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Interference-Assisted Wireless Energy Harvesting in
Cognitive Relay Network with Multiple Primary Transceivers

Sanket S. Kalamkar∗ and Adrish Banerjee

Abstract—We consider a spectrum sharing scenario, where a
secondary network coexists with a primary network of multi-
ple transceivers. The secondary network consists of an energy-
constrained decode-and-forward secondary relay which assists the
communication between a secondary transmitter and a destination in
the presence of the interference from multiple primary transmitters.
The secondary relay harvests energy from the received radio-
frequency signals, which include the information signal from the
secondary transmitter and the primary interference. The harvested
energy is then used to decode the secondary information and forward
it to the secondary destination. At the relay, we adopt a time
switching policy due to its simplicity that switches between the
energy harvesting and information decoding over time. Specifically,
we derive a closed-form expression for the secondary outageprob-
ability under the primary outage constraint and the peak power
constraint at both secondary transmitter and relay. In addition, we
investigate the effect of the number of primary transceivers on the
optimal energy harvesting duration that minimizes the secondary
outage probability. By utilizing the primary interference as a useful
energy source in the energy harvesting phase, the secondarynetwork
achieves a better outage performance.

I. I NTRODUCTION

Energy harvesting (EH) cognitive radio [1]–[5] is a promising
solution to the problem of the inefficient spectrum usage while
achieving green communications. In particular, the cognitive
radio can improve the spectral efficiency by facilitating the
unlicensed/secondary users (SUs) to share the spectrum with the
licensed/primary users (PUs), provided that the interference to
PUs stays below a specified threshold. On the other hand, energy
harvesting provides the cognitive radio a greener alternative to
harness energy for its operation, which also helps enhance its
lifetime under the energy constraints.

Besides harvesting energy from natural sources like solar and
wind, nowadays, the radio environment can feed the energy in
the form of radio-frequency (RF) signals [6]. Noticing thatRF
signals can carry both information and energy together, [7]–[9]
have advocated the use of RF signals to harvest energy along
with the information transmission. However, it is difficultfor a
receiver, in practice, to simultaneously decode the information
and harvest energy from the received RF signals. Thus, two
practical policies are proposed to harvest energy and decode
information separately [9]–[11]. One is the time switchingpolicy,
where the time is switched between the energy harvesting and
information decoding; while the second policy is based on the
power splitting, where a part of the received power is used to
harvest energy and the rest for information decoding.

Such wireless energy harvesting while receiving the infor-
mation has an important application in cooperative relaying,
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where an intermediate node helps forwarding the information
from the source to the destination to improve the coverage and
reliability of the communication [11]–[20]. However, the relay
may have a battery with limited capacity, replacing or recharging
which frequently may be inconvenient. In this case, wireless
energy harvesting helps the relay to stay active in the network
and facilitate the information cooperation. Similarly, incognitive
radio, using energy harvesting for energy-limited relays,SUs can
achieve significant performance gains [21], [22]. In [22], under
spectrum sharing with a PU, an EH relay which forwards the
secondary data is considered, while a tradeoff between primary
interference constraint and energy constraint due to EH nature of
relays is investigated in [23].

In spectrum sharing, both PU and SU transmit together, which
limits the transmit powers of secondary source and relay to keep
the interference to PU below a threshold. However, PU, beinga
legacy user, has no such restriction on its transmit power. Due
to this, SU may experience heavy interference from PU, which
deteriorates the quality-of-service (QoS) of SU. Nevertheless,
since the interference is a RF signal, it can be leveraged as a
potential source of energy [10], [12], [24]. For example, under
time switching policy, in the energy harvesting phase of a slot,
the interference can be utilized as a useful energy source. This
could subdue the harmful effect of the interference at the energy-
constrained relay by supplying additional energy, which can be
used to transmit with a higher power (provided it satisfies PU’s
interference threshold), to achieve better QoS.

The contributions and key results of this paper are as follows:
• With interference leveraged as an energy source, under

spectrum sharing with multiple primary transceivers, we
consider SU’s communication via a decode-and-forward
relay that harvests energy from the received RF signals, i.e.,
the information signal from the secondary source and the
primary interference, using the time switching policy.

• For the proposed model, we derive a closed-form expression
for SU’s outage probability provided PU’s outage probability
remains below a threshold and investigate the effective use
of the interference from multiple primary transmitters as an
energy source.

• We show that, such interference-assisted EH not only im-
proves SU’s outage performance due to the extra acquired
energy, but also reduces the optimal energy harvesting time
that minimizes the secondary outage probability.

• Finally, we study the impact of the number of primary
transceivers on SU’s outage performance. We observe that,
though the optimal energy harvesting time reduces with the
increase in the number of primary transceivers, the minimum
secondary outage probability increases simultaneously when
the transmit powers of the secondary transmitter and relay
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Fig. 1. Secondary communication via an EH relay in spectrum sharing.

restricted by the primary outage constraint satisfy the peak
power constraint. Interestingly, the trend reverses once the
peak power constraint limits the transmit powers of the
secondary transmitter and the relay.

II. SYSTEM AND CHANNEL MODELS

As shown in Fig. 1, consider a primary network consisting of
L pairs of primary transmitters (PTs) and primary destinations
(PDs), where each PU pair communicates over a channel of
bandwidthB Hz. The secondary network consists of a secondary
transmitter (ST) which communicates with a secondary desti-
nation (SD) through an energy harvesting decode-and-forward
secondary relay (SR). All nodes have a single antenna. The
secondary network shares the spectrum of bandwidthBL Hz with
PUs, provided that the quality-of-service (QoS) of each primary
link is maintained above a given threshold.

Let hppi
, hsr, hrd, hspi

, hrpi
, hpir, andhpid denote the channel

coefficients ofith primary link PTi-PDi (i = 1, 2, . . . , L), ST-SR,
SR-SD, ST-PDi, SR-PDi, PTi-SR, and PTi-SD, respectively. All
channels are independent of each other and experience quasi-
static Rayleigh fading, i.e., the channels remain constantfor
one slot of secondary communication and change independently
from one slot to another. The instantaneous channel power gains
are exponentially distributed random variables (RVs). Letus
denote the mean channel power gain of|hk|

2 by λk, where
k ∈ {ppi, sr, rd, spi, rpi, pir, pid}. For simplicity, we consider
PT-PR links are identically distributed, i.e.,λppi

= λpp; inter-
ference channels from PTs to a node and vice-versa are also
identically distributed, i.e.,λpir = λpr, λpid = λpd, λspi

= λsp,
and λrpi

= λrp. We assume the knowledge of mean channel
power gains for PTi-PDi, ST-PDi, and SR-PDi links, while SR
and SD have the knowledge of instantaneous channels gains for
the respective receiving links, i.e., for ST-SR and PTi-SR links
at SR and for SR-SD and PTi-SD links at SD, as in [25], [26].

Assuming no direct link between transmitter and destination
due to high attenuation [11]–[14], the secondary communication
happens over two-hops. In the first hop, ST transmits data to SR,
while in the second hop, SR forwards the received data to SD after
decoding. The SR is an EH node, that is capable of harvesting
energy from the received radio-frequency (RF) signals. Energy
harvesting is considered to be the only power source for SR.
The SR may use some part of the received information signal
to gather the energy required to forward the information to SD.
In addition, as in spectrum sharing, the primary and secondary

network transmit simultaneously, SR experiences the interference
from L PTs, which is also a RF signal. Thus, SR can also harvest
additional energy from the primary interference in the energy
harvesting phase, converting it into a useful energy source. The
ST and PTs are the conventional nodes with constant power
supply (e.g. battery).

III. M AXIMUM ALLOWED SECONDARY TRANSMIT POWERS

In the spectrum sharing scenario, the interference constraints
at PDs govern the maximum transmit powers of ST and SR.
We model the interference constraint at a PD as its outage
probability, i.e., ST and SR should limit their transmit powers so
that the outage probability of each primary link remains below a
given threshold. Let us denote the maximum allowed transmit
powers of ST and SR due to the primary outage constraint
as PST and PSR, respectively. Then, in the first hop of the
secondary communication when ST transmits to SR, given the
constant transmit power of PT (PPT), the outage probability for
ith primary link can be written as follows:

Pi
p,out,ST = Pr (B log2 (1 + γPDi

) ≤ Rp) ≤ Θp, (1)

whereγPDi
=

PPT|hppi
|2

PST|hspi
|2 is the signal-to-interference ratio (SIR)1

at PDi, Rp is the desired primary rate for each primary link, and
Θp is the primary outage threshold for each PU. Ensuring that
the outage probability of the primary link having the worst SIR
stays belowΘp, we can write the primary outage constraint with
interference from ST as

Pp,out,ST = Pr

(

max
i=1,2,...,L

Pi
p,out,ST

)

≤ Θp. (2)

Then, from (1), and using the independence between|hppi
|2 and

|hspi
|2, we can write (2) as

Pp,out,ST = 1−

L∏

i=1

(

1− Pr

(
PPT|hppi

|2

PST|hspi
|2

≤ ζp

))

, (3)

whereζp = 2Rp/B − 1.

Proposition 1. The maximum allowed transmit power for ST
under the primary outage constraint is

PST =
PPTλpp

ζpλsp

((
1

1−Θp

) 1
L

− 1

)+

, (4)

where (x)+ = max(x, 0).
Proof: The proof is given in Appendix A.

Similarly, in the second hop of the secondary communication
when SR transmits to SD, following the same procedure to derive
PST, the maximum transmit power for SR is given as

PSR =
PPTλpp

ζpλrp

((
1

1−Θp

) 1
L

− 1

)+

. (5)

Besides the primary outage constraint, at both ST and SR, we
also impose the peak power constraintPt. Then, the maximum
transmit powers for ST and SR respectively become

PSm = min (PST, Pt) , (6)

PR = min (PSR, Pt) . (7)
1Since our focus is interference-limited spectrum sharing environment where

the interference power is dominant than the noise power, thelatter can be
neglected [27].
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Fig. 2. Time switching protocol for the interference-assisted energy harvesting
and information processing at SR.

IV. RELAYING PROTOCOL AT SECONDARY RELAY

In this paper, at SR, we adopt a time switching protocol due
to its simplicity to harvest energy from received RF signalsas
shown in Fig. 2. In this protocol, at the start of a slot, forαT
duration (0 < α < 1), SR harvests energy from ST’s signal and
interference fromL PTs, whereT is the duration of one slot of the
secondary communication. The remaining time slot of duration
(1−α)T is divided into two sub-slots, each of duration(1−α)T

2 .
In the first sub-slot, ST transmits information to SR; while SR
forwards the information to SD in the next sub-slot. Thus, when
ST transmits withPSm and each PT transmits withPPT, the
energy harvested by SR inαT duration is given as

ESR,H = (αT )δ

(

PSm|hsr|
2 +

L∑

i=1

PPT|hpir|
2

)

, (8)

where δ, with 0 ≤ δ ≤ 1, is the energy conversion efficiency
factor, whose value depends on the receiver architecture. The
SR uses the harvested energy to forward the information to SD.
Then, given the amount of harvested energy, the transmit power
of SR in the absence of peak power constraint and primary outage
constraint can be given by2

PSR,H =
2ESR,H

(1 − α)T
=

2δα

1− α

(

PSm|hsr|
2 +

L∑

i=1

PPT|hpir|
2

)

.

(9)
Now, by incorporating the primary outage constraint and thepeak
power constraint, the maximum transmit power for the energy
harvesting SR can be given as follows:

PRm = min (PSR,H, PR) , (10)

wherePR is given by (7). Hereafter, without loss of generality,
we assume that the duration of a time-slot isT = 1.

V. SECONDARY OUTAGE ANALYSIS

The secondary communication between ST and SD via SR
experiences an outage if the rate on one of the ST-SR and SR-
SD links falls below the desired rateRs. Then, we can write the
secondary outage probabilityPs,out as follows:

Ps,out = Pr (min (Rsr, Rrd) < Rs) , (11)

whereRsr and Rrd are the rates on ST-SR and SR-SD links,
respectively, and can be given as

Rsr =
1− α

2
BL log2 (1 + γSR) ,

Rrd =
1− α

2
BL log2 (1 + γSD) . (12)

2Usually, the energy consumption by the circuitry of SR in theinformation
processing is negligible compared to that in the transmission [11], [19]. Thus, we
assume that SR uses all the harvested energy for the transmission.

Here,γSR andγSD are SIRs at SR and SD, respectively, and are
given as

γSR =
PSm|hsr|

2

L∑

i=1

PPT|hpir|
2

, (13)

γSD =
PRm|hrd|

2

L∑

i=1

PPT|hpid|
2

. (14)

Then, we can rewrite the secondary outage probability from (11)
as follows:

Ps,out(ξs) = Pr (min (γSR, γSD) < ξs) , (15)

wheremin (γSR, γSD) is the instantaneous end-to-end SIR be-

tween ST and SD andξs = 2
2Rs

(1−α)BL −1. Using the independence
betweenγSR andγSD, we can write (15) as

Ps,out(ξs) = 1−
[
(1−Pr(γSR < ξs)

︸ ︷︷ ︸

FSR(ξs)

)(1−Pr(γSD < ξs)
︸ ︷︷ ︸

FSD(ξs)

)
]
, (16)

where FSR(ξs) and FSD(ξs) are the cumulative distribution
functions (CDFs) of RVsγSR andγSD, respectively.
Proposition 2. The CDF FSR(ξs) is

FSR(ξs) = 1−

(

1 +
PPTλpr

PSmλsr
ξs

)−L

. (17)

Proof: The proof is given in Appendix B.

Proposition 3. The CDF FSD(ξs) is

FSD(ξs) = I(1 − PH1) +

[

1−

(

1 +
D

PRλrd
ξs

)−L
]

PH1 , (18)

where
I =

2tL

BC(AD)L
[
I1 − I2

]
, (19)

with A = PPTλpr, B = 2αδλrd

1−α , C = PSmλsr, D = PPTλpd, and

t =
(

1
A − 1

C

)−1
. The term I1 in (19) is given as

I1 =
BCDL

2

[

1− Γ(L + 1) exp

(
ξsD

2BC

)

W−L, 12

(
ξsD

BC

)]

,

where Γ(·) is the Gamma function [28, 8.31] and W·,·(·) is the
Whittaker function [28, 9.22]. The term I2 in (19) is given as

I2 =
1

2

L−1
∑

j=0

1

Γ(j + 1)

(

1

tBF

)j

ξ
j+2
2

s

[

Γ(j + 1)DL
(

F
√

ξs

)

−j−2

−
Γ(L+ j + 1)

ξsF2
exp

(

ξsDF
2

2

)

D
2L+j

2 W
−

2L+j
2

,
j+1
2

(

ξsDF
2
)

]

,

where F =
√

1
B

(
1
C + 1

t

)
. The term PH1 in (18) is given as

PH1 = 1−
1

(A)LΓ(L)

[

Υ

(

L,
(1− α)PR

2αδA

)

(A)L

− exp

(

−
(1− α)PR

2αδC

)

tLΥ

(

L,
(1− α)PR

2αδt

)]

,

where Υ(·, ·) is the lower incomplete Gamma function [28, 8.35].
Proof: The proof is given in Appendix C.

Finally, simplifying (16), we can express the secondary outage
probability as

Ps,out(ξs) = FSR(ξs) + FSD(ξs)− FSR(ξs)FSD(ξs). (20)
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Fig. 3. With interference EH versus without interference EHfor different number
of primary transceivers (L), Θp = 10−2, Pt = 20dB.

VI. RESULTS AND DISCUSSIONS

A. System Parameters and Simulation Setup

We assume the following system parameters: The desired
primary rate,Rp = 0.4 bits/s/Hz, the desired secondary rate,
Rs = 0.2 bits/s/Hz, the energy conversion efficiency factor,
δ = 0.5, the primary transmit power,PPT = 20 dB. We consider
a 2-D simulation setup, where (xi, yi) is the coordinate ofith
user. The mean channel gain betweenith andjth users isd−ρ

ij ,
wheredij is the distance between usersi and j, and ρ is the
path-loss coefficient which is assumed to be4. The ST, SR, and
SD are placed at (0, 0), (0.5, 0), and (1, 0), respectively. The PTs
are collocated at (0.5, 1), while PDs are collocated at (1, 1).

B. Effect of the Interference-Assisted Energy Harvesting

Fig. 3 shows SU’s outage probabilityPs,out against the energy
harvesting ratioα. We observe that the proposed method of SR
harvesting energy from the primary interference in addition to
that from the received information signal, achieves lowerPs,out

than the conventional method where SR treats the interference
as an unwanted signal in EH phase. This improvement comes
from the extraction of an additional energy from the interference,
which helps increase the relay’s transmit power on SR-SD link,
enhancing SIR at SD. For a given number of primary transceivers
L, as α increases from 0 to 1,Ps,out reduces first, and then
increases beyond the optimal value ofα that minimizesPs,out.
This tradeoff can be attributed to two conflicting effects that are
dependent onα. The increase inα allows SR to harvest more
energy from the information signal and the primary interference,
improving SIR of SR-SD link, which in turn, reducesPs,out.
On the contrary, the time for data transmission reduces with
increasingα, which reduces SU’s throughput. This pushes SU
into the outage more often, increasing its outage probability.
Also, we can see that the extra energy gained from the primary
interference reduces the optimal value ofα as expected.

Similarly, the increase in the number of primary transceivers
L furnishes SR with the more harvested energy through the
interference, which further reduces the optimalα. But, as shown
in Fig. 3, the deteriorating effect of the interference−decrease
in SIR at both SR and SD−is more dominant, which increases
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Fig. 4. Optimalα versus the primary outage constraint for different number of
primary transceivers (L), Pt = 20 dB.

Ps,out. An another negative consequence of the increase inL is
the stricter primary outage constraint. Since SU should satisfy
the outage constraint of each PU, the increase in the number of
PUs makes the constraint more difficult to satisfy, reducingthe
maximum allowed transmit powers for both ST and SD.

C. Effect of the Primary Outage Constraint

Figs. 4 and 5 show the effect of the primary outage constraint
(Θp) on the optimalα and its corresponding minimumPs,out,
respectively, for differentL and peak power constraint ofPt.
From (17), (18), and (20), we can see that, deriving the analytical
expression for the optimalα is difficult due to the involvement
of Whittaker function and incomplete Gamma function in an
intricate manner; however, the optimalα can be easily obtained
numerically. We note from Fig. 4 that, relaxing the primary outage
constraintΘp increases the optimalα. This is because, relaxing
Θp allows ST and SR to transmit with higher powers. Thus,
α increases to cater relay’s higher transmit power. Also, higher
transmit powers of ST and SR increases SIR on both ST-SR
and SR-SD links, which provides an extra margin to increaseα
improving SU’s outage performance.

The peak power constraint becomes active due to the increased
maximum allowed powers for ST (PST, (4)) and SR (PSR, (5))
with the relaxation ofΘp beyond a threshold. This is seen in
Fig. 4, where ST reaches its peak power constraint first3 which
forces ST to transmit with peak powerPt even though the further
relaxation ofΘp allows it to transmit with higher power. After
this point, to serve the increasing SR’s transmit power for afixed
ST’s powerPt, the optimalα increases at a faster rate than that
without the peak power constraint till the peak power constraint
of SR is reached. Once SR’s peak power constraint is reached,SR
is also forced to transmit with the fixed powerPt for any further
increase inΘp, and the optimalα remains the same thereafter.

As aforementioned, the increase inL reduces the maximum
allowed power for both ST and SR, which delays the arrival of the
peak power constraint as shown in Fig. 4. This has an interesting

3In simulation setup, ST is located farther from the primary destinations than
SR. This allows ST to transmit with higher power than that of SR for the same
Θp, causing ST to reach the peak power constraint before SR. Forthe purpose
of exposition, the effect of distances among nodes is not addressed in this paper.
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Fig. 5. MinimumPs,out versus the primary outage constraint with peak power
constraint for different number of primary transceivers (L), Pt = 20 dB.

consequence on the minimumPs,out as shown in Fig. 5. At the
stringentΘp, for lower L (L = 2), the minimumPs,out is lower
than that for higherL (L = 4). However, there exists a crossover
point, after which the trend reverses; because, forL = 2, the
peak power constraint is reached for both ST and SR earlier,
forcing them to transmit with fixed powerPt even with the further
relaxation ofΘp. Meanwhile, forL = 4, more energy is harvested
from the interference than forL = 2, and ST and SR may keep
increasing their transmit powers even atΘp for which the peak
power constraint forL = 2 is reached, allowing the former to
achieve a better minimumPs,out at higherΘp. Note that we do
not observe such behavior in Fig. 3, as forΘp = 10−2 as assumed
in it, the peak power constraint is not reached forL = 2, 3,
and 4. Combining both the primary outage constraint and the
peak power constraint, Fig. 5 has plotted the maximum allowed
transmit powers for ST and SR normalized by their peak power
constraint powerPt.

VII. C ONCLUSIONS

In this paper, we have considered the spectrum sharing of the
secondary system with multiple primary transceivers, where the
secondary users communicate via an energy harvesting decode-
and-forward relay under the primary outage constraint. The
secondary relay harvests energy from the received information
signal as well as from the primary interference, which is used to
forward the data to the secondary destination. We have adopted
the time switching protocol which allows the relay to switch
between the energy harvesting and the information processing.

For the proposed scenario, we have derived a closed-form
expression for the secondary outage probability. We have shown
that, harvesting energy from the primary interference achieves
a better secondary outage performance and reduces the optimal
value of the energy harvesting ratioα. Though the increase in
the number of primary transceivers reduces the optimal value of
α further, it increases the minimum secondary outage probability
when the peak power constraint is inactive. Interestingly,the trend
reverses for the minimum secondary outage probability, once the
peak power constraint becomes active with the relaxation ofthe
primary outage constraint.

APPENDIX A
PROOF OF(4)

Let K bePr
(

PPT|hppi
|2

PST|hspi
|2 ≤ ζp

)

. Then, we can write

K =

∫ ∞

0

Pr

(
PPT|hppi

|2

PSTy
≤ ζp

)

f|hspi
|2(y)dy, (21)

wheref|hspi
|2(y) is the probability density function of|hspi

|2,

and is given byf|hspi
|2(y) =

1
λsp

exp
(

− y
λsp

)

. Solving (21) and
then substituting the value ofK in (3), we obtain

Pp,out,ST = 1−

(
PPTλpp

PSTλspζp + PPTλpp

)L

. (22)

Solving (22) forPST, we obtain the required expression in (4).

APPENDIX B
PROOF OF(17)

Let us writeγSR from (13) as

γSR =
X

Y
, (23)

whereX = PSm|hsr|
2 is the exponentially distributed RV with

meanλx = PSmλsr with the probability density function (PDF)

given by fX(x) = 1
λx

exp
(

− x
λx

)

and Y =

L∑

i=1

PPT|hpir|
2

is the Gamma distributed RV with a shape parameterL and
a scale parameterλy, and its PDF is given byfY (y) =

1
λL
y Γ(L)y

L−1 exp
(

− y
λy

)

, where λy = PPTλpr. Thus, we can
write CDF of γSR as

FSR(ξs) = Pr

(

X

Y
< ξs

)

=
1

λxλL
yΓ(L)

∫

∞

y=0

∫ ξsy

x=0

exp

(

−
x

λx

)

y
L−1exp

(

−
y

λy

)

dxdy, (24)

where we have used the independence between|hsr|
2 and|hpir|

2.
Solving (24), we obtain the required expression in (17).

APPENDIX C
PROOF OF(18)

We write γSD from (9), (10), and (14) as

γSD =
min (PSR,H, PR) |hrd|

2

∑L
i=1 PPT|hpid|

2
, (25)

where PSR,H is given by (9). Let us denoteG1 =
∑L

i=1PPT|hpir|
2, G2 = PSm|hsr|

2, Z1 =
∑L

i=1 PPT|hpid|
2, and

Z2 = 2δα|hrd|
2/(1−α). Then,G1 andZ1 are Gamma distributed

RVs with the same shape parameterL and a scale parameters
A = PPTλpr andD = PPTλpd, respectively; whileG2 andZ2

are exponentially distributed RVs with meansC = PSmλsr and
B = 2δαλrd/(1− α), respectively. Then, we can write the CDF
of γSD in (25) as

FSD(ξs) = Pr

(
(1 − α)PRZ2

2δαZ1
≤ ξs

)

︸ ︷︷ ︸

J

Pr (PSR,H ≥ PR)
︸ ︷︷ ︸

PH1

+ Pr

(
Z2 (G1 +G2)

Z1
≤ ξs

)

︸ ︷︷ ︸

I

Pr (PSR,H < PR)
︸ ︷︷ ︸

1−PH1

. (26)



Following the steps to derive (17), we can writeJ as

J = 1−

(

1 +
D

PRλrd
ξs

)−L

. (27)

We can write PH1 as PH1 = Pr (G1 +G2 ≥ P ∗
R), where

P ∗
R = (1−α)PR

2αδ . Using the independence between|hpir|
2 and

|hsr|
2, PH1 can be written as

PH1 =1−
1

CALΓ(L)

∫ P∗

R

0

∫ P∗

R−g1

g2=0

exp
(

−
g2
C

)

gL−1
1 exp

(

−
g1
A

)

dg2dg1.

(28)
Solving (28), we get

PH1 = 1−
1

(A)LΓ(L)

[

Υ

(

L,
(1− α)PR

2αδA

)

(A)L

− exp

(

−
(1− α)PR

2αδC

)

tLΥ

(

L,
(1− α)PR

2αδt

)]

. (29)

DenoteZ = G1 +G2. Then, we can write PDF ofZ as follows:

fZ(z) =
1

CALΓ(L)

∫ z

0

exp

(

−
z − g1

C

)

gL−1
1 exp

(

−
g1
A

)

dg1

=
tL

Γ(L)ALC
exp

(

−
z

C

)

Υ
(

L,
z

t

)

, (30)

wheret =
(
1
A − 1

C

)−1
. We denoteQ = Z2(G1 + G2) = Z2Z.

Then, we can write PDF ofQ as follows:

fQ(q)=
tLA−L

Γ(L)BC

∫ ∞

0

exp
(

−
z2
B

)

exp

(

−
q

z2C

)

Υ

(

L,
q

z2t

)
1

z2
dz2.

(31)
SinceL takes positive integer values, we use the series expansion
of lower incomplete Gamma functionΥ(a, b) for positive integer

values ofa as(a−1)!
(

1− exp(−b)
∑a−1

k=0
bk

k!

)

. Also, using [28,
3.471.12], we can express (31) as

fQ(q)=
2tL

BCAL



K0

(

2

√
q

BC

)

−

L−1∑

j=0

(Bθ)
− j

2 (q)
j

2

tjΓ(j + 1)
Kj

(

2

√

qθ

B

)

,

(32)

whereKν(·) is the modified Bessel function of second kind [28,
8.43] andθ = 1

C + 1
t . Then, we can writeI in (26) as

I =
2tL

BC(AD)LΓ(L)

∫ ∞

z1=0

∫ z1ξs

q=0

[

K0

(

2

√
q

BC

)

−

L−1∑

j=0

(Bθ)
− j

2 (q)
j

2

tjΓ(j + 1)
Kj

(

2

√

qθ

B

)

zL−1
1 exp

(

−
z1
D

)

dq dz1.

(33)
Using [28, 6.561.8], we obtain the requiredI in (18) in closed-
form as (19). SubstitutingI along withJ from (27) andPH1

from (28) in (26), we get the required closed-form expression of
CDF of γSD as in (18).
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