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Abstract

In this paper, we study the performance of a TCP connectien aagnitive radio networks. In these
networks, the network may not always be available for trassion. Also, the packets can be lost due to
wireless channel impairments. We evaluate the throughpipacket retransmission timeout probability
of a secondary TCP connection over an ON/OFF channel. Weafssime that the ON and OFF time
durations are exponential and later extend it to more géésaibutions. We then consider multiple
TCP connections over the ON/OFF channel. We validate owrétieal models and the approximations

made therein via ns2 simulations.
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. INTRODUCTION

In this paper, we analyze performance of TCP connectionsahannels which are not always

available for transmission. We call such channels ON-OFnohbls. We limit ourselves to TCP
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Reno. On wireless channels misinterpretation of randonmkgidosses as congestion losses can
lead to poor performance of TCP. Besides these losses, faircescenarios such as cognitive
radio networks, the channel may not always be availablg2l];These lead to frequent timeouts
and the TCP performance is adversely affected.

The primary motivation for this work is cognitive radio (CRgtworks [3]. Cognitive radio is
an emerging technology which intends to use the spectrune efticiently. Huge portions of the
spectrum are licensed but lay underutilized. Cognitiveaageermits devices called secondary
devices to utilize the channel when the primary user of thenobkl (the user to whom the
channel is licensed) is not utilizing the channel. One cadehthis behaviour with an alternating
ON-OFF channel, with ON periods corresponding to the prnising inactive and hence the
channel being available for transmission by secondarysused OFF durations correspond to
the primary busy periods where the channel is unavailablihv¢osecondary for transmission.
A practical example of TCP over an ON-OFF channel is celldata boost[[4] in cellular
networks where non-real time or delay tolerant traffic sustemail, FTP etc, (which use TCP)
can be offloaded from the cellular network to a cognitive eatgtwork of white space hot-spots
to meet the QoS requirements of delay sensitive traffic. dssiCR networks, there are other
networks where the links can be modeled as ON-OFF chanmégsmiittent loss of connectivity
also happens in cellular networks due to hand-offs, in neohd-hoc networks [5] due to link
failures, in satellite networks [6] and in 802.11 networkgedo collisions.

The performance of TCP has been widely studied in the lileeatin [7], the authors develop
a performance model for TCP and verify their model throughusations and measurements. In
[8], the authors provide an expression for TCP Reno througbpder Bernoulli packet losses
using a Markov model. Iri_[9], the authors study the perforoeaof TCP over multi-hop wireless
channel. They observe that link-layer contention cause&gbadrops and propose changes to
the backoff mechanism of the link layer to improve TCP parfance.

The performance of secondary users in a CR network has bediedtin [1] and [[2]. In[[1],
the authors compute the channel availability probabiliygl ahe throughput for CR nodes in
MIMO CR networks. In[[2], the authors use Markov models toidethe stability condition for
the secondary users in a multi-channel CR networkl[_In [18],authors discuss properties and
research challenges posed by cognitive radio. They sugbasges that need to be incorporated

into the transport layer protocols for operation over CReteds. In[11], the authors compare the



performance of TCP SACK, TCP New Reno and TCP Vegas over digngmactrum access links
using ns2 simulations. In_[12], the authors study the effécpectrum sensing duration, primary
user interference and channel bandwidth variation on réiffe TCP variants using simulations.
In [13], the authors use relay selection, power allocatind adaptive modulation and coding
schemes to improve secondary user TCP performance over @mhels. In[[14], the authors
look at the impact of secondary sensing and primary actiwityTCP throughput. In_[15], the
authors model the system as a M/G/1 queue with the primargs ugetting priority over the
secondary users and provide expressions for throughpudiatartraffic and mean delay for voice
traffic of secondary users. Transport layer protocols fagnaive radio have been developed in
[16]-[19].

From above we see that there is considerable literature darpence analysis of secondary
users in a CR network. However most analytical results addtiee problem at the MAC layer
ignoring the impact of TCP dynamics and the studies of TCRalelr are mostly simulation-
based. In this paper, we provide a theoretical model for T@Gfections over a CR channel.
We compute the throughput and probability of retransmisgimeout for a secondary TCP
connection. Our work complements [15]. [n [15], the authoossider the case where ON and
OFF durations are of the order of round trip time (RTT) anddeetiney ignore TCP timeouts. In
our work, we consider the case where the ON and OFF duratrensuger than RTT where the
effect of TCP timeouts cannot be ignored. Such a scenari@ftan happen in CR networks and
then the timeouts can significantly affect the TCP throughyde note that([14] also considers
the impact of primary user activity on TCP throughput dueitieebuts. However they consider
a slotted model, where the primary user if active at the begmof the slot stays active for the
entire slot and if inactive stays inactive for the entiretsWe do not consider a slotted system
and consider more general primary user behaviour.

This paper is organized as follows. In Sectioh I, we degcolir system model. In Section
[I] we develop a Markov model for TCP behaviour in an ON-OFfarnel with exponential ON
and OFF periods. In Sectign]lV, we develop models for ON an& @ériods with more general
distributions using regenerative theory. In Sectioh V, vemsider the system with multiple

secondary TCP connections. Section VI concludes this paper
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Fig. 1. TCP connection through ON/OFF channel

[l. SYSTEM MODEL

We consider a single TCP New Reno flow going through an ON-Of&hieel as shown in
Figure[1. In the Figure, the packets in red are TCP packetdlss to the channel going OFF.
As the channel alternates between ON and OFF, the TCP receoaives packets intermittently.
The TCP flow could be of a secondary device in a cognitive ragitwork using opportunistic
spectrum sharing so that the OFF periods correspond to thmauyr using the channel and the
ON periods correspond to the time when the channel is avaif@p the secondary user. The
overall RTT of the TCP flow is fixed and equals seconds. (This corresponds to negligible
gueuing. We will extend this assumption later.) Any trarssian (of a window load of packets)
when the channel is ON goes through, although the packetsexasrience transmission error.
The next window of packets will be transmitted after RTT,,i/¢ secs. However a transmission
attempted during an OFF period results in loss of all the etsckf that window and hence
causes a retransmission timeout (RTO) and the TCP sourcéohaait for its RTO timer to
expire before it can attempt the next retransmission. lossfple that the channel becomes OFF
while a secondary transmission is going on. Such an eveikely lif the average ON and OFF
periods are of the order of RTT or lesser. This case has beeiedtin [15]. Here we consider
the case where the average ON and OFF periods are largerndd®iri of the flow with high
probability.
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Fig. 2. Cognitive radio channel with one secondary TCP saurc

If during the ON period, the transmission error probabilgysmall, after an error the next
transmitted packets (i.e., packets in the window succegtlfia packet in error) may be received
successfully causing transmission of duplicate ACKs. Bpomse to these losses, the secondary
TCP reduces its window size. In Figure 2, we show the windae svolution for a TCP flow
over an ON-OFF channel. In the ON period, the TCP window sizeeiases, however random
losses over the channel cause reductions in the window sere @uring the ON periods.

Let S, € {0,1} be the channel state at tié" transmission of a window load of packets,
wherel corresponds to the channel being ON @ncbrresponds to the channel being OFF. Let
Ji, € D denote the duration between th& and the(k + 1) transmission of a window load of
packets. The duration between successive transmissiathe i®N period is equal to the RTT,
R, of the flow. However, on encountering a timeout, TCP usesnarpiexponential back-off
strategy. The first RTO is set to/ = max{R, T},.;»}, whereT,,;, is the minimum value that a
timeout duration can be. If a failed transmission (one whezds to a timeout) is immediately
followed by another, TCP doubles the timeout duration. Thmeout duration is bounded above
by T,z ThereforeD = {R, M, 2M,4M, - - - T, }- The TCP timeout mechanism is illustrated
in Figure[2.

Let W, be the window size at the end of tié" transmission of a window of packets and
H,, be the value for the corresponding slow start threshold oP.Tthe window evolution of
TCP New Reno is as follows. If there is no packet loss betwerkt* transmission and the

(k + 1)** transmission of windows, we have

Wi =Wy + 1, if Wi, > Hy,
1)
— W, if W, < Hy.



If there is a packet loss, TCP retransmits the lost packetraddces the window size. If TCP
detects the loss through duplicate ACKs, then it reducesMhdow size by half and sets the
slow start threshold to that value. This is called recovénpughfast retransmit[20]. In that

case,
Wir = 08, Hip = —2F 2)
If the loss is detected through a timeout (this will happeabpbly because channel is OFF),
we have
Wi =1, Hppr = % (€))

The TCP window size is usually restricted by the buffer sizalable at the receiver. Considering
this, the window sizéV,, and the threshold{,, are restricted tdV,,,, < oco.

In the rest of the paper, we develop theoretical models fdP B&er an ON-OFF channel and
compute the probability of retransmission timeout and tireughput and compare our results
to ns2 simulations. We then show how these results can bewised there are multiple TCP

connections.

[1l. ANALYSIS FOR EXPONENTIAL ON-OFF

We assume that the OFF and ON periods are i.i.d. exponentilal parameters\, and \;
respectively. This is reasonable as the PU activity is Upumabdeled as exponentigl [10]. We
will generalize these assumptions in Secfioh IV.

We denote the state of the system at the beginning ofithetransmission of a window
workload by(Sy, Ji., Wi, Hy). Since we assume that the ON and OFF durations are expdnentia
the process{(Sy, Jx, Wi, Hy)} forms a finite state, discrete time Markov chain. In Figureva,
illustrate the single-step transitions from generic ON @fF states.

Let S(¢) be the state of the channel at timevith S(¢) = 0 if channel is OFF and if it
is ON. In the ON period, packets can be dropped due to lossabeowireless channel with
probability p independently of others. Lek,(i,7) be the probability of channel statg(t) at
time ¢ being in statej given that it was in statéat time0. Once we knowP; (4, 7), we can find
the transition probabilities for the Markov cha{iSy, Ji, Wi, Hy,)}. Proposition [(IL) provides
P,(i, j) explicitly via renewal theory.
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Fig. 3. Single-step transitions for tHeSx, Ji., Wi, Hi } Markov chain.

Proposition 1. We have fori # j,

o M\ + )\ie—o\o-l-)\l)t

Proof: Let X; be exponentially distributed with parametgr : = 0, 1 and X, independent
of X;. LetY = X, + X;. Let us denote the density function &f by fy-. By renewal theory

arguments[[21], we have,

t
P0.0)=B(Xo > )+ [ Pra(0,0)f(a)d. )
0
Taking Laplace transform, we have
. 1 . .
Ps(070) - )\0+5 +Ps<070)fY<S) (6)
The Laplace transformfy of fy () is given by,
A Aol
— . 7
M) = S s+ @
From equationd (6) andl(7), we have
. A1 Ao 1
P,(0,0) = — . 8
( ) )\0+)\18+)\0+)\18+)\0+)\1 ()
Taking inverse Laplace transform,
Pi(0,0) = L 4 20w, ©)

BT SEY
Similarly we can derive expression fé#(1, 1). u



The Markov chain{ (S, Jx, Wy, Hy)} is finite. Therefore it has at least one positive recurrent
communicating class. Suppose the channel is ON. Then oed®hperiod ends, an OFF period
large enough so that we have at least two timeouts, followedrbON period, large enough to
accommodate one transmission attempt, ensures that teg 5t&, 1, 1) is hit. Similarly, when
the channel is OFF, an OFF period large enough so that we hitel af at least two timeouts,
followed by an ON period, large enough to accommodate omsngssion attempt, ensures that
the state(1, R, 1,1) is hit. Thus, the statél, R, 1,1) can be reached from any state in the state
space with positive probability. Therefore the stéteR, 1,1) is positive recurrent and any state
that can be reached frofi, R, 1, 1) is positive recurrent and the remaining states are transien
Also if the probability of packet loss during the ON periodgiseater thard (which happens if
we assume that packets are in error, independently whesniitted during ON periods, e.g., for
wireless channels), the state R, 1, 1) has a self loop. Therefore the Markov chain is aperiodic
and has a unique stationary distributionAlso, starting from any initial state the chain converges
exponentially to the stationary distribution in total \aion.

The probability of retransmission timeouwt,, i.e., the fraction of packets that are timed out
is
Ex[1{s—0}]

E-[W] ~
where 14, is an indicator function of setl and E, denotes mean under stationarity. The

Po = (10)

throughput,\ (in packets/sec) of the TCP connection, using Palm cald2gk is

Er[Wls=1y]

A= TR

(11)

A. Extension to Channels with Non-negligible Queuing

The above analytical model assumes that the round trip tomihé secondary TCP connection
is constant. If the queuing is non-negligible, the model maybe accurate. In that case, we can
use the above model with a minor modification. In the stateespéthe proces§Sy, Ji., Wi, Hy},
if the channel is ON at the end of tfé" transmission, i.e., i, = 1, we setJ, = max{A, %},
where A is the constant component of the round trip time which inekithe propagation delay
and processing delays at the nodes and the link speed of the channel in packets/second.
Such an approximation has been used beforé ih [23], [24].9Dnulation results below justify

the approximations made in this analytical model.



B. Simulation Results

We now compare the probability of timeout and throughputawig#d from our model with
ns2 simulations. We have modified ns2 code so as to simulaBN\Na@FF channel. We generate
a sequence of alternate ON and OFF periods and drop all gattiatarrive in the OFF period.
The packet sizes ar#)50 bytes. We set the link speed of the ON-OFF channél Mbps. The
other links that the flow traverses have link speédSbps. In practice, the ON-OFF channel
could be a wireless link connecting a wireless device to aess point or a base station. The
base station/access points are then connected to the dhtiamough well-provisioned optical
fiber links.

We denote the fraction of time that the channel is OFFabyWe plot the probability of
retransmission timeout (RTOJ, and the secondary TCP throughput in Figure 4. Wexset1/3
and vary the average channel OFF duratl®fy,¢]. The probability of packet transmission error
in the ON period is set t6.01. The maximum window sizd}/,,... is 100 packets. We see that as
RTT increases, the probability of retransmission timenateases and throughput decreases. Our
model results match well with ns2 simulations and the eraoesess thah% in most cases. The
errors are larger when the average ON and OFF durations ateeafrder of RTT. However,
even for these cases the errors are less than. Our analytical model results show that in
an ON-OFF channel we can not approximate TCP throughput byiptying the throughput
expressions for TCP Reno (which may be found[in [8]) (by- «) where« is the fraction of
time that the channel is busy.

In Figure[®, we see the effect of packet error probabjlin the probability of retransmission
timeout and the throughput of the flow. The round trip timé.isseconds. We see that for fixed
a and RTT,R, the probability of retransmission timeout decreases hralighput increases with
increase in the average OFF duration. Our model resultshmagtl with ns2 simulations and
the errors are less tha¥o.

In Figure[®, we show the effect of link speed on the probabditretransmission timeout and
the throughput of the TCP flow. The RTT (sl seconds and CR channel link speeds are set to
5 Mbps andl Mbps. We see that our model approximations are reasondigesrtors are less
than 10%.
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Fig. 4. Effect of RTT andE[Y,;] on probability of RTO and TCP throughput.

IV. PHASE-TYPE DISTRIBUTIONS FORON/OFF FERIODS

We have considered the case where the ON and OFF periods@reesrially distributed. In
[25], we see that many quantities that characterize netwerformance, for example file lengths,
call holding times, intervals between requests in Intetredfic are not exponential but can be
modelled by mixtures of exponential distributions. We no#ead our model to the case where
both ON and OFF periods are phase-type [22]. Phase-typebdisbns generalize exponential
distributions (and include mixtures of exponentials) and approximate any distribution dgr
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Fig. 5. Effect of packet error rate at{Y, ;] on TCP performance.

arbitrarily closely [22]. As before, the sequence of ON pdsi and OFF periods are both i.i.d.
and are independent of each other. Also, as before the dtabe cystem at the beginning of
the k' transmission of a window workload is denoted (@}, Ji., Wy, Hy).

When ON and OFF periods are phase-type, the channel Statecan be taken as a finite
state Markov chain with state spadg U X;. When S(t) € A} then the channel is OFF and
when S(t) € A then it is ON. Also, the processSy, Ji, Wy, Hy) is a discrete time Markov
chain (embedded ¥ (t)). Let P.(i,j) be the probability of the channel stat&¢) at time¢

beingj given that it was in staté at time 0. Once we know?, (7, j), we can find the transition
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Effect of link speed on Probability of retransmission timeout
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Fig. 6. Effect of link speed antl[Y, ;] on probability on TCP performance.

probabilities for the Markov chaid(Sy, Ji., Wi, Hy)}.
Suppose is the transition rate matrix for the CTMS(¢)}, and lety, = {¢(i) : i €
X U X} denote the probability distribution of(¢) at timet > 0. It satisfies

wt = Q/)Othv (12)

whereyy is the initial distribution. Also P, = e%*. It can be computed using tlkepm command
in MATLAB or by using eigenvalue decomposition techniqu28][ When the state space 8f¢)

is large, the exact computation éf* may be difficult. We may then use some approximations
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[27].

The Markov chain{(Sy, Jx, Wy, Hy)} is finite. Therefore it has at least one positive recurrent
communicating class. Suppose the channel is ON. Then oed@thperiod ends, an OFF period
large enough so that we have at least two timeouts, followedrbON period, large enough to
accommodate one transmission attempt, ensures that tho# stttes{(;, R,1,1) : i € A} } is
hit. Similarly, when the Markov chain is in an OFF state, arFQteriod large enough so that we
have a total of at least two timeouts, followed by an ON perlacje enough to accommodate
one transmission attempt, ensures that the set of sf{déie®,1,1) : ¢ € X} is hit. Since
the ON periods are phase type, there is a non-zero prolyathiitt for any: € &}, the state
(1, R,1,1) is visited by the Markov chain. Thus, the staieR, 1, 1) for anyi € &} is a positive
recurrent state. If the probability of packet loss during @N period is greater than then the
state(i, R, 1,1) also has a self-loop. Therefore the Markov chain is apeciadd has a unique
stationary distributionr. Also, starting from any initial state the chain converggpamentially
to the stationary distribution in total variation.

The steady state probability distribution, of the Markov chain{ (S, Jx, Wi, Hy)} is com-
puted by repeated iteration ef_ . ; = 7, P, whereP is the transition probability matrix, starting
from some initialmy. The size of the state space of the Markov chai®i&X, + X, ||D|W?2,..)-
The number of transitions from a state are of the o@dé2| X, + X;|). Thus each iteration of
T = m, P requiresO(2| X, + X, |?|D|W?2,,) computations. From our earlier discussion, these
iterations converge exponentially to the stationary diatron.

We now develop theoretical results for (a) phase-type ORF general ON periods under
certain conditions and (b) phase-type ON and general ORBdgseunder certain conditions. We
will show stationarity of the procesg .Sy, Ji, Wi, Hy)} in these cases. The stationary behaviour
can then be used to compute the throughput and the prolyadiiltimeout for a TCP flow on
an ON-OFF channel.

A. Phase-type OFF Periods

In this section, we consider the case when OFF periods ade phase-type while the ON
periods are more general. Let us denotelpythe time when the secondary TCP makes kfte
transmission attempt of a window load of packets. Ugt= 0. ThereforelU, = Ef; Jn, Where

J,, is the time duration between thé” and (n + 1)*! transmission attempt. LetX (¢)} be a
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CTMC with finite state spacé¢l} U A, wherel ¢ &;,. The setAj is irreducible and state is
an absorbing state reachable from every stat&,nThe sojourn times in each state X, are
exponential with parametex;, 0 < )\; < oo. Let A £ max;cy, \i < co. We define the channel
state process$(t) as follows. Supposé(t) enters ON state at time(denoted byS(t) = 1). It
will stay in ON state with a general distributio(, will denote a random variable with that
distribution). At timet + Y, it will enter the OFF period. The duration of the OFF perisd i
given as follows. LetX (0) = iy € X, wherei, is a fixed state of X (¢)}. The OFF period of
S(t) will equal the time{X(¢),t > 0} takes to reach state Let this time beX. Then S(¢)
stays in OFF state till time + Y,,, + X and then switches to ON state . At time-Y,,, + s,
S takes the valueX(s), for 0 < s < X. The ON-OFF periods of(¢) alternate with durations
independent of each other with distributions specified abaet ) be the generator matrix for
the CTMC X (¢) when in X,. By uniformization [28], beforeX (¢) gets absorbed, the transition
function of { X (¢)} is, N
Pyi,j) =Y e‘”P’ij, (13)
n=0

n.

where P; = % for i  j and Py = 1 - Y, %,

Consider the statéS, = io, Jy = 2M, W, = 1, H, = 1) whereiy € A,. Once the process

{(Sk, Ji, Wi, Hr)} hits the state(iq, 2M,1,1), the future process evolution is independent of
the past. Thus{(Sk, Jx, Wi, Hy)} is regenerative. LetV denote the number of transmission

attempts made by TCP in a regeneration cycle. We have thanfiold) result.

Proposition 2. If the ON periods are i.i.d. with
P(Y,, <s+ R|Y,, >5s)>¢ >0 (14)

and 0 < P(Y,, < R) < 1, then for alla > 0, E[N®] < oo and N has a finite moment
generating function (mgf) in a neighbourhood @f Also NV is aperiodic and the stochastic
process{ (S, Ji, Wi, Hi)} converges in total variation, exponentially to its uniquat®nary

distribution
P ((Sk,Jk, Wy, Hy) € A)

B[S La(Sk, Tk, Wa, Hy)]
E[N] ’

(15)

wherek = 0 is a regeneration epoch.
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Proof: We first prove that from any arbitrary state in the OFF periogl process can visit
the ON state in one step with probability ¢; > 0.
Step 1. Since AXj is irreducible andl is reachable from all states, for alle &, and all
j € X U{1}, there exists:(i, j) > 0 such that the probability’/;”’ of hitting statej in n(i, )

steps starting from statefor the DTMC of { X (¢) } with transition matrixP,;, is strictly positive

in equation [(IB). Let N
oy (O )nid)

(i, )l
Then P,(i,5) > €(i,5) > 0 for all t € [t;,t5] where0 < t; < R < Tae < ta < 00. Let

e(i,j) & e M2 P (16)

€1 = min;e(i,1) > 0, wherei € A;. ThereforeP,(i,1) > ¢ for all i and for allt € [ty,s].
Then,
P(Sit1 =1, Jpy1 = R[Sk = 2, Jp = d) > €, (17)

for all states(x, d) in the state space of the procegsy, Ji)} with =z € Aj.

We note that the inequality _(IL7) is true if we replac®..; = 1, J,.1 = R) by the term
(Sk+1 =¥, Jkr1 = 2d) for anyy € A}, possibly with a different; (y) > 0 as a lower bound. We
will use this fact later in the proof.

Step 2: Let us denote by’ the age of the ON period &fy, i.e., the time elapsed since the
ON period started, whef, = 1, J, = R at U, and letFy. be its cdf. Now

> P(Skt1 =y, Jeq1 = M[Sp =1,J, = R)

yeEXD

R
> // P(Y,, = s+ ulY' = $)P(Yos > R — u)du dFy(s)
s Ju=0
R
> // ]P)(Y:m =S5+ U‘Y;n > S)]P)(Y:)ff > R)du dFy/(S)
s Ju=0

=P(Y,;; > R) /IP’(Yon < s+ R|Y, > 8)dFy(s)

> ¢P(Yorr > R) £ ¢ > 0.
where the last inequality follows from_(114) aftiY,;; > R) > 0 becaus&’,;; is phase-type.
Thus with probability> ¢, the process exits the ON period to visit the OFF period in one
step. The inequality(17) is true for the stat®, ., = io, J.1 = 2M) with somee, > 0 as the
lower bound. TherefordP(Sy.1 = ig, Jxi1 = 2M|Sk, =y, Jy = M) > €5 > 0 for any y € Aj.
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1. Visit to Regenerative epoch from any ON state in two steps.

e > e
(LRIW,T) (v, M, 1,T) (4, 2M, 1, 1)
- d .. .| R R M
s < <
, = y
Regeneration epoch
(k —1)*" OFF period Yy k" OFF period
2. Hitting regeneration epoch in 4 steps.
(ig, 2M,1,1)  (x,4M, 1, 1) (LR, L1) (vwM1,1) (g, 2M, 1, 1)
OM 4M R M _‘
i v i —\I;
Regeneration epoch
it : k
(k —1)*" OFF period Yon k" OFF period

x and y are arbitrary states in the OFF phase Aj.
The vertical arrows indicate transmission attempts, red arrows indicate transmissions in OFF period.

Fig. 7. Hitting (40,2M, 1, 1) in finite time from any state in process.

This shows that the proced$Sy, Jx, Wi, Hy)} Visits the state(iy,2M/,1,1) in a sequence of
two steps from the ON state with probability eje; > 0, (subfigure 1 of Figurél7) .

Step 3: From stepsl and 2, the process can visit the regeneration epogh2MM/,1,1)
from any state in the state space in less than three stepspwatiability > ¢ = €{e1e; > 0.
Thus in particularP(N = 3) > 0. Consider random variablg with distributionP(Z = 3k) =
(1—e)k~Le, for k > 1. The random variabl¢ is stochastically larger than the regeneration length
N,ie,P(Z > ) > P(N > p) for all g > 0. Therefore, for alla > 0, E[N“] < E[Z°] < 0.
Also, the moment generating function of is finite in a neighbourhood df.

We have shown thaP(N = 3) > 0. In subfigure2 of Figure[7, we show a sequence of
transitions such thaP(N = 4) > 0. This shows thatV is aperiodic. Thus{ (S, J, Wi, Hy) }
has a unique stationary distributiof, {15) and converges ito total variation from any initial
distribution exponentially (because of finiteness of mgf\doin a neighbourhood of [29]). =

The condition[(I}¥) is satisfied by a general class of distidims called New Better than Used
(NBU) [30] and also by phase-type distributions. The NBUtritisitions are useful in reliability
theory. They are also relevant in our case, as one wouldalpiexpect that the primary busy

period starting afresh is likely to last longer than an ongdbusy period.
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B. Phase-type ON Periods

We now develop theoretical results for phase-type ON ancergerOFF periods. LefX (t)
denote the phase of the ON period. The procgsst)} is a CTMC with a finite state space
{0} U X, with 0 ¢ &). Let us denote by5(¢) the state of the ON-OFF channel at tirhdf the
channel is ON at time, then S(t) = X(t), elseS(t) = 0, where0 is the absorbing state for
the CTMC{X (¢)}. We assumet; is irreducible and) is reachable from all states. The process
{(Sk, Jx, Wi, Hy)} is regenerative with visits to the statg, R, 1, 1), (i; € &) is a fixed state),
acting as regeneration epochs. We denotéVbthe number of transmission attempts made in a

regeneration cycle.

Proposition 3. If the OFF periods are i.i.d. witfP(s + M < Y,;; < s +3M) > ¢ > 0 for all
s <R, and
P(}/;ff§8+2M|}/;ff ZS) 261 >0, (18)

then for alla > 0, EN®] < co and N has a finite moment generating function in a neighbourhood
of 0. Also, N is aperiodic and the stochastic proce$t&Sy, J., Wy, Hy)} converges in total

variation, exponentially to its unique stationary distition (I5).

Proof: We first prove that from any arbitrary state in the ON period pnocess can visit
the OFF state in one step with probabilitye, > 0.
Step 1. Since X is irreducible and) is reachable from all states, for alle &} and all
j € X,U{0}, there exists:(i, j) > 0 such that the probability’/;”’ of hitting statej in n(i, )
steps starting from statefor the DTMC of { X (¢) } with transition matrixP,;, is strictly positive

in equation [(IB). Let

o B (i ()\R)n(m)
€(i,j) = e ARP@'( ])W- (19)

Then Pr(i,j) > €(i,7) > 0. Let e = min; €(,0) > 0, wherei € X;. ThereforePg(i,0) > €.
Then,
P<Sk+1 :07Jk+1 :M|Sk:.’lj, ']k :R) 2627 (20)

for all x € Aj.
Step 2: Let us denote by’ the age of the OFF period af, i.e., the time elapsed since
the OFF period started, whesi, = 0, J, = d at U, and let Fy, be its cdf. Now, for some
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d € {2M74M78M7"'Tmax}a

ZP(Sk+1 =y, Jpp1 = R|Sp =0, Jp = d)

yeX

d
> // PV, =s+ulY' =s)P(Y,, >d—u)du dFy(s)
s Ju=0

d
> // P(Y;)ff =S+ U|}/;ff > S)P(}/;n > d)du dFy/(S)
s Ju=0

=P(Yo, > d) /P(Yoff < s+ d[Yopr =2 s)dFyi(s)

> e P(Y,, >d) 2 ¢ > 0.
where the last inequality follows froni (IL8) af®(Y,, > d) > P(Y,, > Thwe) > 0, for d €
{2M,4M,8M, - - - T,,.. }, becausé’,,, is phase-type.
Thus with probability> €| the process exits the OFF period to visit the ON period in one
step.
Step 3: Let us denote by’(z) the residual life time of the ON period &} when S, = z €
X1, Jr = R at U, and letFy, be its cdf. For any state € &', P(Y'(z) < R) > 0. Therefore,
min,ecy, P(Y'(2) < R) > 0. Now
ZP(SIH—ZS =Y, Jrp3 = R Wigs =1, Hyp3 = 1|S, = 2, Jp = R)
yeEX]
R
> / P(R—u+M <Yyp < R—u+3M)P(Y,, >4M)dFy;(u)
u=0
R (21)
> EOP(Y;n > 4M)/ dFyZ/ (u)

u=0

> oP(Y,, > 4AM)P(Y'(2) < R)
€y > 0.
for all z € X;. Therefore there exists somg e &} such thatP(Sy. 3 = i1, Jri3 = R, Wii3 =
1,Hpy3=1|Sy = 2z, Jy = R) > €, > 0 for all z € &. Therefore, there is a positive probability
of the process hitting statg,, R, 1,1) from any ON state in exactly three steps.

Step 4: From above steps, we see that the process can visit the rageeepochi;, R, 1, 1)
from any state in the state space in less than four steps watbapility 6 = € €,. In particular,
N satisfiesP(N = 4) > 0. Consider random variabl& with distributionP(Z = 4k) = (1 —

§)k=1g, for k > 1. The random variable is stochastically larger than the regeneration length
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1. Visit to regenerative epoch from any ON state in three steps.
> € )
(x, R, W, T) (0,D, 1, T) (0,2D, 1, 1) (i1, R, 1, 1)
R D 2D
-
, b
k™ ON period Yierp (k +1)*" ON period
2. Hitting the regenerative epoch in four steps.
i, R, 1,1
&, R 1, 1) (i, R, 1, 1)
(LR, 1) (0,D, 1, T) (0, 2D, 1, 1)
R R D 2D ‘
v , b
k™™ ON period \ (k +1)*" ON period

x: an arbitrary state in the ON phase Xj.
The vertical arrows indicate transmission attempts, red arrows indicate transmissions in OFF period.

Fig. 8. Hitting (¢1, R, 1,1) in finite time from any state in process.

N,ie,P(Z > ) > P(N > p) for all g > 0. Therefore, for alla > 0, E[N“] < E[Z°] < 0.
Also, the moment generating function of is finite in a neighbourhood df.

In Step3, we have shown tha&(N = 3) > 0. In subfigure2 of Figure[8, we show a sequence
of transitions such tha@(N = 4) > 0. This shows thatV is aperiodic. Thuq (S, Ji, Wk, Hx)}
has a unique stationary distributiof, {15) and converges ito total variation from any initial
distribution exponentially (because of finiteness of mgf\doin a neighbourhood of [29]).

[

The conditions in Propositiol(3) are satisfiedif;; has a positive density o/, R + 3M]|
and has NBU distribution. It is also satisfied for phase-tglfgributions.

In the proofs for Propositiond](2) andl(3), we do not assummelomn packet losses for
convenience of notation. The propositions hold even in¢age when the packet loss probability,
p < 1 with a slight modification of proofs.

These propositions show stationarity of the regeneratieegss modelling TCP behaviour in
the setup of ON-OFF channels with more general ON and OFFldifibns. This also ensures
that the time averages for performance metrics such as ghput and probability of RTO

converge to the stationary mean values.



20

C. Simulation Results

We now compare the probability of timeout and the throughghtiined via the analytical
model with ns2 simulations. The probability of timeout ahdoughput can be computed using
equations[(10) and_(11) respectively with some modificatidfor phase-type ON, we replace
the termls_y, by 1;scx,y and for phase-type OFF process we replage.py by 1iscy,;. The
simulation setup is the same as in Secfion IIl-B.

We consider two cases (a) ON and OFF periods are both expalhemtistributed and (b)
ON and OFF are both Erlang-3 distributed. For these expatsnave set RTT td).1 sec,W, 4.
to 100 and the ON-OFF channel link speed is settdbps. The packets undergo Bernoulli
random losses with probability.01. We vary the average busy duratidjy, ] keepinga fixed
at 1/3. The results are shown in Figure 9. We see that our theoretiodel results match well
with simulations with errors less thdi¥ in most cases. The errors are larger when the average
ON and OFF durations are of the order of RTT. However, everttiese cases the errors are
less than10%.

In Figure[10, we consider the effect of the cognitive charimi capacity on probability of
timeout and throughput. The ON and OFF periods are both g8adistributed, we set RTT to
0.1 seconds andl,,,,, to 100. We consider link speeds afMbps and5 Mbps. We see that our
theoretical model results match well with simulations wéthiors less thas% in most cases

and always less thanl % .

V. MULTIPLE TCP GONNECTIONS

In this section, we consider the case when multiple secgn@d@P connections share a CR
channel. Thus the ON-OFF durations for all connections ames However these connections
are subject to different packet error rates as their chagagls may be different. Also these
connections can possibly go through different routes gifoee they may have different round trip
times. We first consider the case where the queuing delayeeyigyible. Then, the processes
{(Sk, Jx, Wy, Hy)} for each TCP can be considered individually with no effecteach other.
The probability of timeout and throughput can be computeshgugquations[(10) and (1L1)
respectively. The following simulations show that this rabaiorks fine for system parameters

considered here.
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Fig. 9. Probability of RTO, throughput with different ON-GHlistributions.

We consider6 secondary TCP connections with different RTTs and packss fobabilities
sharing an ON-OFF channel with Erlang-2 distributed ON arkF @eriods with average ON
duration =20 seconds and average OFF duration(=seconds. The ON-OFF channel has link
speed ofl0 Mbps and the other links are set toGbps. The TCP packet sizes a0 bytes.
The packet error rates of the different TCP connections argien in Tabld]l. We compare
the throughput and probability of timeouP, obtained using ns2 simulations with theoretical

results in Tablé]l. The difference between the simulati®ults and analytical model results is
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Fig. 10. Probability of RTO, throughput with different lirdpeeds.

less thar0%.

When the network has non-negligible queuing and all the floawsee same RTT, we can extend
the model from Section IV. Suppose there &feTCP flows in the network and they share the
ON-OFF channel. If the ON and OFF periods are phase-typa.(tie Ji, (Wi, H])ijci12. n})
denotes the state of the system and forms a Markov chain,ewimelex j represents the
TCP connectionj. The RTT for the different flows at the end of th&" RTT is given by
max{A, ZJTW} wherey is the bottleneck link speed (in packets/sec) ands the propagation



TABLE |

MULTIPLE TCPFLOWS WITH NEGLIGIBLE QUEUING.

PER; | RTT; | Throughput| Throughput P, P,
(sec) (ns2) (Theoretical)| (ns2) (Theoretical)
0.01 0.05 108.9 118.6 0.00148 0.00136
0.01 0.10 54.9 58.5 0.00291 0.00274
0.01 0.20 26.5 28.2 0.00591 0.00566
0.005 0.05 156.8 167.4 0.00103 0.00097
0.005 0.10 78.9 81.8 0.00205 0.00197
0.005 0.20 374 38.6 0.00425 0.00416
TABLE 1l

MULTIPLE TCPFLOWS WITH NON-NEGLIGIBLE QUEUING.

PER; | RTT; | Throughput| Throughput P, P,
(sec) (ns2) (Theoretical)| (ns2) (Theoretical)
0.01 0.1 30.83 28.19 0.00404 0.00455
0.003 0.1 42.06 38.51 0.00320 0.00336
0.001 0.1 47.16 42.80 0.00296 0.00303

23

delay (in sec). Our simulation results validate our modsuagptions.

We consideB secondary TCP connections with= 0.1 seconds. The maximum window size
for all the flows is set t®0 packets. The ON-OFF periods are both exponentially disteith
with average ON duration 20 seconds and average OFF duratiom(=seconds. The ON-OFF
channel has link speed af Mbps (this causes non-negligible queuing) and the othds lare
set tol Gbps. The TCP packet sizes a@h0 bytes. The packet error rates of the different TCP
connections are as given in Tablé Il. We compare the throuigépd probability of timeoutP,
obtained using ns2 simulations with theoretical resultJable[Il. In this case, the errors are
less than13%.

VI. CONCLUSIONS

We have developed an analytical Markov model for a TCP flowmr @re ON-OFF channel
with random losses. For the Markov model, we assume that tNea@d OFF periods are

both exponential. We then extend our model to include phgse-ON and phase-type OFF
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periods. We have also considered the case with more gendrand OFF periods and proved

the stationarity of the system using regenerative prodessry. We have compared the results

Viz.

, probability of retransmission timeout and second@GfP throughput obtained using the

theoretical models with ns2 simulations and showed thagethmatch quite well. Finally, we

considered the scenario where multiple secondary TCP ctions share the ON-OFF channel.

The theoretical results for this scenario also match wethwimulations.
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