1 − α) whereα is the fraction of

time that the channel is busy.

In Figure 5, we see the effect of packet error probabilityp on the probability of retransmission

timeout and the throughput of the flow. The round trip time is0.1 seconds. We see that for fixed

α and RTT,R, the probability of retransmission timeout decreases and throughput increases with

increase in the average OFF duration. Our model results match well with ns2 simulations and

the errors are less than8%.

In Figure 6, we show the effect of link speed on the probability of retransmission timeout and

the throughput of the TCP flow. The RTT is0.1 seconds and CR channel link speeds are set to

5 Mbps and1 Mbps. We see that our model approximations are reasonable, the errors are less

than10%.
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Fig. 4. Effect of RTT andE[Yoff ] on probability of RTO and TCP throughput.

IV. PHASE-TYPE DISTRIBUTIONS FORON/OFF PERIODS

We have considered the case where the ON and OFF periods are exponentially distributed. In

[25], we see that many quantities that characterize networkperformance, for example file lengths,

call holding times, intervals between requests in Internettraffic are not exponential but can be

modelled by mixtures of exponential distributions. We now extend our model to the case where

both ON and OFF periods are phase-type [22]. Phase-type distributions generalize exponential

distributions (and include mixtures of exponentials) and can approximate any distribution onR+
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Fig. 5. Effect of packet error rate andE[Yoff ] on TCP performance.

arbitrarily closely [22]. As before, the sequence of ON periods and OFF periods are both i.i.d.

and are independent of each other. Also, as before the state of the system at the beginning of

the kth transmission of a window workload is denoted by(Sk, Jk,Wk, Hk).

When ON and OFF periods are phase-type, the channel stateS(t) can be taken as a finite

state Markov chain with state spaceX0 ∪ X1. WhenS(t) ∈ X0 then the channel is OFF and

when S(t) ∈ X1 then it is ON. Also, the process(Sk, Jk,Wk, Hk) is a discrete time Markov

chain (embedded inS(t)). Let Pt(i, j) be the probability of the channel stateS(t) at time t

beingj given that it was in statei at time0. Once we knowPt(i, j), we can find the transition
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Fig. 6. Effect of link speed andE[Yoff ] on probability on TCP performance.

probabilities for the Markov chain{(Sk, Jk,Wk, Hk)}.

SupposeQ is the transition rate matrix for the CTMC{S(t)}, and letψt := {ψt(i) : i ∈

X0 ∪ X1} denote the probability distribution ofS(t) at time t > 0. It satisfies

ψt = ψ0e
Qt, (12)

whereψ0 is the initial distribution. Also,Pt = eQt. It can be computed using theexpm command

in MATLAB or by using eigenvalue decomposition techniques [26]. When the state space ofS(t)

is large, the exact computation ofeQt may be difficult. We may then use some approximations
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[27].

The Markov chain{(Sk, Jk,Wk, Hk)} is finite. Therefore it has at least one positive recurrent

communicating class. Suppose the channel is ON. Then once the ON period ends, an OFF period

large enough so that we have at least two timeouts, followed by an ON period, large enough to

accommodate one transmission attempt, ensures that the setof states{(i, R, 1, 1) : i ∈ X1} is

hit. Similarly, when the Markov chain is in an OFF state, an OFF period large enough so that we

have a total of at least two timeouts, followed by an ON period, large enough to accommodate

one transmission attempt, ensures that the set of states{(i, R, 1, 1) : i ∈ X1} is hit. Since

the ON periods are phase type, there is a non-zero probability that for anyi ∈ X1, the state

(i, R, 1, 1) is visited by the Markov chain. Thus, the state(i, R, 1, 1) for any i ∈ X1 is a positive

recurrent state. If the probability of packet loss during the ON period is greater than0, then the

state(i, R, 1, 1) also has a self-loop. Therefore the Markov chain is aperiodic and has a unique

stationary distributionπ. Also, starting from any initial state the chain converges exponentially

to the stationary distribution in total variation.

The steady state probability distribution,π, of the Markov chain,{(Sk, Jk, Wk, Hk)} is com-

puted by repeated iteration ofπk+1 = πkP , whereP is the transition probability matrix, starting

from some initialπ0. The size of the state space of the Markov chain isO(|X0+X1||D|W 2
max).

The number of transitions from a state are of the orderO(2|X0 + X1|). Thus each iteration of

πk+1 = πkP requiresO(2|X0 +X1|
2|D|W 2

max) computations. From our earlier discussion, these

iterations converge exponentially to the stationary distribution.

We now develop theoretical results for (a) phase-type OFF and general ON periods under

certain conditions and (b) phase-type ON and general OFF periods under certain conditions. We

will show stationarity of the process{(Sk, Jk,Wk, Hk)} in these cases. The stationary behaviour

can then be used to compute the throughput and the probability of timeout for a TCP flow on

an ON-OFF channel.

A. Phase-type OFF Periods

In this section, we consider the case when OFF periods are i.i.d. phase-type while the ON

periods are more general. Let us denote byUk the time when the secondary TCP makes thekth

transmission attempt of a window load of packets. LetU0 = 0. ThereforeUk =
∑k−1

n=1 Jn, where

Jn is the time duration between thenth and (n + 1)st transmission attempt. Let{X(t)} be a
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CTMC with finite state space{1} ∪ X0, where1 /∈ X0. The setX0 is irreducible and state1 is

an absorbing state reachable from every state inX0. The sojourn times in each statei ∈ X0 are

exponential with parameterλi, 0 < λi < ∞. Let λ , maxi∈X0
λi < ∞. We define the channel

state processS(t) as follows. SupposeS(t) enters ON state at timet (denoted byS(t) = 1). It

will stay in ON state with a general distribution (Yon will denote a random variable with that

distribution). At timet + Yon, it will enter the OFF period. The duration of the OFF period is

given as follows. LetX(0) = i0 ∈ X0 wherei0 is a fixed state of{X(t)}. The OFF period of

S(t) will equal the time{X(t), t ≥ 0} takes to reach state1. Let this time beX. ThenS(t)

stays in OFF state till timet + Yon +X and then switches to ON state . At timet + Yon + s,

S takes the valueX(s), for 0 ≤ s ≤ X. The ON-OFF periods ofS(t) alternate with durations

independent of each other with distributions specified above. LetQ be the generator matrix for

the CTMCX(t) when inX0. By uniformization [28], beforeX(t) gets absorbed, the transition

function of {X(t)} is,

Pt(i, j) =

∞∑
n=0

e−λtP n
i,j

(λt)n

n!
, (13)

wherePij =
Qij

λ
for i 6= j andPii = 1−

∑
j 6=i

Qij

λ
.

Consider the state(Sk = i0, Jk = 2M,Wk = 1, Hk = 1) where i0 ∈ X0. Once the process

{(Sk, Jk,Wk, Hk)} hits the state,(i0, 2M, 1, 1), the future process evolution is independent of

the past. Thus,{(Sk, Jk,Wk, Hk)} is regenerative. LetN denote the number of transmission

attempts made by TCP in a regeneration cycle. We have the following result.

Proposition 2. If the ON periods are i.i.d. with

P(Yon ≤ s+R|Yon ≥ s) ≥ ǫ0 > 0 (14)

and 0 < P(Yon ≤ R) < 1, then for all α > 0, E[Nα] < ∞ and N has a finite moment

generating function (mgf) in a neighbourhood of0. Also N is aperiodic and the stochastic

process{(Sk, Jk,Wk, Hk)} converges in total variation, exponentially to its unique stationary

distribution
Pπ((Sk,Jk,Wk, Hk) ∈ A)

=
E[
∑N

k=0 1A(Sk, Jk,Wk, Hk)]

E[N ]
,

(15)

wherek = 0 is a regeneration epoch.
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Proof: We first prove that from any arbitrary state in the OFF period the process can visit

the ON state in one step with probability≥ ǫ1 > 0.

Step 1: SinceX0 is irreducible and1 is reachable from all states, for alli ∈ X0 and all

j ∈ X0∪{1}, there existsn(i, j) > 0 such that the probabilityP n(i,j)
ij of hitting statej in n(i, j)

steps starting from statei for the DTMC of{X(t)} with transition matrixPij , is strictly positive

in equation (13). Let

ǫ(i, j) , e−λt2P
n(i,j)
ij

(λt1)
n(i,j)

n(i, j)!
. (16)

Then Pt(i, j) > ǫ(i, j) > 0 for all t ∈ [t1, t2] where 0 < t1 < R < Tmax < t2 < ∞. Let

ǫ1 = mini ǫ(i, 1) > 0, where i ∈ X0. ThereforePt(i, 1) ≥ ǫ1 for all i and for all t ∈ [t1, t2].

Then,

P(Sk+1 = 1, Jk+1 = R|Sk = x, Jk = d) ≥ ǫ1, (17)

for all states(x, d) in the state space of the process{(Sk, Jk)} with x ∈ X0.

We note that the inequality (17) is true if we replace(Sk+1 = 1, Jk+1 = R) by the term

(Sk+1 = y, Jk+1 = 2d) for any y ∈ X0 possibly with a differentǫ1(y) > 0 as a lower bound. We

will use this fact later in the proof.

Step 2: Let us denote byY ′ the age of the ON period atUk, i.e., the time elapsed since the

ON period started, whenSk = 1, Jk = R at Uk and letFY ′ be its cdf. Now
∑
y∈X0

P(Sk+1 = y, Jk+1 =M |Sk = 1, Jk = R)

≥

∫
s

∫ R

u=0

P(Yon = s+ u|Y ′ = s)P(Yoff > R − u)du dFY ′(s)

≥

∫
s

∫ R

u=0

P(Yon = s+ u|Yon ≥ s)P(Yoff > R)du dFY ′(s)

= P(Yoff > R)

∫
s

P(Yon ≤ s+R|Yon ≥ s)dFY ′(s)

> ǫ0P(Yoff > R) , ǫ′0 > 0.

where the last inequality follows from (14) andP(Yoff > R) > 0 becauseYoff is phase-type.

Thus with probability> ǫ′0 the process exits the ON period to visit the OFF period in one

step. The inequality (17) is true for the state(Sk+1 = i0, Jk+1 = 2M) with someǫ2 > 0 as the

lower bound. Therefore,P(Sk+1 = i0, Jk+1 = 2M |Sk = y, Jk = M) ≥ ǫ2 > 0 for any y ∈ X0.
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Y k
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s
R M

(1, R, W, T) (i0, 2M, 1, 1)(y, M, 1, T)

(k − 1)st OFF period kth OFF period

Regeneration epoch

> ǫ′0
> ǫ2

1. Visit to Regenerative epoch from any ON state in two steps.

x and y are arbitrary states in the OFF phase X0.
The vertical arrows indicate transmission attempts, red arrows indicate transmissions in OFF period.

2. Hitting regeneration epoch in 4 steps.

Y k
ON

R M

(1, R, 1, 1) (i0, 2M, 1, 1)(i0, 2M, 1, 1)

2M

(y, M, 1, 1)

(k − 1)st OFF period kth OFF period

Regeneration epoch

(x, 4M, 1, 1)

4M

Rd ...
...
...

...

Fig. 7. Hitting (i0, 2M, 1, 1) in finite time from any state in process.

This shows that the process{(Sk, Jk,Wk, Hk)} visits the state(i0, 2M, 1, 1) in a sequence of

two steps from the ON state with probability> ǫ′0ǫ2 > 0, (subfigure 1 of Figure 7) .

Step 3: From steps1 and 2, the process can visit the regeneration epoch(i0, 2M, 1, 1)

from any state in the state space in less than three steps withprobability > ǫ = ǫ′0ǫ1ǫ2 > 0.

Thus in particular,P(N = 3) > 0. Consider random variableZ with distributionP(Z = 3k) =

(1−ǫ)k−1ǫ, for k ≥ 1. The random variableZ is stochastically larger than the regeneration length

N , i.e., P(Z ≥ β) ≥ P(N ≥ β) for all β > 0. Therefore, for allα > 0, E[Nα] ≤ E[Zα] < ∞.

Also, the moment generating function ofN is finite in a neighbourhood of0.

We have shown thatP(N = 3) > 0. In subfigure2 of Figure 7, we show a sequence of

transitions such thatP(N = 4) > 0. This shows thatN is aperiodic. Thus{(Sk, Jk,Wk, Hk)}

has a unique stationary distribution, (15) and converges toit in total variation from any initial

distribution exponentially (because of finiteness of mgf ofN in a neighbourhood of0 [29]).

The condition (14) is satisfied by a general class of distributions called New Better than Used

(NBU) [30] and also by phase-type distributions. The NBU distributions are useful in reliability

theory. They are also relevant in our case, as one would typically expect that the primary busy

period starting afresh is likely to last longer than an ongoing busy period.
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B. Phase-type ON Periods

We now develop theoretical results for phase-type ON and general OFF periods. LetX(t)

denote the phase of the ON period. The process{X(t)} is a CTMC with a finite state space

{0} ∪ X1 with 0 /∈ X1. Let us denote byS(t) the state of the ON-OFF channel at timet. If the

channel is ON at timet, thenS(t) = X(t), elseS(t) = 0, where0 is the absorbing state for

the CTMC{X(t)}. We assumeX1 is irreducible and0 is reachable from all states. The process

{(Sk, Jk,Wk, Hk)} is regenerative with visits to the state(i1, R, 1, 1), (i1 ∈ X1 is a fixed state),

acting as regeneration epochs. We denote byN the number of transmission attempts made in a

regeneration cycle.

Proposition 3. If the OFF periods are i.i.d. withP(s+M < Yoff < s + 3M) ≥ ǫ0 > 0 for all

s ≤ R, and

P (Yoff ≤ s+ 2M |Yoff ≥ s) ≥ ǫ1 > 0, (18)

then for allα > 0,ENα] <∞ andN has a finite moment generating function in a neighbourhood

of 0. Also, N is aperiodic and the stochastic process{(Sk, Jk,Wk, Hk)} converges in total

variation, exponentially to its unique stationary distribution (15).

Proof: We first prove that from any arbitrary state in the ON period the process can visit

the OFF state in one step with probability≥ ǫ2 > 0.

Step 1: SinceX1 is irreducible and0 is reachable from all states, for alli ∈ X1 and all

j ∈ X1∪{0}, there existsn(i, j) > 0 such that the probabilityP n(i,j)
ij of hitting statej in n(i, j)

steps starting from statei for the DTMC of{X(t)} with transition matrixPij , is strictly positive

in equation (13). Let

ǫ(i, j) , e−λRP
n(i,j)
ij

(λR)n(i,j)

n(i, j)!
. (19)

ThenPR(i, j) > ǫ(i, j) > 0. Let ǫ2 = mini ǫ(i, 0) > 0, wherei ∈ X1. ThereforePR(i, 0) ≥ ǫ2.

Then,

P(Sk+1 = 0, Jk+1 =M |Sk = x, Jk = R) ≥ ǫ2, (20)

for all x ∈ X0.

Step 2: Let us denote byY ′ the age of the OFF period atUk, i.e., the time elapsed since

the OFF period started, whenSk = 0, Jk = d at Uk and letFY ′ be its cdf. Now, for some
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d ∈ {2M, 4M, 8M, · · ·Tmax},
∑
y∈X1

P(Sk+1 = y, Jk+1 = R|Sk = 0, Jk = d)

≥

∫
s

∫ d

u=0

P(Yoff = s+ u|Y ′ = s)P(Yon > d− u)du dFY ′(s)

≥

∫
s

∫ d

u=0

P(Yoff = s+ u|Yoff ≥ s)P(Yon > d)du dFY ′(s)

= P(Yon > d)

∫
s

P(Yoff ≤ s+ d|Yoff ≥ s)dFY ′(s)

> ǫ1P(Yon > d) , ǫ′1 > 0.

where the last inequality follows from (18) andP(Yon > d) ≥ P(Yon > Tmax) > 0, for d ∈

{2M, 4M, 8M, · · ·Tmax}, becauseYon is phase-type.

Thus with probability> ǫ′1 the process exits the OFF period to visit the ON period in one

step.

Step 3: Let us denote byY ′(z) the residual life time of the ON period atUk whenSk = z ∈

X1, Jk = R at Uk and letFY ′

z
be its cdf. For any statez ∈ X1, P(Y ′(z) < R) > 0. Therefore,

minz∈X1
P(Y ′(z) < R) > 0. Now

∑
y∈X1

P(Sk+3 = y, Jk+3 = R,Wk+3 = 1, Hk+3 = 1|Sk = z, Jk = R)

≥

∫ R

u=0

P(R− u+M < Yoff < R− u+ 3M)P(Yon > 4M)dFY ′

z
(u)

≥ ǫ0P(Yon > 4M)

∫ R

u=0

dFY ′

z
(u)

≥ ǫ0P(Yon > 4M)P(Y ′(z) < R)

, ǫ′0 > 0.

(21)

for all z ∈ X1. Therefore there exists somei1 ∈ X1 such thatP(Sk+3 = i1, Jk+3 = R,Wk+3 =

1, Hk+3 = 1|Sk = z, Jk = R) ≥ ǫ′2 > 0 for all z ∈ X1. Therefore, there is a positive probability

of the process hitting state(i1, R, 1, 1) from any ON state in exactly three steps.

Step 4: From above steps, we see that the process can visit the regenerative epoch(i1, R, 1, 1)

from any state in the state space in less than four steps with probability δ = ǫ′1ǫ
′
2. In particular,

N satisfiesP(N = 4) > 0. Consider random variableZ with distributionP(Z = 4k) = (1 −

δ)k−1δ, for k ≥ 1. The random variableZ is stochastically larger than the regeneration length
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x: an arbitrary state in the ON phase X1.
The vertical arrows indicate transmission attempts, red arrows indicate transmissions in OFF period.
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(k + 1)st ON period

1. Visit to regenerative epoch from any ON state in three steps.

D

2. Hitting the regenerative epoch in four steps.

Y k
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(k + 1)st ON period

(0, D, 1, T)
(1, R, 2, 1)

R

(i1, R, 1, 1)
(0, 2D, 1, 1)

D

2D

2D

(i1, R, 1, 1)

R

kth ON period

Fig. 8. Hitting (i1, R, 1, 1) in finite time from any state in process.

N , i.e., P(Z ≥ β) ≥ P(N ≥ β) for all β > 0. Therefore, for allα > 0, E[Nα] ≤ E[Zα] < ∞.

Also, the moment generating function ofN is finite in a neighbourhood of0.

In Step3, we have shown thatP(N = 3) > 0. In subfigure2 of Figure 8, we show a sequence

of transitions such thatP(N = 4) > 0. This shows thatN is aperiodic. Thus{(Sk, Jk,Wk, Hk)}

has a unique stationary distribution, (15) and converges toit in total variation from any initial

distribution exponentially (because of finiteness of mgf ofN in a neighbourhood of0 [29]).

The conditions in Proposition (3) are satisfied ifYoff has a positive density on[M,R+ 3M ]

and has NBU distribution. It is also satisfied for phase-typedistributions.

In the proofs for Propositions (2) and (3), we do not assume random packet losses for

convenience of notation. The propositions hold even in thiscase when the packet loss probability,

p < 1 with a slight modification of proofs.

These propositions show stationarity of the regenerative process modelling TCP behaviour in

the setup of ON-OFF channels with more general ON and OFF distributions. This also ensures

that the time averages for performance metrics such as throughput and probability of RTO

converge to the stationary mean values.
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C. Simulation Results

We now compare the probability of timeout and the throughputobtained via the analytical

model with ns2 simulations. The probability of timeout and throughput can be computed using

equations (10) and (11) respectively with some modifications. For phase-type ON, we replace

the term1{S=1} by 1{S∈X1} and for phase-type OFF process we replace1{S=0} by 1{S∈X0}. The

simulation setup is the same as in Section III-B.

We consider two cases (a) ON and OFF periods are both exponentially distributed and (b)

ON and OFF are both Erlang-3 distributed. For these experiments, we set RTT to0.1 sec,Wmax

to 100 and the ON-OFF channel link speed is set to5 Mbps. The packets undergo Bernoulli

random losses with probability0.01. We vary the average busy duration,E[Yoff ] keepingα fixed

at 1/3. The results are shown in Figure 9. We see that our theoretical model results match well

with simulations with errors less than5% in most cases. The errors are larger when the average

ON and OFF durations are of the order of RTT. However, even forthese cases the errors are

less than10%.

In Figure 10, we consider the effect of the cognitive channellink capacity on probability of

timeout and throughput. The ON and OFF periods are both Erlang-3 distributed, we set RTT to

0.1 seconds andWmax to 100. We consider link speeds of1 Mbps and5 Mbps. We see that our

theoretical model results match well with simulations witherrors less than5% in most cases

and always less than11% .

V. M ULTIPLE TCP CONNECTIONS

In this section, we consider the case when multiple secondary TCP connections share a CR

channel. Thus the ON-OFF durations for all connections are same. However these connections

are subject to different packet error rates as their channelgains may be different. Also these

connections can possibly go through different routes; therefore they may have different round trip

times. We first consider the case where the queuing delays arenegligible. Then, the processes

{(Sk, Jk,Wk, Hk)} for each TCP can be considered individually with no effect oneach other.

The probability of timeout and throughput can be computed using equations (10) and (11)

respectively. The following simulations show that this model works fine for system parameters

considered here.
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Fig. 9. Probability of RTO, throughput with different ON-OFF distributions.

We consider6 secondary TCP connections with different RTTs and packet loss probabilities

sharing an ON-OFF channel with Erlang-2 distributed ON and OFF periods with average ON

duration =20 seconds and average OFF duration =10 seconds. The ON-OFF channel has link

speed of10 Mbps and the other links are set to1 Gbps. The TCP packet sizes are1050 bytes.

The packet error rates of the different TCP connections are as given in Table I. We compare

the throughput and probability of timeout,Po obtained using ns2 simulations with theoretical

results in Table I. The difference between the simulation results and analytical model results is
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Fig. 10. Probability of RTO, throughput with different linkspeeds.

less than9%.

When the network has non-negligible queuing and all the flowshave same RTT, we can extend

the model from Section IV. Suppose there areN TCP flows in the network and they share the

ON-OFF channel. If the ON and OFF periods are phase-type. then (Sk, Jk, (W
j
k , H

j
k)j∈{1,2,··· ,N})

denotes the state of the system and forms a Markov chain, where index j represents the

TCP connectionj. The RTT for the different flows at the end of thekth RTT is given by

max{∆,
∑

j W
j
k

µ
} whereµ is the bottleneck link speed (in packets/sec) and∆ is the propagation
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TABLE I

MULTIPLE TCPFLOWS WITH NEGLIGIBLE QUEUING.

PERi RTTi Throughput Throughput Po Po

(sec) (ns2) (Theoretical) (ns2) (Theoretical)

0.01 0.05 108.9 118.6 0.00148 0.00136

0.01 0.10 54.9 58.5 0.00291 0.00274

0.01 0.20 26.5 28.2 0.00591 0.00566

0.005 0.05 156.8 167.4 0.00103 0.00097

0.005 0.10 78.9 81.8 0.00205 0.00197

0.005 0.20 37.4 38.6 0.00425 0.00416

TABLE II

MULTIPLE TCPFLOWS WITH NON-NEGLIGIBLE QUEUING.

PERi RTTi Throughput Throughput Po Po

(sec) (ns2) (Theoretical) (ns2) (Theoretical)

0.01 0.1 30.83 28.19 0.00404 0.00455

0.003 0.1 42.06 38.51 0.00320 0.00336

0.001 0.1 47.16 42.80 0.00296 0.00303

delay (in sec). Our simulation results validate our model assumptions.

We consider3 secondary TCP connections with∆ = 0.1 seconds. The maximum window size

for all the flows is set to20 packets. The ON-OFF periods are both exponentially distributed

with average ON duration =20 seconds and average OFF duration =10 seconds. The ON-OFF

channel has link speed of2 Mbps (this causes non-negligible queuing) and the other links are

set to1 Gbps. The TCP packet sizes are1050 bytes. The packet error rates of the different TCP

connections are as given in Table II. We compare the throughput and probability of timeout,Po

obtained using ns2 simulations with theoretical results inTable II. In this case, the errors are

less than13%.

VI. CONCLUSIONS

We have developed an analytical Markov model for a TCP flow over an ON-OFF channel

with random losses. For the Markov model, we assume that the ON and OFF periods are

both exponential. We then extend our model to include phase-type ON and phase-type OFF
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periods. We have also considered the case with more general ON and OFF periods and proved

the stationarity of the system using regenerative process theory. We have compared the results

viz., probability of retransmission timeout and secondaryTCP throughput obtained using the

theoretical models with ns2 simulations and showed that these match quite well. Finally, we

considered the scenario where multiple secondary TCP connections share the ON-OFF channel.

The theoretical results for this scenario also match well with simulations.

REFERENCES

[1] A. Ghosh and W. Hamouda, “Throughput performance of MIMOcognitive networks,” inICC. IEEE, 2014.

[2] N. Tadayon and S. Aissa, “Modeling and Analysis Framework for Multi-Interface Multi-Channel Cognitive Radio

Networks,” Wireless Communications, IEEE Transactions on, Feb 2015.

[3] J. Mitola and J. Maguire, G.Q., “Cognitive radio: makingsoftware radios more personal,”Personal Communications, IEEE,

1999.

[4] E. Biglieri, A. Goldsmith, L. Greenstein, N. Mandayam, and H. Poor,Principles of Cognitive Radio. Cambridge University

Press, 2012.

[5] M. Mezzavilla, G. Quer, and M. Zorzi, “On the effects of cognitive mobility prediction in wireless multi-hop ad hoc

networks,” in ICC. IEEE, June 2014.

[6] M. Allman, D. Glover, and L. Sanchez, “Enhancing TCP OverSatellite Channels using Standard Mechanisms,” RFC 2488

(Best Current Practice), Internet Engineering Task Force,Jan. 1999.

[7] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP congestion avoidance algorithm,”

SIGCOMM Comput. Commun. Rev., vol. 27, pp. 67–82, July 1997.

[8] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno Performance: A Simple Model and Its Empirical

Validation,” IEEE/ACM Transactions on Networking, vol. 8, pp. 133–145, 2000.

[9] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “Theimpact of multihop wireless channel on TCP throughput

and loss,” inIEEE INFOCOM, vol. 3, March 2003, pp. 1744–1753 vol.3.

[10] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs:Cognitive Radio Ad Hoc Networks,”Ad Hoc Netw., vol. 7,

no. 5, Jul. 2009.

[11] A. M. Slingerland, P. Pawelczak, R. Venkatesha Prasad,A. Lo, and R. Hekmat, “Performance of transport control protocol

over dynamic spectrum access links,” inDySPAN 2007. IEEE, 2007, pp. 486–495.

[12] M. Di Felice, K. R. Chowdhury, W. Kim, A. Kassler, and L. Bononi, “End-to-end protocols for cognitive radio ad hoc

networks: An evaluation study,”Performance Evaluation, 2011.

[13] D. Chen, H. Ji, and V. C. Leung, “Distributed best-relayselection for improving TCP performance over cognitive radio

networks: a cross-layer design approach,”IEEE J. Sel. Areas Commun., 2012.

[14] J. Wang, A. Huang, W. Wang, Z. Zhang, and V. K. N. Lau, “Analysis of TCP throughput in cognitive radio networks,” in

IEEE GLOBECOM Workshops (GC Wkshps), Dec 2011, pp. 930–935.

[15] M. Kartheek, R. Misra, and V. Sharma, “Performance analysis of data and voice connections in a cognitive radio network,”

in Communications (NCC), National Conference on. IEEE, 2011.

[16] D. Sarkar and H. Narayan, “Transport layer protocols for cognitive networks,” inIEEE INFOCOM. IEEE, 2010, pp. 1–6.



25

[17] W. Kim, M. Gerla, A. J. Kassler, and M. Di Felice, “TP-UrbanX-a new transport protocol for cognitive multi-radio mesh

networks,” in World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE International Symposium on a.

IEEE, 2011, pp. 1–3.

[18] K. R. Chowdhury, M. Di Felice, and I. F. Akyildiz, “TCP CRAHN: a transport control protocol for cognitive radio Ad

hoc networks,”Mobile Computing, IEEE Transactions on, vol. 12, no. 4, pp. 790–803, 2013.

[19] K. Tsukamoto, S. Koba, M. Tsuru, and Y. Oie, “Cognitive Radio-Aware Transport Protocol for Mobile Ad Hoc Networks,”

Mobile Computing, IEEE Transactions on, vol. 14, no. 2, pp. 288–301, Feb 2015.

[20] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC 2581 (Proposed Standard), Internet Engineering

Task Force, Apr. 1999.

[21] R. W. Wolff, Stochastic modeling and the theory of queues. Englewood Cliffs, N.J. Prentice Hall, 1989.

[22] S. Asmussen,Applied probability and queues, 2nd ed. Springer-Verlag, 2003.

[23] T. Bonald, “Comparison of TCP Reno and TCP Vegas: efficiency and fairness,”Performance Evaluation, vol. 36-37, pp.

307 – 332, 1999.

[24] A. Blanc, K. Avrachenkov, D. Collange, and G. Neglia, “Compound TCP with Random Losses,” inProceedings of the 8th

International IFIP-TC 6 Networking Conference, ser. NETWORKING ’09. Berlin, Heidelberg: Springer-Verlag, 2009,

pp. 482–494.

[25] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-tail distributions to analyze network performance

models,” in IEEE INFOCOM, vol. 3, Apr 1997, pp. 1096–1104 vol.3.

[26] L. Perko,Differential Equations and Dynamical Systems, ser. Texts in Applied Mathematics. Springer, 2001.

[27] A. Reibman and K. Trivedi, “Numerical transient analysis of markov models,”Comput. Oper. Res., vol. 15, no. 1, pp.

19–36, Jan. 1988.

[28] W. J. Stewart,Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling.

Princeton University Press, 2009.

[29] V. V. Kalashnikov,Mathematical methods in queuing theory. Springer, 1993, vol. 271.

[30] A. W. Marshall and I. Olkin,Life distributions: Structure of nonparametric, semiparametric, and parametric families.

Springer, 2007.


	I Introduction
	II System Model
	III Analysis for Exponential ON-OFF
	III-A Extension to Channels with Non-negligible Queuing
	III-B Simulation Results

	IV Phase-type Distributions for ON/OFF Periods
	IV-A Phase-type OFF Periods
	IV-B Phase-type ON Periods
	IV-C Simulation Results

	V Multiple TCP Connections
	VI Conclusions
	References

