
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Unsupervised Detection of Web Trackers / Metwalley, Hassan; Traverso, Stefano; Mellia, Marco. - ELETTRONICO. -
(2015), pp. 1-6. (Intervento presentato al convegno IEEE Globecom 2015 tenutosi a San Diego, CA nel Dicembre 1025)
[10.1109/GLOCOM.2015.7417499].

Original

Unsupervised Detection of Web Trackers

Publisher:

Published
DOI:10.1109/GLOCOM.2015.7417499

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2641567 since: 2016-05-05T12:35:12Z

IEEE

Unsupervised Detection of Web Trackers

Hassan Metwalley, Stefano Traverso, Marco Mellia
Politecnico di Torino, Italy

Email: firstname.lastname@polito.it

Abstract—When browsing, users are consistently tracked by
parties whose business builds on the value of collected data.
The privacy implications are serious. Consumers and corporates
do worry about the information they unknowingly expose to
the outside world, and they claim for mechanisms to curb this
leakage. Existing countermeasures to web tracking either base
on hostname blacklists whose origin is impossible to know and
must be continuously updated. This paper presents a novel,
unsupervised methodology that leverages application-level traffic
logs to automatically detect services running some tracking
activity, thus enabling the generation of curated blacklists. The
methodology builds on an algorithm that pinpoints pieces of
information containing user identifiers exposed in URL queries
in HTTP(S) transactions.

We validate our algorithm over an artificial dataset obtained
by visiting the top 200 most popular websites in the Alexa rank.
Results are excellent. Our algorithm identifies 34 new third-
party trackers not present in available blacklists. By analyzing
the output of our algorithm, some privacy-related interactions
emerge. For instance, we observe scenarios clearly hinting to
Cookie Matching practice, for which information about users’
activity gets shared across several different third-parties.

I. INTRODUCTION

The last years witnessed the silent growth of web tracking
services: collecting information about users’ online activity is
one of the most profitable activity in the Internet. There are
hundreds of companies which base their whole business on it.
A countless number of web tracking technologies are in use
and tens of business models have been developed around web
tracking [6], [14]. This phenomenon is ubiquitous, with both
major and mostly unknown players taking part in it.

The web tracking practice raises many concerns about its
implications on user’s privacy. Indeed, its implementation re-
sults in leakage of information that users and companies would
like to keep private: from sexual or religious preferences,
to simple browsing histories. Many surveys have demon-
strated that consumers and corporates want control over web
tracking [9], [19]. Governments and policymakers have taken
steps to intervene and advocated new technical approaches to
enhance consumer choice about web tracking [7], [12]. Hence,
there is a large ongoing effort to build technical countermea-
sures against web tracking. For instance, big players such as
Mozilla have proposed their anti-tracking features [13]. Many
plugins have been introduced to block interactions among the
browser and tracking services. So far, the research community
has focused on disclosing and quantifying the vastness of the
problem [1], [3], [10], [15], [20], but only a few solutions have
been proposed to curb this phenomenon [17], [18].

Simple actions such as blocking cookies are easily by-
passed by web tracking services. For instance, a common
workaround is to embed user identifiers in URL queries in
HTTP requests. Alternatively, most of current web tracking

countermeasures rely on blacklisting of tracking services and
contents.However, how these blacklists are generated is un-
known, and they are difficult to maintain over time. Finally,
other solutions look too drastic to be embraced by the majority
of users [17].

Similar in spirit to [4], this paper proposes a novel method-
ology to automatically generate curated blacklists that may be
employed by any browser to block the web tracking services
users encounter. Our methodology completely differs from [4]
and complements it: while authors of [4] base their analysis
on website DOM structures, our approach builds on the
availability of application-level traffic logs, i.e., traffic traces
reporting the information contained in the headers of HTTP
transactions. This kind of logs may be automatically generated
by browsing bots or crawlers, or shared by users in a crowd-
sourced system. Based on the intuition that tracking services
rely on per-user unique identifiers which browsers expose in
the URL queries, we develop an unsupervised algorithm that
analyzes URLs in HTTP request headers and seeks for pieces
of information exhibiting a one-to-one mapping with the user
profile generating the request. These pieces of information are
identifiers contained in cookies, fingerprints, etc.

We validate our algorithm over a dataset of 868,000 HTTP
logs we obtain by artificially browsing the top 200 most
popular websites in the Alexa rank. Results are promising:
our algorithm is effective at identifying a considerable amount
of tracking services and the identifiers they employ to track
users. For instance, we discover 34 never seen before tracking
services. Interestingly, by analyzing how these identifiers are
handled, some intriguing scenarios emerge. For instance, we
observe cases of interactions among different tracking services
suggesting the adoption of the Cookie Matching [2] practice;
where the same user identifier is shared among different
tracking services.

The proposed methodology is effective, yet simple, and
can be employed by researchers, developers and practitioners
to pinpoint tracking services in the web. Moreover, as it seeks
for the user identifiers employed by web trackers, we believe
our methodology is suitable for other contexts.

The remainder of the paper is structured as follows: Sec. II
discusses the related work. Sec. III presents the proposed
algorithm. Sec. IV describes the dataset and its collection
procedure. Sec. V presents, first, the experiments we run to
evaluate the parameter sensitivity of the algorithm, then, its
capability at pinpointing user identifiers and web trackers to-
gether with some analysis examples. Finally, Sec. VI concludes
the paper.

II. RELATED WORK

Our study relates to measurement works about web track-
ing and online advertisement. Some of the notable works in
this area are mostly oriented to understand which identifiers
and techniques online tracking services exploit to record users’
browsing activities. Authors of [20] examine the common
identifiers trackers can leverage to identify users. Authors
of [6] describe the techniques third-party trackers and popular
online social networks employ to monitor the activity of
their users. Other works provide an overview about how the
web tracking phenomenon has worryingly grown in the last
years [10], [11], [15]. Other works offer a globally distributed
view on this phenomenon [5], [8].

As web tracking has raised many concerns about how it
may affect users’ privacy, many tracker-blocking applications,
mostly being browser plugins, are available. They basically
filter HTTP requests generated to tracking services. Ghostery1

and DoNotTrackMe2 are well know examples. These applica-
tions rely on blacklists built offline to prevent the browser to
generate HTTP requests to web trackers. However, how such
blacklists are produced is impossible to know.

Differently, the research literature about methodologies
to counterfight the web-tracking practice is not rich. The
most prominent works which specifically targets the problem
are [18] and [4]. In the former, the methodology builds
on a browser plugin called ShareMeNot that analyzes how
trackers manage cookies through the browser. In a nutshell,
this approach labels as trackers the owners of the pieces of
code handling cookies and Adobe Flash plugins containing
user identifiers. Differently, the authors of [4] explore the use
of machine learning to analyze the structure of webpage code
and identify web trackers.

Our approach differs from these methodologies and, hence,
can complement them. It simply builds on the observation
that tracking services often bypass cookie-blocking policies by
embedding user identifiers in URL queries contained in HTTP
requests. Hence, its analysis is passive and only requires the
availability of HTTP transaction logs. Second, it is unsuper-
vised, as it does not require to know in advance the set of
fields or keys containing user identifiers employed by tracking
services. We are the first, to the best of our knowledge to
explore this direction.

III. AUTOMATIC DETECTOR OF USER IDENTIFIERS

In this section we present our automatic unsupervised
methodology to pinpoint the user-tracking information exposed
in HTTP request headers. We design an algorithm based
on the observation that web services often exchange user
identifiers as parameters in URL queries. We then look for
possible parameters in HTTP GET requests that look like user
identifiers.

Given a collection of logs HS aggregating the HTTP
transactions generated by a known set of users and a
targeted website domain W , our algorithm, illustrated in
Alg. 1, extracts all HTTP key-value pairs contained in
each HTTP request directed or referring to W , i.e., hav-
ing W either in the Host (i.e., being first-party) or in the

1https://www.ghostery.com
2https://www.abine.com/donottrackme.html

Referer field (i.e., being third-party). Consider for example
http://www.acme.com/query?key1=X&key2=Y, where W is
equal to acme.com, the algorithm extracts key1 and key2, with
values X and Y, respectively (lines 5-7 in Alg. 1). Then, for
each key, the algorithm investigates biuniquenesses between
the identifiers of the users generating the requests (e.g., the
browser profile) and the values contained in the keys (lines 16-
27). Intuitively, the algorithm looks for any key whose values
are uniquely associated to the users, i.e., i) different for each
different user, but ii) the same for the same user. Finally, to
guarantee statistical evidence, the algorithm outputs the set of
service-key pairs for which we observe at least minUsers
different user-value biuniquenesses (lines 28-33).

Fig. 1 reports an example of keys our algorithm processes
for the target W=www.acme.com. Considering key1, it takes
different values for different users, but these are not equal
across visits, making key1 a possible session identifier. key2
maintains the same value across different users and visits. The
key our algorithm elects as user-tracking is key3, as it is the
only one whose values are different for different users, but do
not change across different visits.

www.acme.com User1 User2 … Usern

Visit-1

key1 y1 y2 … yn

key2 z z … z

key3 v1 v2 … vn

Visit-2

key1 y1’ y2’ … yn’

key2 z z … z

key3 v1 v2 … vn

Visit-3

key1 y1’’ y2’’ … yn’’

key2 z z … z

key3 v1 v2 … vn

minUser

Fig. 1. Example reporting the kind of key our algorithm labels as user-
identifier (key3), and examples of keys it discards (key1 and key2).

Observe that, despite we focus on the user-tracking keys
embedded in the URL queries of HTTP/S GET requests, our
methodology can be easily extended to process the data the
client transmits to the servers via POST requests, or embedded
in the cookies. Similarly, for this study we focus on detecting
single user-identifying keys, i.e., keys whose values alone
show a one-to-one mapping with the user generating the
requests. However, the algorithm can be improved to detect
combinations of keys whose values may exhibit biuniqueness
with the user.

IV. DATASET

To test our algorithm, we collect a dataset using a testbed
based on Selenium WebDriver3 to automatize the browsing of
a selected set of websites. We browse the top 200 websites
in the Alexa rank in the global category. Our browser installs
a custom extension we build to log and dump to file all the
HTTP and HTTPS request and response headers it observes.
The scope of our analysis is pinpointing user-tracking keys, so

3http://www.seleniumhq.org

Algorithm 1 Automatic User Identifier Detector.
Input: HS, W , minUsers #HTTP/S request log, the target website and the minimum number of distinct user-value pairs to observe.
Output: TS #List of web services and their user-tracking keys for website W
1: Hu ← init hash table() #Init hashtable of user identifiers
2: Hv ← init hash table() #Init hashtable of key-value pairs
3: Hk ← init hash table() #Init hashtable of host-key pairs
4: while h in HS do #Read HTTP request logs
5: h← uid, host, path, referer #Extract fields of interest
6: if W in h.host or W in h.referer then #Check target is in the host or in the referer
7: K, V ← extract keys(h.path) #Extract keys and values from the path field
8: while k, v in K, V do #Iterate all key names and values
9: host key uid←create hash(h.host,k,h.uid) #Create hash for Hu

10: host key value←create hash(h.host,k,v) #Create hash for Hv

11: ADD DISTINCT(Hu[host key uid],v) #Insert all key-value pairs in Hu

12: ADD DISTINCT(Hv[host key value],h.uid) #Insert uid in Hv

13: end while
14: end if
15: end while

16: while hash in Hu do #Iterate over Hu

17: while value in Hu[hash] do #Iterate over values mapped to current hash
18: if LEN(Hu[hash]) == 1 then #Check current hash refers to one value only
19: host, key, uid← decode hash(hash) #Decode hash into host, key and userID
20: hashaux ← create hash(host, key, value) #Create an auxiliary hash using host, key and value
21: if LEN(Hv[hashaux]) == 1 and Hv[hashaux] == uid then #Check the auxiliary hash in Hv contains only one userID and check this corresponds to the one in

Hu

22: hashaux2 ← create hash(host, key) #Create an auxiliary hash using host and key
23: INCREMENT(Hk[hashaux2]) #Increment the number of unique userID-value pairs for this key
24: end if
25: end if
26: end while
27: end while

28: while hash in Hk do #Iterate over Hk

29: if LEN(Hk[hash]) >= minUsers then #Check current hash contains at least minUsers different userID-value pairs
30: host, key, ← decode hash(hash) #Decode hash into host and key
31: ADD(TS, host, key) #Add host and key to the output list
32: end if
33: end while

to avoid misclassifying keys which may identify the session
(i.e., the visit), we need each website to be visited multiple
times by the same user. We instrument the browser to create
a new user profile, visit the 200 websites in the list, and log
all HTTP/S transactions it generates. We repeat this procedure
14 times, so to have 14 traces related to 14 different users.
Thus, for each user profile we perform three rounds of visits
at different times. In total, we perform 9,000 visits allowing us
to collect the logs of more than 868,000 HTTP/S transactions.

In order to let anyone reproduce the experiments presented
in this paper, we make our dataset available to the commu-
nity4.

V. RESULTS

In this section we first run experiments to investigate the
impact of parameters choice may have on the results. Then, we
provide proofs about the algorithm effectiveness and examples
of analysis we can run over its output.

A. Parameter Sensitivity

We recall minUsers is the minimum number of unique
user-value pairs the algorithm must observe to label a key
as user identifier. In particular, we check how the number of
returned keys which our algorithm classifies varies when in-
creasing minUsers. Naively, one may think to set minUsers
to be large, because, if too low, we expect to misclassify those
keys that may instead contain other kind of information, such

4It can be downloaded at https://www.dropbox.com/s/elytxdz9h9ue3q4/
MegaTrace.gz?dl=0.

2 3 4 5 6 7 8 9 10 11 12 13 14
minUsers

0
100
200
300
400
500
600
700
800
900

N
um

be
r

of
K

ey
s

Third-Parties
All

Fig. 2. Number of user-tracking keys pinpointed by the algorithm when
increasing parameter minUsers and considering HTTP requests to third-
parties only (red dotted curve) and to both first- and third-parties (blue solid
curve).

as, e.g., session identifiers. In other words, a small minUsers
may increase the number of false positives. On the other hand,
a too large minUsers could cut out legit positives associated
to portals which embed a large set of third-party objects that
may not be always present. For instance, some users may
access a news portal at the moment it embeds a third-party
advertisement adi using a given user-identifying key, ki, but
other users accessing the same portal may encounter a different
advertisement service, adj , and, thus, a different key kj . In this
case the population of users gets split in two halves, and a too
large minUsers would filter both of them out from the set of
true positives.

We run an experiment to evaluate the trade-off value for
minUsers which guarantees a reasonable accuracy while not

Web service Keys
www.walmart.com customerId

omniture.walmart.com vidn,c17

beacon.walmart.com btc,ezakus id,dwtc,visitor id

dis.criteo.com google gid,CriteoUserId

cm.g.doubleclick.net CriteoUserId,cb

dw.wmt.co btc,dwtc

TABLE I. THE USER-TRACKING WEB SERVICES AND THE KEYS OUR
ALGORITHM DETECTS FOR WEBSITE www.walmart.com.

cutting out legit true positives. Fig. 2 reports the number of
user-identifying keys our algorithm identifies when we set
different minUsers values to process all the requests HS
in our dataset. We consider both the cases in which the
algorithm processes the set of HTTP requests to third-party
services only – services embedded in websites whose HTTP
requests show a mismatch between the hostnames contained
in Host and Referer fields – (red dotted curve), and all
the requests (i.e., taking into account both first- and third-
parties) in the dataset (blue solid curve). As expected, the
number of keys increases when minUsers is small: we count
more than 600 tracking keys used by third-party services when
we rely on just two distinct user-value pairs to label a key
as user-identifying. Observe that the number of keys keeps
decreasing when minUsers increases. For third-parties the
number of keys labelled as user-tracking decreases to 210 when
minUsers equals 14, and to 328 when considering both first-
and third-parties. We manually verify the data and we observe
that the pool of third-party web services associated to the
same website actually changes between different visits, thus
confirming the intuition described in the previous paragraph.
Hence, as a counterproof, we run a second experiment: first,
we make sure of focusing on a set of services for which
we observe some visits for each of the 14 users we have in
our dataset. 14 is the maximum value we can use, as this
is the number of distinct browsing profiles we employ in our
collection. Given the resulting subset of services, we filter HS
to keep only the requests pointing to them, thus obtaining a
smaller dataset, HSUsers=14. Then, we use this latter to run
again the algorithm varying minUsers. This time we observe
that the number of keys stabilizes at 328 when minUsers ≥ 6,
while some false positives (keys associated to services in
HSUsers=14, but carrying session identifiers mostly) are found
for values of minUsers < 6. Impact is minimal, but present.
Setting minUsers = 6, we are confident of correctly labelling
a key as user-identifying, while on the other hand we do
not filter out too dynamic web services actually implementing
some user-tracking feature.

B. Identifying User-Tracking Services

We now analyze the results we obtain by running the
algorithm over our artificial dataset.

First, we provide an example of the output of the algorithm.
We run the algorithm on the portion of the dataset referring
to the website www.walmart.com, i.e., when considering all
HTTP transactions whose Host or Referer contain wal-
mart.com. Table I reports the resulting hostname and key
names discovered that first- (top) and third-party (bottom)
services associated to walmart.com use. For this experiment we
set the algorithm parameter minUsers to equal 6, as chosen in
the previous section. Unfortunately, we lack a proper ground-

1 20 40 60 80 100 106
Third Party Services

0

20

40

60

80

100

120

Si
te

s

(a) Complete rank.

Dou
ble

Clic
k

Fac
eb

oo
k

Sco
re

ca
rd

Res
ea

rch
Yah

oo

Blu
eK

ay

M
at

hTag
Turn

Rlcd
n

Rfihub

Adv
er

tis
in

g
0

20

40

60

80

100

120

Si
te

s

(b) Top-10 rank.

Fig. 3. The rank of third-party trackers detected by our algorithm sorted by
the number of sites (first-parties) they appear associated to.

truth to evaluate the accuracy of our algorithm. However, the
results we obtain are reasonable. As shown, the algorithm
identifies 3 distinct third-party trackers linked to walmart.com.
They are well-known trackers found in blacklists of ad-
blocking services. Furthermore, key names clearly suggest
the exchange of possible user-tracking identifiers. Notice also
that some trackers embed keys containing the name of other
trackers, e.g., cm.g.doubleclick.net use the key CriteoUserId.
As we will describe in the Sec.V-D, this is the result of the
Cookie Matching practice [2].

C. Third-Party Tracker Analysis

The result presented in Fig. 2 shows that both first- and
third-parties do employ keys to track users. Indeed, when
minUsers equals 6 we observe that more than 130 keys are
employed by 121 different first-party services, and more than
300 user-identifying keys are associated to third-party services.
Intrigued by such a wide pervasiveness, in this section we
focus on the detection of services in the latter category. Hence,
we run the algorithm over our whole artificial dataset. We
obtain a list containing more than 100 third-party services
using some user-identifying key. Fig. 3(a) reports the rank
of third-party trackers sorted by the number of first-party
services they are associated to, i.e., their popularity across
different first-party services. Fig. 3(b) details the top-10 most
popular third-party trackers. As shown, top 10 third-party

trackers appear to be associated to 20 or more first-parties
(out of the 200 we take from the Alexa rank), and most of the
third-party trackers cover a very limited number of first-party
services. More than 40 trackers cover one service only. The
most pervasive third-party is DoubleClick which is present in
52% of the 200 considered services.

We compare our output with the tracker list we have built
by merging together data we obtain from different sources
as described in [15]. This list contains a total number of
443 different tracking services and can be considered as a
verified ground-truth. The number of trackers identified by our
algorithm is smaller (106) because of the very limited amount
of websites we consider to build our dataset, 72 of them are
present in the list, and are thus verified, 34 of them are new and
do not appear in the list. Manually checking, we validate that
they are all actual third-party trackers. This result, even if not
conclusive, is extremely encouraging, and lets us be confident
about the novelty of our perspective and the effectiveness of
our approach.

D. Interesting Findings

In the following we present some interesting findings that
emerge when analyzing the user-identifying keys returned by
our algorithm and the values they contain. More in detail, we
observe many cases in which the same value, i.e., the unique
piece of information associated to a user, is contained in user-
identifying keys used by different services.

X tracker.acmeA.com
www.acme.com

key1

tracker.acmeB.com key2

Fig. 4. Schema example.

To represent these interactions, we employ the
schema in Fig. 4: www.acme.com is the visited website.
tracker.acmeA.com and tracker.acmeB.com are both
services labelled as trackers by our algorithm. key1 and
key2 are the tracking keys they respectively employ to
identify users. X is a user identifier key value (can be, e.g.,
a hash contained in a cookie) we pick from our dataset and
contained in both key1 and key2. Surprisingly, both key1=x
and key2=x, despite key1 and key2 are “independently”
generated by acmeA and acmeB. Clearly this pinpoints to
some collision between the two.

We observe three main scenarios in which user identifiers
are shared across several services.

The simplest scenario is similar to the example depicted
in Fig. 5(a). In this case, a user accessing the first-party ser-
vices www.bing.com, www.msn.com and www.microsoft.com,
administrated by the same corporate (Microsoft), is tracked
by the services c1.microsoft.com, a4.bing.com, and c.msn.com
(still administrated by Microsoft) which use different keys,
MUID, CID and MUID, respectively, to exchange the same
user identifier value. Being the user identifier shared among
services under the same corporate umbrella, this suggests a
tracking platform administrated by the same organization, i.e.,
Microsoft in our case. This case does not appear controversial
from a privacy perspective.

22943A08072D61D9088D3D700685600B

c1.microsoft.com

c.msn.com

MUID

www.msn.com

www.microsoft.com

www.bing.com

MUID

a4.bing.com www.bing.com

CID CID

(a) First Scenario.

378a5516-388a-4200-9776-6f551433df35

www.huffingtonpost.com

beacon.krxd.net
mmuid

ad.doubleclick.net
mt_uuid

eu-u.openx.net

y.one.impact-ad.jp

pixel.mathtag.com

s.kau.li

check

uid

val

uid

www.dailymail.co.uk

mt_uuid

check

(b) Third Scenario: Cookie Matching and Real-Time Bidding.

Fig. 5. Scenarios in which the same user identifier is shared among several
services.

The second interaction example is very similar to schema
example in Fig. 4 and is not figured for brevity. In this case,
a user accessing the first-party service www.walmart.com is
assigned an identifier employed by the third-party services
cm.g.doubleclick.net and dls.criteo.com, and contained in the
key CriteoUserId. Notice two substantial differences with
respect to the scenario depicted in Fig. 5(a): first, the same user
identifier is shared among two different third-party services not
belonging to the same owner. Second, notice that DoubleClick
employs a key clearly provided by Criteo, a well known
tracking company. This kind of interaction is the typical result
of a practice, introduced by Google and named Cookie Match-
ing [2], that allows two separate parties to synchronize their
users’ identifiers. For example, typically, a user is assigned
cookies from the several parties she encounters during her
browsing activity. Hence two trackers normally assign their
own distinct cookies to the same user. Thanks to the Cookie
Matching mechanism, one or both of them will have these
cookies mapped to each other. Cookie Matching constitutes
a fundamental part of the Real-Time Bidding (RTB) mecha-
nism [16]. RTB is a common web advertising technique which
implements real-time automatic auctions. Typically, a website
enabling RTB, called seller in RTB terminology, aims at selling
the advertisement spaces available on its page for the best
offer. To enable the auction, two other kinds of third-parties
are involved: the auctioneer, that orchestrate the auction, and
the buyers, which generate bids for the advertisement spaces.
When a user visits the seller website, the auctioneer service
collects the identifiers contained in cookies from different
buyers and run the Cookie Matching protocol. Once the user
identifier is synchronized among the auction participants, the
auctioneer collects the buyers’ bids and elects the winning
buyer. Hence, this latter will be authorized to provide the
content to fill the advertisement space.

1 5 10 15 20 25 30
Visited Sites

1

20

40

60

80
T

ra
ck

er
s

Fig. 6. Trackers (y axis) involved in Cookie Matching actions and embedded
by the websites (x axis) we visited to build our dataset.

The last example of interaction we observe in our dataset
is depicted in Fig. 5(b). This scenario hints to a practice
which combines Cookie Matching and RTB. We observe
that the same user identifier is shared between two sellers,
www.dailymail.co.uk and www.huffingtonpost.com (which are
governed by the same owner), the auctioneer, DoubleClick,
and five different buyers. Although RTB and Cookie Matching
are acclaimed by the advertising industry, their implementation
leads to scenarios in which user identifiers are handled by
different players not governed by a common authority. We
believe this cross-parties access to users’ data looks boggling
and raises considerable worries about their implications on
users’ privacy [16].

We conclude our analysis by providing a more general
overview about the cases in which user identifiers are shared
among multiple parties, i.e., in which the practice of Cookie
Matching takes place. We consider all the websites in the
dataset. We then keep those for which we observe some Cookie
Matching practice involving at least 3 distinct third-parties. We
report the result in Fig. 6. It shows the websites sorted by the
number of trackers they embed and involved in some Cookie
Matching action (larger numbers to the left). Each black block
represents the occurrence of a user identifier being shared.
First, we observe that out of the 200 visited websites, 30 of
them host at least 3 services involved in Cookie Matching. The
number goes up to 76 if we decrease the number of involved
parties to 2. Second, we notice five cases in which Cookie
Matching may involve up to 6 different trackers (see the first
five columns on the left), i.e., where 6 different third-party
entities share the same view on users’ activity. This is another
striking finding which calls for further investigation about how
user data is spread in the web tracking ecosystem.

VI. CONCLUSION

Motivated by the attention that online tracking services
have recently attracted in the scientific community because of
the implications they have on users’ privacy, we developed a
novel, unsupervised methodology based on an algorithm which
inspects URL queries in HTTP(S) requests and seeks for the
pieces of information exhibiting a one-to-one mapping with
the user generating the requests. The algorithm outputs a list
of first- and third-party web services which employ any user-
tracking keys.

We evaluated the algorithm sensitivity of its only required

parameter and validated its output by running it against a
dataset of HTTP(S) logs we obtain by visiting three times the
top 200 most popular websites in the Alexa rank, and using
14 different user profiles.

We showed that the algorithm is effective at automatically
scouting tracking services. Even if considering our limited
dataset, it could detect 34 never seen before third-party track-
ers. Finally, we showed examples of findings that emerge
when analyzing the output of the algorithm. We pinpointed
interaction scenarios which hints to Cookie Matching and
Real-Time Bidding.

The methodology presented in this paper complements
existing techniques for tracker detection and it can help re-
searchers and developers to build and maintain more curated
tracker block lists.

REFERENCES

[1] Data Transparency Lab, http://datatransparencylab.org/.
[2] Google. Googles cookie matching protocol. https://developers.google.

com/ad-exchange/rtb/cookie-guide.
[3] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and

C. Diaz. The Web Never Forgets: Persistent Tracking Mechanisms
in the Wild. In ACM SIGSAC, 2014.

[4] J. Bau, J. Mayer, H. Paskov, and J. C. Mitchell. A promising direction
for web tracking countermeasures. In IEEE W2SP, 2013.

[5] C. Castelluccia, S. Grumbach, and L. Olejnik. Data Harvesting 2.0:
from the Visible to the Invisible Web. In WEIS, 2013.

[6] A. Chaabane, M. A. Kaafar, and R. Boreli. Big Friend is Watching
You: Analyzing Online Social Networks Tracking Capabilities. In ACM
WOSN, 2012.

[7] F. T. Commission et al. Protecting consumer privacy in an era of rapid
change. FTC Report, Washington, DC, 2012.

[8] M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier. The Rise of
Panopticons: Examining Region-Specific Third-Party Web Tracking. In
TMA. 2014.

[9] C. Hoofnagle, J. Urban, and S. Li. Privacy and modern advertising. In
Amsterdam Privacy Conference, 2012.

[10] B. Krishnamurthy, K. Naryshkin, and C. E. Wills. Privacy leakage vs.
Protection measures: the growing disconnect. In IEEE W2SP, 2011.

[11] B. Krishnamurthy and C. Wills. Privacy Diffusion on the Web: A
Longitudinal Perspective. In WWW, 2009.

[12] N. Kroes. Online privacy-reinforcing trust and confidence. speech,
Brussels, June, 22, 2011.

[13] J. Mayer. The new firefox cookie policy. XRDS, 20(1):16–17, Sept.
2013.

[14] J. Mayer and J. Mitchell. Third-party web tracking: Policy and
technology. In IEEE SP, pages 413–427, May 2012.

[15] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and M. Baldi. The
online tracking horde: a view from passive measurements. In TMA,
2015.

[16] L. Olejnik, M.-D. Tran, and C. Castelluccia. Selling off Privacy at
Auction. In ISOC NDSS, 2014.

[17] X. Pan, Y. Cao, and Y. Chen. I Do Not Know What You Visited
Last Summer: Protecting Users from Third-party Web Tracking with
TrackingFree Browser. In ISOC NDSS, 2015.

[18] F. Roesner, T. Kohno, and D. Wetherall. Detecting and Defending
Against Third-party Tracking on the Web. In USENIX NSDI, 2012.

[19] J. Turow, J. King, C. J. Hoofnagle, A. Bleakley, and M. Hennessy.
Americans reject tailored advertising and three activities that enable it.
Available at SSRN 1478214, 2009.

[20] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fingerprinting
and Tracking on the Web: Privacy and Security Implications. In ISOC
NDSS, 2012.

