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Abstract—In this work, we consider diffusion-based molecular
communication timing channels. Three different timing channels
are presented based on three different modulation techniques, i.e.,
i) modulation of the release timing of the information particles,
ii) modulation on the time between two consecutive information
particles of the same type, and iii) modulation on the time
between two consecutive information particles of different types.
We show that each channel can be represented as an additive
noise channel, where the noise follows one of the subclasses of
stable distributions. We provide expressions for the probability
density function of the noise terms, and numerical evaluations for
the probability density function and cumulative density function.
We also show that the tails are longer than Gaussian distribution,
as expected.

Index Terms—Molecular Communication, Channel Models,
Noise Models, Lévy Distribution, Stable Distributions.

I. INTRODUCTION

Molecular communication is a biologically inspired form of
communication, where chemical signals are used to transfer
information [1]. It is possible to modulate information on
the information particles using different techniques such as:
concentration [2], type [3], number [4], or time of release
[5]. Moreover, information particles can propagate from the
transmitter to the receiver using diffusion [6], active transport
[7], bacteria [8], and flow [9]. Recently the possibility of
molecular communication has been demonstrated using a
tabletop experimental setup [10], [11].

We consider diffusion-based molecular communication,
where information is encoded on the time of release of
molecules. Timing channels for diffusion-based molecular
communication were first proposed in [5]. A molecular com-
munication timing channel based on additive inverse Gaussian
distributed noise for flow induced channels was presented in
[12], and tight bounds for the capacity of this channel was
presented in [13]. In [14], a special type of timing modulation,
where the order of release of consecutive molecules of differ-
ent type is used to encode information is proposed. The time
interval between release of two consecutive release of large
number of information particles is proposed as a modulation
scheme in [15].

In this work we propose three general classes of timing
channels for diffusion-based molecular communication: the
regular timing channel, where information is encoded in the
release timing of information particles (channel A); time

between release modulation using the same type of infor-
mation particles, where the information is encoded in the
time between release of two consecutive particles of the same
type (channel B); and time between release modulation using
different types of information particles (channel C). In all three
cases it is demonstrated that the channel can be reduced to an
additive noise channel where the noise term falls in the stable
distribution family [16]. In particular, for channel A the noise
follows the well-known Lévy distribution.

Stable distributions have been used in a number of fields to
model noise. In [17], alpha-stable distributed noise was used to
create a more realistic noise model for room acoustic channels.
In radio communications, symmetric alpha-stable distributions
were used to model impulsive non-Gaussian noise that exists
in some systems such as ultra-wide bandwidth (UWB) systems
[18], [19]. Capacity bounds for a special class of alpha-stable
additive noise channels had been provided in [20], [21].

There are only three classes of stable distribution with
closed-form expressions for the probability density function
(PDF) in term of elementary functions: Gaussian, Cauchy,
and Lévy. In this work, we derive closed-form expressions
for the PDF of the noise terms in our channels in terms of the
complex error function and Voigt functions [22], which are
used in other fields of science such as physics. We numerically
compare the stable-distributed noise densities and distribution
functions to the Gaussian distribution, and show that the stable
distribution exhibits longer tails. We present expressions for
the asymptotic tail probability of the noise models and show
that the expressions converge to the actual tail probabilities
quickly.

The rest of this paper is organized as follows. In Section
II we present three timing channel models for diffusion-based
molecular communication. We then derive the PDF for the
additive noise term in each channel model in Section III. Nu-
merical evaluations of the PDF and the cumulative distribution
function are presented in Section IV, and expressions for the
tail probabilities are provided. The concluding remarks are
presented in Section V.

II. TIMING CHANNEL MODELS

In this section we present three different timing channels
based on three different timing modulation schemes for diffu-
sion based molecular communication systems. In our models,



we assume that there is no inter-symbol interference. First,
we consider the timing channel proposed in [12], [23], where
the information is encoded in the release timing of a single
information particle. Let Tx be the release timing of the
information particle, and Ty be the time of arrival at the
receiver. Then we have

Ty = Tx + Tn, (A)

where Tn is the random propagation delay of the information
particle. Tn is parametrized by the distance between the
transmitter and the receiver and the diffusion coefficient of
the information particle.

One of the main challenges of this propagation scheme is
the need for synchronization between the transmitter and the
receiver. To overcome this challenge, time between release
modulation (TBRM) could be used, where information is
encoded in the time duration between two consecutive release
of molecules. Two cases are possible: either the two released
information particles are the same, or the two released infor-
mation particles are different.

First, we consider the case where both information particles
are the same. Let Tx1

be the release timing of first information
particle and Tx2

be the release timing for the second informa-
tion particle with Tx2

> Tx1
. We assume the information is

encoded in Lx = Tx2 − Tx1 . Then using (A), the channel
model for this modulation scheme is given by:

|Ty2 − Ty1 | = |Tx2 − Tx1 + Tn2 − Tn1 |,
Ly = |Lx + Ln|, (B)

where Ln = Tn2 − Tn1 is the random noise and Tn2 and Tn1

are independent and identically distributed noise terms in (A).
Another modulation scheme is when two different types of

information particles are used. Let Txa be the release timing
of type-a information particle and Txb be the release timing
for the type-b information particle. We assume the information
is encoded in Dx = Txb−Txa . Unlike (B) where Lx is always
positive, in this case Dx can be positive or negative depending
on the order that type-a and type-b information particles are
released. Using (A), the channel model for this scheme is given
by:

Tyb − Tya = Txb − Txa + Tnb − Tna ,
Zy = Zx + Zn, (C)

where Zn = Tnb − Tna is the random noise and Tnb and Tna
are independent noise terms in (A).

III. TIMING CHANNEL NOISE MODELS

In this section, we will find the probability density function
of the noise terms Tn, Ln, and Zn and discuss some of the
properties of these random variables.

A. Channel A

First, we consider the channel in (A) and the random
propagation noise term Tn. If we assume that the receiver
is absorbing the information particles, which is the case for

many practical applications, Tn is distributed according to the
first hitting time distribution. In previous works, it was shown
that the first hitting time for the flow induced diffusion in 1-
dimensional (1D) space follows Inverse Gaussian distribution
[12]. In this work, we consider the diffusion channel with no
flows. In this case, Tn is a Lévy distributed random variable.
The probability density function (PDF) of a non-negative
Lévy-distributed random variable X is given by

f(x;µ, c) =

√
c

2π(x− µ)3
exp

(
− c

2(x− µ)

)
, (1)

where µ and c are parameters of the Lévy distribution. The
characteristic function for a Lévy distributed random variable
is given by

ϕ(t;µ, c) = exp
(
jµt−

√
−2jct

)
, (2)

where j =
√
−1 is the imaginary number. We use the notation

∼ Lévy(µ, c) to represent a Lévy distributed random variable
with parameters µ and c. Using this notation the additive
noise is given by Tn ∼ Lévy(0, d

2

2D ), where d is the distance
between the transmitter and the receiver and D is the diffusion
coefficient. Therefore, we have

fTn(tn) =
d√

4πD(tn)3
exp

(
− d2

4Dtn

)
, (3)

Similarly, the conditional PDF P (Ty|Tx) ∼ Lévy(Tx,
d2

2D ).
The Lévy distributed noise holds for 1D diffusion and also
for 3D diffusion with a spherical absorbing receiver with an
scaling parameter [1], [24].

B. Channel B

To find the noise distribution for the channel in (B), we
consider a class of probability distributions known as stable
distributions [16], [25]. The Lévy distribution is a part of
stable distributions.

Definition 1. A random variable X has a stable distribution if
for two independent copies X1 and X2, and positive constants
a, b, c, and d ∈ R the following holds

aX1 + bX2
d
= cX + d,

where d
= is equality in distribution.

Generally, stable distributions are defined by their charac-
teristic function

ϕ(t;µ, c, α, β) = exp
[
jµt− |ct|α(1− jβ sgn(t)Φ)

]
, (4)

where sgn(.) is the sign function (i.e. sign of t), −∞ < µ <
∞, c ≥ 0, 0 < α ≤ 2, −1 ≤ β ≤ 1, and

Φ =

{
tan(πα/2) if α 6= 1

− 2
π log(|t|) if α = 1

. (5)

Gaussian distribution, belongs to this family of distributions
with α = 2, and Lévy distribution with α = 1/2 and β =
1. We use the notation ∼ S(µ, c, α, β) to represent a stable



distribution with parameters µ, c, α, and β. The following are
some of the important properties of stable distributions.

Property 1. If a random variable X ∼ S(µ, c, α, β), and
random variable

Y =
X − µ
c

,

then f(x)dx = f(y)dy, and Y is the standard form of X .

Property 2. Stable random variables with β = 0 have
symmetric PDFs.

With these definitions we now model the noise term Ln in
(B).

Theorem 1. The characteristic function for the noise term Ln
is given by

ϕ

(
t;

√
2d√
D

)
= exp

[
−
√

2d√
D

√
|t|

]
,

where d is the distance between the transmitter and the
receiver and D is the diffusion coefficient of the information
particle. Therefore, Ln ∼ S(0, 2d

2

D , 12 , 0).

Proof. Since Ln = Tn2 + (−Tn1) with Tn2 , Tn1 ∼
S(0, c, 12 , 1), where c = d2

2D . Since Tn1 and Tn2 are inde-
pendent, the characteristic function for Ln is given by

ϕLn(t) = ϕTn2
(t)ϕTn1

(−t) (6)

= exp
[
−
√
|ct|(1− j sgn(t))

]
×

exp
[
−
√
|ct|(1 + j sgn(t))

]
(7)

= exp
[
−
√
|4ct|

]
(8)

Only the PDFs of three classes of stable distributions are
known to have closed-form expressions in terms of elementary
functions: the Gaussian distribution with α = 2 (the value
of β does not matter in this case and can be assumed to
equal zero), the Lévy distribution with α = 0.5 and β = 1,
and Cauchy distribution with α = 1 and β = 0. To find
an expression for the PDF of the noise term Ln in (B),
we use Property 1, and define the PDF for the standardized
distribution with 2d2

D = 1. Using Property 1, the standard PDF
could be used to calculate probabilities involving non-standard
random variables just like the way the standard Gaussian PDF
could be used to calculate probabilities involving non-standard
Gaussian random variables.

The PDF of the standardized stable distribution can be
represented by the integral [26]

f(x;α, β) =
1

π

∫ ∞
0

e−t
α

cos[xt+ βtαΦ], (9)

where Φ is given in (5). This integral reduces to [26]

f(x; 1/2, β) = <
{
z

πx
[
√
πe−z

2

− 2jF (z)]

}
, (10)

where

F (z) = e−z
2

∫ z

0

et
2

dt (11)

is the Dawson’s Integral [27], and

z =
1 + β − j(1− β)

2
√

2x
. (12)

It is possible to rewrite (10) in terms of the complex error
function, also known as Faddeeva function or the Kramp
function [27]

w(z) = e−z
2

(
1 +

2j√
π

∫ z

0

et
2

dt

)
= e−z

2

erfc(−jz), (13)

where erfc(.) is the complementary error function. Using the
relation [27]

F (z) = 0.5j
√
π(e−z

2

− w(z)), (14)

and the property w(−z) = 2e−z
2−w(z) , we can rewrite (10)

as

f(x; 1/2, β) = <
{

z√
πx
w(−z)

}
. (15)

One of the benefits of writing the PDF in terms of the complex
error function is that there are a large body of work that
considered calculating it numerically. Moreover, if z = a+jb,
for b > 0 the complex error function can be represented by
its real and imaginary parts as

w(a+ jb) = K(a, b) + jL(a, b), b > 0, (16)

where

K(a, b) =
1√
π

∫ ∞
0

exp(−t2/4) exp(−bt) cos(at), b > 0

(17)

and

L(a, b) =
1√
π

∫ ∞
0

exp(−t2/4) exp(−bt) sin(at), b > 0

(18)

are the real and imaginary Voigt functions which are used
widely in many fields of physics, astronomy, and chemistry
and can be computed numerically.

Using Property 2, the probability density function of Ln
is symmetric. Therefore, the probability density function for
Ln ≥ 0 is sufficient for characterizing the PDF. Since β = 0,
when Ln > 0 we can write z = pln − jpln where pln =
1/
√

8ln. Using (15)-(18) the standardized noise term Ln when
Ln ≥ 0 has the PDF

f(ln) =


1√
8πl3n

[
K(−pln , pln) + L(−pln , pln)

]
ln > 0

2
π ln = 0

,

(19)

where the second term follows from [25]. The PDF for Ln < 0
is then given by f(−ln) due to symmetry.



C. Channel C

The channel noise Zn given in (C) can be different from Ln
since two different types of information particles can be used
with different diffusion coefficients. Let Da be the diffusion
coefficient of information particle a and Db be the diffusion
coefficient for the information particle b. Also, without loss
of generality assume particle a is released first followed by
particle b. We now model the noise term Zn in (C).

Theorem 2. The characteristic function for the noise term Zn
is given by

ϕ

(
t;
d(
√
Da +

√
Db)

2

√
2DaDb

,

√
Da −

√
Db√

Da +
√
Db

)
=

exp

−d(
√
Da +

√
Db)

2

√
2DaDb

√
|t|

(
1− j

√
Da −

√
Db√

Da +
√
Db

sgn(t)

) ,

where d is the distance between the transmitter and the
receiver and Da and Db are the diffusion coefficient of the
information particles. Therefore,

Zn ∼ S

(
0,
d(
√
Da +

√
Db)

2

√
2DaDb

,
1

2
,

√
Da −

√
Db√

Da +
√
Db

)
.

Proof. Since Zn = Tnb + (−Tna) with Tna , Tnb ∼
S(0, ci,

1
2 , 1), where ci = d√

2Di
for i ∈ {a, b}. Since Tna

and Tnb are independent, the characteristic function for Zn is
given by

ϕZn(t) = ϕTnb (t)ϕTna (−t) (20)

= exp
[
−cb

√
|t|(1− j sgn(t))

]
×

exp
[
−ca

√
|t|(1 + j sgn(t))

]
(21)

= exp
[
−
√
|t|(cb + ca − j sgn(t)(ca − cb))

]
(22)

= exp

[
−(cb + ca)

√
|t|
(

1− j sgn(t)
ca − cb
cb + ca

)]
(23)

= exp

[
−d(
√
Da +

√
Db)

2

√
2DaDb

√
|t|

(
1− j

√
Da −

√
Db√

Da +
√
Db

sgn(t)

) .
(24)

When the diffusion coefficients of the two particles are
almost equal, Zn has the same distribution as Ln (i.e. β = 0).
When

√
Da �

√
Da or

√
Da �

√
Da, β = ±1 and hence Zn

is Lévy distributed. Therefore, channel (C) can be reduced to
channel (A), when one information particle has a much higher
diffusion coefficient than the other, with the added benefit that
no synchronization is required between the transmitter and the
receiver.

For the general case, we have β = (
√
Da−

√
Db)/(

√
Da+

√
Db). We can write (12) as z = px− jqx when x > 0, where

px = (1 + β)/(
√

8|x|) and qx = (1− β)/(
√

8|x|). Similarly,
we can write (12) as z = −qx− jpx when x < 0. Then using
(15) and the Voigt functions decomposition of the Faddeeva
function (17) and (18) the PDF of the standardized distribution
is given by

f(zn;β) =



1√
8πz3n

[
(1 + β)K(−pzn , qzn)

+ (1− β)L(−pzn , qzn)

]
, zn > 0

2(1−β2)
π(1+β2)2 , zn = 0

1√
8π|zn|3

[
(1− β)K(qzn , pzn)

− (1 + β)L(qzn , pzn)

]
, zn < 0

,

(25)

where the second term follows from [25].

IV. NUMERICAL EVALUATION AND TAIL PROBABILITIES

As was shown in the previous section, it is possible to write
the PDF for the noise terms in channel (B) and (C) in terms
of real and imaginary Voigt functions. These functions can
be numerically calculated using efficient algorithms such as
[28]. Moreover, for the case of general stable distributions
with any parameters µ, c, α, and β it is possible to calculate
the PDFs and the cumulative distribution functions (CDF)s
numerically using the fast Fourier transform or by numerically
solving definite integrals [29]. In this section, we plot the PDF
and CDF of the noise terms of channels (A-C) and compare
the PDF to the Gaussian PDF, which is typically assumed in
the literature.

Fig. 1 shows the PDF of standardized stable distribution
noise terms in channels (A)-(C), as well as the standard
Gaussian distribution. As can be seen from the plots, the PDF
of the noise terms in all three channels are very different from
Gaussian noise. The peaks in the PDF tend to be narrower,
while the tails tend to be longer. Moreover, as can be seen
the larger the parameter β the more asymmetric the PDF. For
β = 1 the PDF is the standard Lévy distribution which is
non-zero only for positive values. The cumulative distribution
function (CDF) of the standardized stable distributions are
shown in Fig. 2. Again it can be seen that each distribution
is quite different and that non-Gaussian stable distributions
exhibit long tails.

To compare the tails of each distribution, we use the
asymptotic approximation presented in [30]. In particular, if
X is a standardized stable random variable with parameters
0 < α < 2 and β, then as x→∞,

P (X > x;α, β) ≈ 1 + β

πxα
Γ(α) sin

(
απ

2

)
. (26)
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For the noise terms in our channel model, α = 1/2 and hence

P (X > x; 0.5, β) ≈ 1 + β√
2πx

, (27)

as x → ∞. For the standard normal distribution, the tail
probability is approximately,

P (X > x; 2, 0) ≈ exp(−x2/2)

x
√

2π
, (28)

as x→∞. This proves the longer tails of non-Gaussian stable
distributions.

To measure the accuracy of this approximation, in Fig. 3 we
plot the tail probability P (X > x) and the approximate tail
probabilities from (27) and (28). In the plot the circles indicate
the approximate values. It can be seen that the asymptotic
approximation of the tail probabilities quickly converge to the
actual probability.

V. CONCLUSIONS

In this paper, we considered diffusion-based molecular
communication timing channels. In particular, we considered
three different class of molecular where the information is
encoded in the: time of release of information particles, the
time between release of two similar information particles,
and the time between two different information particles. The
channel models for all three different classes were presented
as an additive noise channels. It was shown that the noise in
all three classes are stable distributed random variables. As
a consequence the noise have longer tails, and the effects of
inter-symbol interference (ISI) can be more severe than addi-
tive Gaussian noise channels. Another interesting observation
is that channel (C) can be reduced to channel (A), when one



information particle has a much higher diffusion coefficient
than the other, with the added benefit that no synchronization
is required between the transmitter and the receiver. As part
of future work we will consider finding and comparing the
probability of bit error for all three classes of timing channel
presented.
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