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Abstract—Effective inter-vehicle communication is fundamen-
tal to a decentralized traffic information system based on
Vehicular Ad Hoc Networks (VANETs). To reflect the uncer-
tainty of the information propagation, most of the existing
work was conducted by assuming the inter-vehicle distance
follows some specific probability models, e.g., the lognormal or
exponential distribution, while reducing the analysis complexity.
Aimed at providing more generic results, a recursive modeling
framework is proposed for VANETs in this paper when the
vehicle spacing can be captured by a general i.i.d. distribution.
With the framework, the analytical expressions for a seriesof
commonly discussed metrics are derived respectively, including
the mean, variance, probability distribution of the propagation
distance, and expectation for the number of vehicles included
in a propagation process, when the transmission failures are
mainly caused by MAC contentions. Moreover, a discussion
is also made for demonstrating the efficiency of the recursive
analysis method when the impact of channel fading is also
considered. All the analytical results are verified by extensive
simulations. We believe that this work is able to potentially reveal
a more insightful understanding of information propagation in
VANETs by allowing to evaluate the effect of any vehicle headway
distributions.

Index Terms—Inter-vehicle communications, general vehicle
headway distributions, stochastic characteristics

I. I NTRODUCTION

Due to the potential to disseminate the safety warnings and
traffic information for significantly decreasing the numberof
road accidents, the Vehicular Ad Hoc Networks (VANETs)
are widely recognized as one of the few core components for
the next-generation Intelligent Transportation Systems (ITS)
[1]. To further push forward VANETs’ development, the US
Federal Communications Commission (FCC) has allocated
75 MHz of Dedicated Short-Range Communications (DSRC)
spectrum at 5.9 GHz to be used exclusively for Vehicle-to-
Vehicle (V2V) and Vehicle-to-Road Infrastructure (V2R) com-
munications. Besides, IEEE has also completed the standard-
ization process for IEEE 1609.1, 1609.2, 1609.3, and 1609.4
for the Wireless Access of Vehicle Environments (WAVE),
which utilizes IEEE 802.11p to handle the media access
control issues uniquely happened in the VANET scenario.
Moreover, a considerable amount of VANET-oriented projects
have been initiated by governments, automotive industry, high-
way management authorities, and safety organizations, e.g.,
the Vehicle Safety Consortium (VSC) in USA, the Car-to-
Car Communications Consortium (C2C-CC) sponsored by the
European Union, and the Advanced Safety Vehicle Program
(ASV) in Japan.

Among all the research topics in VANETs, the performance
of information propagation in the dynamic network scenario,
which is fundamental to ITS, is always treated with a high
priority. Generally, the difficulties for the information prop-
agation related studies come from the time varying vehicle
mobility, the burst-style data traffic loads, and the extremely
complicated radio environments. Regarding all these issues,
[2] conducted numerous simulation studies for the information
propagation distance. After that, the information propagation
issue was further studied in [3] which developed numerical
method to recursively calculate the probability of successful
propagation. With the similar idea of recursive analysis, [4]
studied the feature of cluster size in VANETs, and proposed a
time/location-critical framework specifically for the emergency
message dissemination. In one of the most recent work [5],
the information propagation issue was investigated when the
vehicles in the network could be categorized into a number of
speed distribution-determined traffic streams. Although such
work advanced the understanding for the information propa-
gation process in VANETs, most of it were confined to the
condition that the vehicle presence on a road segment follows
some specific random processes, e.g., the commonly used
homogeneous Poisson point process. These carefully selected
probability models can significantly reduce the analysis com-
plexity. However, it is often argued that they are in violation
of the realistic vehicle spatial distribution when some factors
such as the driver behavior, traffic condition, and road type
are considered [6].

Inspired by [7], this paper presents a recursive analytical
model for the information propagation process by looking into
the physical meaning of the expected propagation distance and
incorporating the possible factors for a transmission failure,
when the vehicle distance headway can be described by a
general probability distribution. Considering its generality,
this study would offer more insights and enable a more
robust design of VANETs-based ITS by allowing for analytical
verification of various different headway distributions onsuc-
cessful information propagation. The remainder of this paper
is organized as follows. The system model for our recursive
analysis is given in Section II. After that, the information
propagation distance’s stochastic characteristics are derived
in Section III. The verifications of our analytical results are
shown in Section IV. Moreover, a discussion is also made in
Section V to briefly describe how the recursive model could be
used when the impact of channel fading is considered. Finally,
Section VI concludes this paper.
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II. SYSTEM MODEL

In our analysis, the random distanceH between direct
neighboring vehicles, which is termed as theheadwaydis-
tance, follows a general distribution whose density function
is denoted asfH(x) with expectationµH and varianceσ2

H .
Without considering the impact of specific routing or trans-
mission schemes on information propagation in VANETs, this
paper focuses on the case that each vehicle only attempts to
relay the received information via its direct neighbor. If the
trial failes after a certain retry limit or without retry dueto
broadcast, the entire transmission process is terminated,and
the total propagation distanceD equals the distance from the
last receiving vehicle to the origin of the information. Due
to the space limit, in this work, we mainly consider the case
that the transmission failures are only caused by the MAC
contentions. However, based on the proposed recursive analyt-
ical framework, more general cases can also be investigated.
To demonstrate the framework’s effectiveness, a discussion
section is arranged at the end of this paper, which includes
some brief results for the situation when the channel fading
becomes the major cause for the interruption of an information
propagation process. A comprehensive version of the more
general analyses will be finished as a follow-on work for this
paper in the near future.

When the MAC contentions are the only concerns, it is
common to assume that each vehicle has the identical trans-
mission rangeL. With this constant transmission range model,
a communication can be initiated if the distance between two
vehicles is less thanL. However, due to the design of the
backoff algorithm in MAC schemes, it is possible that more
than one vehicle may attempt to utilize the channel at the same
time, which will lead to a transmission collision if within an
interference range. This is common when the network density
or traffic load is high at some specific time or locations. There
is a lot of existing work focusing on the reliability of VANETs
MAC, e.g., the packet reception rate in the IEEE 802.11-
based VANETs was derived in [8], and the analytical model
was further improved in [9] for more accurately describing
the Frozen Period(s)in a channel contention process. For
this paper, the probability for a successful reception when
the MAC contentions are the only concerns is denoted as
ps, and treated as a known parameter. Moreover, once the
analytical expressions for the characteristics of the information
propagation are obtained,ps could be replaced by the already
derived closed-form or empirical expressions, which allowus
to reveal a more insightful understanding about the relation-
ship between the system parameters and the comprehensive
network performance metrics.

III. T HEORETICAL ANALYSIS

According to the system model, it is clear that the informa-
tion propagation is a typical renewal process. In other words, if
the expectation of the propagation distanceD can be obtained
as µD, then each vehicle should have the same potential to
further propagatethe information forward with expectation
µD. Interestingly, this interpretation of the propagation dis-
tance’s expectation allows us to look into the characteristics

of D from a recursive aspect. With the headway distribution,
the probability for the first receiving vehicle to be located
at distanceτ to a tagged transmitting vehicle isfH(τ) dτ .
For any receiving vehicle, it has probabilityps to successfully
finish the information reception, and has the potential to
further relay the information forward for an expected distance
µD. Hence, we could have the following recursion:

µD =

∫ L

0

(τ + µD) fH(τ) ps dτ . (1)

Based on (1), it is easy to obtain the following theorem.

Theorem 1. When the successful transmission probability
determined by the MAC contention can be presented byps,
the expected information propagation distance is given by

µD =
ps
∫ L

0
τfH(τ) dτ

1− psFH(L)
, (2)

whereFH(·) is the cumulative distribution function (CDF) of
the headway distanceH .

The proof of Theorem 1 is quite straight-forward, which
is ignored here. An obvious but also interesting observation
of Theorem 1 is that, when the successful transmission prob-
ability could be treated as independent of the transmission
distance, the expected information propagation distance is
irrelevant to the probability distribution of vehicle headway
beyondthe transmission rangeL. As will be seen later, the
variance of the propagation distance under this situation is
not affected by the headway distribution beyondL either.
This feature would be useful when we are trying to acquire
a headway distribution from a tremendous amount of field
test data, and further using it for calculating the stochastic
characteristic of the information propagation distance.

It is clear that there still exists an integral in the numerator
of (2), which might not be easy to be calculated whenfH(·)
is involved with some complicated functions. To reduce the
reliance on numerical calculations, some attempts can be made
to develop a bound estimation of the expected propagation
distance.

Corollary 1. The bound of the expected information propa-
gation distance could be given as

psµH

1− psFH(L)
−

√

σ2

H + (L− µH)2 − (L − µH)

2(1− psFH(L))

≤ µD ≤
psµH − psL+ psLFH(L)

1− psFH(L)
. (3)

Proof: The left part of the inequality is based on the
results in [10]: for any random variableZ with PDF f(z),
meanµ, and finite varianceσ2, the following holds

∫ ∞

z

tf(t)dt ≤

√

σ2 + (z − µ)2 + (z − µ)

2
. (4)

Hence,
∫ L

0

τfH(τ)dτ =

∫ ∞

0

τfH(τ)dτ −

∫ ∞

L

τfH(τ)dτ (5)

≥ µH −

√

σ2

H + (L− µH)2 − (L− µH)

2
. (6)



Besides, from (5) it is also clear that
∫ L

0

τfH(τ)dτ ≤

∫ ∞

0

τfH(τ)dτ − L

∫ ∞

L

fH(τ)dτ

= µH − L(1− FH(L)) . (7)

By combining the results of (6) and (7), the bounds ofµD

could be obtained.
The advantage of having such bounds relies on the fact

that, with an arbitrary headway distribution, the expected
propagation distance could be easily estimated by the mean
and variance of the vehicle headway, both of which can be
easily obtained with field data. This will be very helpful, if
some rough and quick estimations are needed.

Meanwhile, the varianceσ2

D of the successful propagation
distance is measured as follows:

Theorem 2. Given the successful transmission probabilityps,
the variance of information propagation distanceD can be
calculated by

σ2

D =
ps
∫ L

0
τ2fH(τ) dτ

1− psFH(L)
+ µ2

D ps
1− FH(L)

1− psFH(L)
. (8)

Proof: According to the variance decomposition formula
(a.k.a. the Eve’s Rule), the recursion forσD can be given as
below conditional on the distance between the first transmitter
and receiver isτ

σ2

D = V(D) = V[E(D|τ)] +E[V(D|τ)] . (9)

According to the mathematical definition of a random vari-
able’s varianceV(X) = E

[

(X − µX)2
]

, the first part in (9)
can be expanded based on its actual physical meaning as

V[E(D|τ)] =

∫ ∞

0

(E [E(D|τ)−E(D)])2fH(τ) ps dτ

=

∫ L

0

(τ + µD − µD)2fH(τ) ps dτ

+

∫ ∞

L

(0 − µD)2fH(τ) ps dτ

= ps

(

∫ L

0

τ2fH(τ) dτ + µD − µ2

DFH(L)

)

. (10)

Similarly,

E[V(D|τ)] =

∫ L

0

V(D)fH(τ)ps dτ = psV(D)FH (L) .

(11)
Therefore, the recursion in (9) can be simplified to

σ2

D = ps

(

∫ L

0

τ2fH(τ) dτ + µD − µ2

DFH(L) + σ2

DFH(L)

)

.

(12)
Finally, σ2

D can be directly presented as shown in (8), hence
Theorem 2 is proved.

With the similar method we used for derivingµD ’s bounds,
the following corollary could be obtained.

Corollary 2. Givenps and the vehicle headway distribution,
the variance of the information propagation distance can be

estimated as

µ2

Dps
1− FH(L)

1− psFH(L)
≤ σ2

D ≤
psLµH − psL

2 (1− FH(L))

1− psFH(L)

+µ2

Dps
1− FH(L)

1− psFH(L)
. (13)

Proof: First, the inequality shown below is easy to be
obtained.

∫ L

0

τ2fH(τ) dτ ≤ L

∫ L

0

τfH(τ) dτ

= LµH − L

∫ ∞

L

τfH(τ) dτ

≤ LµH − L2(1 − FH(L)) . (14)

Therefore, by replacing the integral
∫ L

0
τ2fH(τ) dτ in (8), the

right side of (13) is proved. The left side of (13) is obvious
according to (8). Hence, the Corollary 2 is proved.

Besides the expectation and standard deviation of the in-
formation propagation distance, the numberN of vehicles
included in an information propagation process, which is often
termed as theCluster Sizein the VANETs literature, can also
be derived by the recursive analysis. The recursion for the
expectation ofN could be written as follows

µN =

∫ L

0

(1 + µN ) fH(τ) ps dτ , (15)

and another new theorem can be obtained.

Theorem 3. The expected number of vehicles included in a
single information propagation process can be calculated by
the successful reception probability and the headway distribu-
tion as

µN =
psFH(L)

1− psFH(L)
. (16)

Moreover, the recursive method can also be used to derive
the probability distribution ofD, as

Theorem 4. Denote functionFD(s) as the CDF of the
information propagation distanceD, it can be recursively
calculated as

FD(s) =



























1− psFH(L) , s = 0

1− psFH(L)− (1 + ps)FH(s)

+

∫ s

0

fH(τ)FD(s− τ) dτ
, 0 < s ≤ L

1− FH(L) +
∫ L

0
fH(τ)FD(s− τ) dτ , s > L

Proof: The three cases listed in the piecewise-function
need to be discussed separately. Whens = 0, it is easy to see
that

FD(0) = Pr{D < 0} = 1− Pr{the 1st trans. is successful}

= 1− FH(L)ps . (17)

For the case0 < s ≤ L, FD(s) = 1−Pr{D > s}. As shown in
Fig. 1, if the distance between the origin and the first receiver
is within the range[s, L], the information propagation distance
will always be longer thans; however, if the first receiver is
located at locationτ ∈ [0, s], then the information has to be



If τ ∈ [0, s]

If τ ∈ (s, L]
0 Ls

Tx-Rx distance τ

the expected info. propagation distance

0 Ls

Tx-Rx distance τ

the expected info. propagation distance

has to further propagate at least s− τ

Fig. 1. Calculation of information propagation distance’sdistribution

TABLE I
BASIC MAC PARAMETERS

Bit Rate (Rb) 11 Mbps Propa. Delay (δ) 2 µs

Slot Time (σ) 20 µs DIFS 50 µs

MAC Header 224 bits W0 32

PHY Header 192 bits E[LP] 8000 bits

further propagated at least distances−τ to make sureD > s.
Therefore,

FD(s) = 1− Pr{D > s}

= 1−

(

ps (FH(L)− FH(s)) +

∫ s

0

fH(τ)FD(s− τ)dτ

)

= 1− psFH(L)− (1 + ps)FH(s)

+

∫ s

0

fH(τ)FD(s− τ) dτ , (18)

where FD(·) is the complementary cumulative distribution
function (CCDF) of the propagation distanceD. Finally, when
s > L, the first vehicle in the information propagation process
should be located within the origin’s transmission rangeL,
and should relay the information with distance at leasts−L,
whose probability isFD(s− L), hence,

FD(s) = 1−

∫ L

0

fH(τ)FD(s− L) dτ . (19)

By combining all the above three parts of results, Theorem 4
is proved.

IV. EVALUATION

To illustrate the effect generated by the MAC contentions,
the analytical results we obtained in [9] are directly applied
here to calculate the average transmission successful proba-
bility ps. In the simulation, the constant transmission range
L for each vehicle is set to 100 m, and all the vehicles are
randomly distributed along a road segment according to a
Poisson process with densityλ, which means that the vehicle
headway should follow an exponential distribution with mean
1/λ and variance1/λ2. To demonstrate the impact of MAC
parameters on information propagation, the lengthQ of the
transmission queue in each vehicle is changed from 1 to 3,
and the normalized traffic loads, which is defined asβLP/Rb

1,
varies from 0 to 0.5. All the other basic parameters for the
IEEE 802.11-based MAC scheme are listed in Table I.

1According to the definitions in [9],β is the packet arrival rate at each
vehicle,LP is the average packet length, andRb is the bit rate.
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Fig. 2. Expected Information Propagation Distance vs. Normalized Traffic
Load, whileλ = 1/5 (vehicle per meter)
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Fig. 3. Expected Information Propagation Distance vs. Normalized Traffic
Load, with changedλ

In Fig. 2, both the analytical and simulation results for the
expected information propagation distance are demonstrated
with varying normalized traffic loads and queuing lengths at
each vehicle, while the expectation of the headway distribution
is fixed at 5 meters. As shown in the figure, the analytical
results match the simulation results. With the analyses in [9],
the successful reception rateps is expected to decrease with the
increased traffic load, which is mainly due to the significantly
increased channel contentions. Moreover, it is also known
that a longer transmission queue also reduces the average
successful reception probability. This can be explained asthat
a longer queue can buffer more packets for later transmission,
therefore, the probability that a transmission queue is empty is
reduced, which indicates that network nodes are more likelyto
stay in the backoff stage rather than the idle states. Represented
in the figure, the expected information propagation distance is
decreased with the increased traffic load and queuing length.
Besides, the upper and lower bounds estimated from Corollary
1 for different network scenarios are also illustrated in Fig. 2.
It is clear that the bounds are quite tight comparing with the
actually calculated results, which will be very useful whenthe
headway distribution is complicated and difficult to be handled
with numerical calculations.

In Fig. 3, the expected information propagation distance
are illustrated with different traffic load and varied vehicular
distribution densityλ. It is obvious that, whenλ is decreased
from 1/5 to 1/20 vehicles per meter, which results in an
increase of the expected inter-vehicle distance, the expectation
of the information propagation is significantly increased.This
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Fig. 4. Variance of the Information Propagation Distance vs. Normalized
Traffic Load, whileλ = 1/5 (vehicle per meter)

is easy to be explained as that, when the hop by hop communi-
cation can be carried out successfully with a high probability,
increasing the per hop transmission distance will directly
increase the total propagation distance. However, whenλ is
further decreased, the expectation of the propagation distance
is decreased. This is due to the fact that, with a longer
headway expectation, the probability for a transmission failure
is also increased, which might start to dominate the overall
performance of the information propagation process. The study
of the turning point ofλ’s impact on the expected propagation
distance is an interesting topic, and we will dig into it in the
near future. It is worth to mention that, to avoid too much
overlapping between different data sets, only the results for
Q = 1 and 3 are illustrated in the figure. The changing pattern
for Q = 2 is similar to the ones described above.

The analytical and simulation results for the varianceσ2

D

of the information propagation distance for different network
scenarios are presented in Fig. 4, with the upper and lower
bound estimations obtained by Corollary 2. It is clear that the
analytical results and simulation results match with each other,
which validates the correctness of the newly proposed recur-
sive analysis method. However, comparing with the tightness
betweenµD and its upper or lower bounds demonstrated in
Fig. 2, σD ’s bound estimations are relatively loose. This is
mainly due to the simple mathematical relaxing techniques
applied in (14), which should be replaced by more sophis-
ticated inequalities for better tightness. This will be another
follow-on work for this paper.

In Fig. 5 and Fig. 6, the expected cluster size and the
cumulative probability distribution are illustrated withdiffer-
ent network parameters, respectively. It is obvious that the
analytical results fit the simulation ones well. The changing
pattern of the expected cluster size is identical to the one of the
expected propagation distance, which is reasonable due to its
physical meanings. For the CDF of the propagation distance,
it is clear that when the successful transmission probability ps
is high, which was presented as a shorter queuing lengthQ
in the figure, the corresponding CDF goes slower to 1, which
meansµD will be increased. This is also coincident with the
results demonstrated in Fig. 2.
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V. D ISCUSSION

When the impact of channel fading is considered, the
transmission range for each vehicle will be changed from a
constant to a random variable. However, with the recursion
model described in this paper, similar analyses can also be
carried out, which will be breifly discussed in this section.
With a specific channel model, given the transmission dis-
tanceτ , the received signal power can always be described by
a conditional probability distributionfP |H(t|τ). For example,
if we assume that the channel fading follows the Rayleigh
model, the reception power’s conditional PDF can be presented
as

fP |τ (t|τ) =
1

PtK (d0/τ)
α exp

(

−
t

PtK (d0/τ)
α

)

, t > 0 .

(20)
wherePt is the transmission power,K is a constant deter-
mined by the hardware features of the transceivers,α is the
pathloss exponent, andd0 is the reference distance for the
far-zone field. To reduce the complexity, here the condition
for a successful data transmission is simply set to that the
received signal power should be at least higher than the
system-determined minimum power thresholdPth. However,
the case when a successful reception requires the Signal-to-
Interference-Ratio (SIR) to be higher than a threshold can
also be investigated in a similar way. With this model, the
successful reception probability needs to be revised to a



transmission distanceτ determined random variable as

ps(τ) =

∫ ∞

Pth

fP |H(t|τ) dt . (21)

Then the expectation and variance of the information prop-
agation distance could be obtained with the following two
theorems, respectively.

Theorem 5. When the impact of channel fading is considered,
the expected information propagation distanceµ′

D is

µ′
D =

µH −
∫∞

0

∫ Pth

0
τfP,H(t, τ)dt dτ

FP (Pth)
, (22)

wherefP,H(t, τ) is the joint probability distribution function
of the received signal power and the transmission distance,
andFP (·) is the marginal CDF of the received signal power.

Proof: The recursion of the expected information propa-
gation distance can be written as

µ′
D =

∫ ∞

0

(τ + µ′
D) fH(τ)

∫ ∞

Pth

fP |H(t|τ) dt dτ . (23)

With some simple manipulations, we have

µ′
D =

µH −
∫∞

0
τfH(τ)

∫ Pth

0
fP |H(t|τ) dt dτ

∫∞

0
fH(τ)

∫ Pth

0
fP |H(t|τ) dt dτ

. (24)

According to the property of the conditional probability den-
sity function, it is clear that
∫ ∞

0

τfH(τ)

∫ Pth

0

fP |H(t|τ)dtdτ =

∫ Pth

0

fP (t)dt = FP (Pth) ,

(25)
where

fP (t) =

∫ ∞

0

fP |H(t|τ)fH(τ) dτ (26)

is the PDF of the received signal power when the transmission
distance is not given, andFP (·) is the related CDF. By
combining all the above results, (22) in Theorem 5 is proved.

Theorem 6. When the impact of channel fading is considered,
the variance of the information propagation distance can be
calculated by

σ′2
D =

∫∞

0
τ2fH(τ)dτ −

∫∞

0

∫ Pth

0
τ2fP,H(t, τ) dt dτ

FP (Pth)
. (27)

Proof: Similarly, with the Eve’s Rule, and the interpreta-
tion for the physical meaning ofV[E[D|τ ]] andE[V[D|τ ]],
we could have

V[E[D|τ ]] =

∫ ∞

0

(µ′
D + τ − µ′

D)2fH(τ)

∫ ∞

Pth

fP |H(t|τ) dt dτ

=

∫ ∞

0

τ2fH(τ) dτ −

∫ ∞

0

∫ Pth

0

τ2fP,H(t, τ) dt dτ ,

and

E[V[D|τ ]] = σ′2
D

(
∫ ∞

0

fH(t) dτ −

∫ ∞

0

fH(t)fP |H(t|τ) dt dτ

)

.

(28)
By subsitituting the above two parts into (9), Theorem 6 is
proved.

VI. CONCLUSIONS

In this work, the stochastic characteristics of the information
propagation distance were studied with a general headway
distribution by a recursion model. Although this paper was
focused on the scenario when the MAC contentions are the
major causes for a transmission failure, a discussion was also
given to demonstrate the recursion model’s adaptability when
the impact of channel fading is considered. As mentioned
in the paper, a series of follow-on work for the recursion
model-based analysis will be conducted, including: 1) better
bound estimations for propagation distance’s variance; 2)more
detailed analysis when the SIR becomes the evaluation metric
for a successful reception. Moreover, we are also considering
to further develop the recursion model for describing the
unique store-carry-forward transmission pattern of VANETs,
which should be another interesting topic.
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