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Abstract—In this paper we consider distributed allocation problem of maximizing the probability of success recovery,
problems with memory constraint limits. Firstly, we propose and we aim to characterize the optimal storage allocation,

a tractable relaxation to the problem of optimal symmetric i en the memory profile of the system and both number and
allocations from [1]. The approximated problem is based on sizes of stored files

the Q-error function, and its solution approaches the solubn : o .
of the initial problem, as the number of storage nodes in the ~ The problem is a generalization of a storage allocation
network grows. Secondly, exploiting this relaxation, we ag able problem with unlimited memory, considered [ [1]. However,
to formulate.arjd to solve the problem.for storage allocatios if one directly extends the optimization problem &f [1] to
for memory-limited DSS storing and arbitrary memory profile s. - the memory-limited case, it becomes difficult to handle. The
Finally, we discuss the extension to the case of multiple dat . - S - .
objects, stored in the DSS. reason for that is that the main _obJectNe functlpn, on which

the result from[[1] is based, is in fact a complimentary cdf

|. INTRODUCTION of a binomial distribution’3(n, p) with parameters: and p.

In last years, more and more attention is given to wirele3$is objective function is discrete and non-monotone, and
distributed storage systems, or the so called wirelessimgchits analysis is already tedious in the original setting [df [1
networks, assumed to deal with the problem of the netwo8o, it needs to be handled very carefully in the memory-
bandwidth bottleneck in future-generation wireless neksp unlimited case, which is even more involved. Thereforepteef
due to the increase of the wireless data traffic related tb suaddressing the case with limited memory, we make our first
applications as on-line video streaming, web browsing etwontribution by defining a relaxation of the initial optiraizon
It is worth mentioning that the nowadays wireless networkzoblem from [1] by using a continuous approximatiowe
have more and more of available network bandwidth, thankse the fact that the probability functiofk,, ,(i), i € N,
to new communication technologies, and also to the fact thaftthe binomial distribution3(n, p) can be written as
the cell size continues to decrease. This implies that one of

i )2
the next problems to be considered in the distributed seorag fz,, ,,) (i) = ;e_ﬂ(szfm {1 + @(L)] ,
context is more related to thémitation on the amount of 2mnp(l — p) Vn
storage memoryavailable in the system, rather than to network 1)
parameters of the system. For instance, the memory limitatiwhich is the normal distribution probability function with
can appear in following situations: 1) when the amount gfarameters: = np ando = /np(1 — p), up to corrections

data to store is very important (i.e. in order to improve thgat vanish as: — co. Based on this result, we propose to

service of on-line video streaming, a large choice of vide@lax the objective function using a Q-error function
files is proposed to a user); 2) when the data, related to some

o0
application, is stored over the user devices (i.e. in a Devic Qz) = L/ e_t2/2dt, r € R,
to-Device communication network), while the device memory Ver Ja
reserved by this application, is limited; 3) in the multeus The approximation is accurate even for moderate values of
scenario with a large number, the the data is stored withna(of order several dozens of nodes present in the storage
high redundancy, thus improving the quality of experienagetwork, see Sectidnlll).
(QOE) perceived by the users, but also leading to large mgmor Thanks to the proposed relaxation, we can treat the memory-
volumes stored in the network. limited storage case. Our second contribution is in defining
Therefore, in this work we focus on memory-limited disa tractable optimization problem in the case of an arbitrary
tributed storage systems. We study the problem of storingemory profile of the network and in characterizing the
data objects (files) in a set of storage nodes, each of theptimal storage allocation in this case.In particular, \wéree a
having somamaximum memory volumavailable for use. For relaxed optimization problem in the memory-limited casd an
simplicity, it is assumed that all storage nodes can be aedessolve it for the case when there is only one data file stored in
successfully with the same probabilify We consider the the network (see Sectidnlll). Moreover, a conjecture on the
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case of two stored data objects is developed in Se¢fidn Where the set of corresponding optimal symmetric allocatio
thus opening the problem of storing multiple data objecta inis X,,-. The expression above represents a discrete non-
memory-limited distributed storage system. This our tlindi monotone function im. In order to find its supremum, it is
last contribution. sufficient to restrict to the following subset of valuesrof

Il. OPTIMAL SYMMETRIC ALLOCATIONS REVISITED N ={|T],|2T|,...,|LT|,N}, 7

A. System Model and State of the Art
A Y distributed q whereL = | £ |. This fact is also stated in equation (9) of [1].
ssume a distributed storage system winstorage nodes. Using the fact, the authors dfi[1] obtain the following resul
A source stores a data object of normalized unit size that(‘?heorems 3 and 4 in[1]):

encoded and stored in a distributed manner over the system,

subject to a given total storage buddeét(T is the inverse |T], if p|T| <1,
of the rate of the u.nderlying code). Let be the amount of ™ = |LT] or N, if (1-p) 7] 4 2T |p(1 _p)mq <1.
coded data stored in nodeli,< ¢ < N. Then, ®)
N
Z x; <T. 2) The interesting regime of parameters for practical applica
P tions is pT" > 1 as in this case the success probability is

The data collector wishes to download and to recover (ignPounded fromi. In the section below, we propose a more
to decode) the stored data object. It is assumed that it sesedractable optimization problem based on a relaxation tg (P1
each of N storage nodes independently with some acce¥dich gives a good estimate of solutions regionssor
probability p. One aims therefore to find an optimal allocatio
X = (z1,22,...,7N), Subject to[(R), so that the probability
to recover the data successfully is maximized. Assuming tha Let ¢ = np ando = \/np(1 — p), for somf n € R such
the data was encoded using a MDS code, the data object 83 € [0, N] andp € [0, 1]. Define the optimization problem
be recovered if the amount of data collected by the collgstor(P2) as:

A Q-Function Approximation Applied to (P1)

above or equal to one unit. This is translated into the falaw . (] —u
optimization problem: (P2) : n* = Slél%@ | 1<n<N (9)
n
X*=su ISI(1 — p)N-I8ly ;i >1],
Xp Z b ( p) Z b INote that here: is a real value and not an integer as before. However, as
SeP({1,...,.N}) €S

it corresponds to above, we keep call ik. To avoid the abuse of notation
(3) later on, it will always be mentioned # € R.
subject to [(R), whereP({1,...,N}) is the power set of
{1,..., N} and 1[-] is the indicator function. This optimiza-
tion problem can be simplified if the search is restrictechi® t
set of symmetric allocations, i.e. X* is assumed to belong 0.9f
to the following subsett’:

0.8¢ 8
N T =
X =U)_ X, with X, = {X : > 2, =T andz; € {0,—}}. S07 1
— n <
=1 (4) g 0.6 i
Given that the collector accesses nodes uniformly at ra.g 0.5¢ ]
dom, the probability of recovery (objective function) wilbt g |

) . 2,041
depend on the exact indexes of non-zero allocations bugtratl 2
on the number of nodesused to symmetrically store the date ~ 0.3r
object. As each of thes nodes used for storage is accesse
with probability p, the probability of successful recovery for
a givenn value is given byl[[1] 0.1

fran@= 3 (1 )a-or © %

=[] i=[%]
T . Figure 1. Objective function (probability of successfutaeery) of problems
and the optimization problem reads as follows: (P1) and (P2) as a function ofn for N = 45 and various cases qfT".
From top to bottomp = 0.2 andT = 10 (o), p = 0.1 and T = 10 (O)
n andp = 0.05 andT = 10 (e). For each case, witli®) markers we show
(Pl) : n*= sup Z fB(n ) (2) , (6) the solution to(P1) with (LJ) makers the solution t¢P2). ForpT' > 1 and
i= [»%

50

1<n<N pT' < 1, the solution to both problems is the same, this is not the fais
] pT = 1. Note that(P2) for the pT' = 1 case has multiple solutions.



Table | Also, if T > . M;, then the allocation solution does not

MEASURING THE DISPARITY BETWEEN(P1) AND (P2) exist. So let us focus on an interesting regionZofvhich is
min; M; < T < Y. M;. With some abuse of notation, let
Size of DSS o B the set of memory-limited symmetric allocations of sizée
N =10 0.8823| 0.904 defined as:

N =20 0.9048| 0.9208
N =45 0.9345| 0.9532

X = {X 20 < My € (0, 1), #(zs = —) =n}, (1)

h + = a) denotes th ber of el [ I
(P2) is obtained from (P1) by applying the normal appro>\{zv) ;re#(x a) denotes the number of elementsin equa

imation to fz(, ) described in[{ll). Thanks to well-known
properties of thel)(z) function, we can characterize the set

of solutions as follows: A. Constant Memory Profile

Theorem 1. The solution of (P2) is . . . )
We start with developing an intermediate result for a DSS

|T], pT <1 (Case 1) with a constant memory limid/. Note that the solution to this
e N\N, pT =1 (Case 2) problem will differ from the unconstrained memory scenario
|LT] 1 - p< Lil (Case 3) summarized by[{1) for those cases where we are interested in
n* = N ’ :£+1 < <N Lt 1 storing a large amount of memory in an small set of nodes.
’ N =PSRN T NVETVT Because of the memory limit/, for pT' < 1, the symmetric
(Case 4) minimum spreading solution might not be optimal.
LT, p> 5 + yopr—os (Case 5) We define the set ofuasi-symmetriallocations of sizen

N-VLT
(10) and of memory volumé// as:

The outline of proof of Theoref 1 is given in Appendik A.,.m ={X 2 <M, #@x;i=M)=n—-1, #(; =R) =1}
In Fig.[d, we show the objective function of probleri81) " STt T ’ ’ (12)’
and (P2) as a function ofn for N = 45 and different(p, T')

pairs. Note that, while in the case§” > 1 andpT < 1, the ith R — T — Mn. Hence, in such allocation we use the

solution to both problems is the same, this is not the case ol :
pT = 1. Recall here that the range of interest for distributiv‘éomplete memory/ in n — 1 nodes and the rest of the data

. . : Object, i.e.,R < M is stored in an additional node. nodes
storage allocation problems j&" > 1. In Table[] includes a . .
. : are used in total. By{(11) and{12);, i € N, represents a set
measure of the disparity betweeRi1) and(P2) for N = 10, of symmetric allocations wherg nodes are used for storin
N = 20 and N = 45. For the gridp = 0 : 1073 : 1 and y 9

M - : . .
T =0:01: N and increasingV values we compute the andX;" is a set of quasi-symmetric allocations wheredes

. o are sused.
following quantities:

. o . . Define nyim = (%1, and let Ly be the smallest in-
« Fractiona of points in the grid for which teger such thBt . < |LoT|. Finally, define Ny, —

[7p1) = Py {|LoT),...,|LT|,N}. We have the following result:

o Fraction 8 of points in the subregion of the grid with

pT > 1 for which [nfp,) = nip,|. Lemma 1. Assume a limited-memory DSS, for whith =
Observe that botly and 8 improve for largerN values, ...= My = M. Letp, be the unique solution of the equation
which indicates that our approximation gets tight in theitim
N — co. The equivalence of (P2) and (P1) for large values of  nmin—1 Nnin—1
N, together with the fact that the optimal symmetric allogati p Z TB(min—1,p) (1) + (1 = p) Z TB(rmin—1.p) (1)
n* approaches the optimal (asymmetric) one wiemgoes to i=[ 52 =[]
infinity [1], gives us the asymptotic optimal solution of the |LoT]
distributed storage allocation problem. As it is easier ¢ald _ Z (Lot ) (i) = 0. (13)

with (P2), we apply it to our case of interest which is the
distributed storage allocation in memory-limited systems

I1l. ONE SINGLE DATA OBJECT INMEMORY-LIMITED DSS Then the set of optimal storage allocations, maximizing the

Let us consider the DSS of our interest: a storage node
i is assumed to have an available memady, which can 2Note thatny;, is the minimum number of nodes we can use to store the
be used to store the coded data. Let a data object of td%@EI’QEtT;bIS'ncelnmm mlgrf]\t not Ele conhtam_ed Im the sﬁfurst, is LLOTH1
. . the possible solution to the problem that Is closesttg,. We assume that
budgetT' be Storeq n the DSS. Note thatTt < i, M;, 1y < L. Otherwise the optimak* is given by Cases 3,4, and 5 Q) if
then the problem is equivalent to the memory-unlimited case, = L, andn* = N if L < Lo < N.

i=Lg



success recovery in this case, is approximated by

We formulate now a necessary condition for FLmin alloca-
tion, see Figl2(a), to be a better allocation than the symmet

i pT <1andp <p, (Case 1a8)  gjocation:
X Lor)s pT'<1landp>po (Case 1b) | omma 2. Denote a FLmin allocation by ['L of non-zero
X, n € Ny \N, pT =1 (Case 2) SUppPOrtny,i, to be
X* el Xt % <p< &l (Case 3) ~
L+l L1 1 FL —(0,...,0,T— My, My _p . _o,...,Mn_1, My).
XNv N Sp S N—\/ﬁ + N\/ﬁ—ﬁ Mmin ( i:N§]in72 N min —2 N-1 N)
(Case 4)
L1 1 \hen, X 'L is optimal if
XLt P> o T Nvm—T (Case 5) Namin p
(14) T
) m > , (16)
Moreover, X* from (14) approaches to the set of optimal Mmin
allocations, whenV goes to infinity. where
The outline of the proof of lemma is given in Appendik B.
Note that cases 3, 4, 5 ¢f (|14) are equivalent to cases 3, 4, 5 of o Z (17)
(@J). Case 2 is also similar, with the only exception that one

M
should consider now;; instead ofA/. The only difference

from (10) is therefore in the fact that, whe” < 1, the For m < T/nmi, then the symmetric minimal spreading
minimum symmetric allocation is not always optimal anymorallocation, Fig.[2(b), has higher recovery probability. Saes,
— there exist values df, and ofp for which the best allocation all modifications toX 'L defined by putting the remainder of
is the quasi-symmetric one. the memory in a different set of positions, see[Hig. 2(a)ieveh

the same recovery probability. Denote this se L
Example 1. Letp =0.1, T =14, M =0.5and N > 3. The very p . I VWM

best allocation in this case is the quasi-symmetric one @ith. The proof of Lemmd2 is given in Appendi C. Lemiia 2
indicates us that depending on the memory profile, one might
x;'s equal to0.5 and onex; equal t00.4.

better to chose either FLmin allocation or symmetric, mialm
Remark 1. By using a Taylor expansion of a

Q-function, ongpreading allocation.
can also get a tight approximation @f: ) _ )
2) Arbitrary Memory Profile withpT' < 1:

Mmin — 1

[LoT]

Notation 2. Letn,,.x be the largest integer such that— >

po ~ (fl/]\/ﬂ — Lo
Mny_ nm Also, let L., be the largest integer such that

> (nmin -1- (nmin - 1) \_LOTJ

1-R\ !
+[1/M1 — ’77—‘) . (15) nmax = LLmaXTJ
Lemma 3. Denote the ANmax allocatioX 4 to be
B. Arbitrary Memory Profile
. . i XNV = (M1, .., MN o> @5 - - -, 0),
Now conS|der an arbitrary memory profiléM =
(My,...,My). Wlo.g., letM; < My < ... < My. For  wherea = (T — . 7" M;)/nmax. ThenX 2N is optimal

this scenario, two possible optimal allocations have to ke
considered for the cagel’ < 1 and another another two for
the casepT > 1. We sketch these four scenarios in Hig. 2. N Lo
When pT < 1, the full-load minimum-support asymmetric Z M;,
allocation, or FLmin allocation for short, uses the complet
memory of the nodes with largest available memory. A smaidlhere m is defined in(@37). If (I8) is not verified, then
fraction of residual data can be stored in any of the remginithe symmetric maximum-spreading allocation, Y. 2(d)s ha
nodes in the network. The FLmin allocation is sketched inigher recovery probability.
Fig. [2(a). Alternatively, we can store the data object using Proof of Lemmal[B is given in Appendix]D. Lemnid 3
a symmetric minimal spreading allocation, see Eig. 2(b). Fehows that depending on the memory profile, one might
pT > 1, the all-node maximum support allocation, or ANmaxetter to chose either AN-max allocatiofi** or symmetric,
allocation for short, uses all nodes in the system, definimgaximum-spreading allocation.
a quasi-symmetric allocation. The ANmax allocation is is Putting the results of Lemmas 2 dnd 3 together, we can state
sketched in Figl12(c). Also, a symmetric maximum-spreadinge following:
allocation can be used, Figl 2(d).

1) Arbitrary Memory Profile withpT' < 1:

m(N — Nmax) (18)

Conjecture 1. Assume a DSS with an arbitrary memory
profile with M; < M, < < Mpy. Let Mu
Notation 1. Let nni, be the smallest integer such that{|LoT|,...,|LmaxT]}. Then

meé“’l Mpy_; > T. As before, lefy be the smallest integer
such thatn,i, < |LoT].

3We assume thabmax > Lo, otherwisen* will not exist.
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Possible storage allocations for an arbitrary orgnprofile: (a) FLmin allocation; (b) symmetric minimal gading allocation; (c) ANmax

allocation; (d) symmetric maximum-spreading allocation.

XFL

X\ LoT) 5

Xn, n € NM,
X\_LmaxTJ ’
XN,

)

e Let p1 = p2 = p. In this case, the game theory
suggests that three optimal strategies are possible:ra) sta
allocating the first data object and the allocate the second
one; b) to proceed in the inverse order; c) to allocate data
of two objects in the mixed way.

pT < 1 and [16) does not hoid
pT < 1 and [16) holds

pT =1;

pT > 1 and [I8) holds

pT > 1 and [I8) does not hold

V. CONCLUSION
In this paper, we have considered a memory-limited DSS,

X* above approaches to the set of optimal allocations, whetoring one or two data files. The memory profile of the system

N goes to infinity.

IV. EXTENSION: WHEN MORE THAN ONE DATA OBJECT
IS STORED IN THEDSS

In this work we have

tems for a single user. Most of our derivations are based on
a tractable approximation proposed for the unlimited mgmor

is assumed to be arbitrary; this case is therefore treatedl in
its generality. We wish to emphasize two following points:

« For a memory-limited DSS, the optimal storage allocation
is not necessarily a symmetric one, even in for large
network sizeNV, even for a constant memory profile when
all nodes have the same amount of memory available for
storage. This differs from the result obtained in the usual

analyzed memory-limited DSS sys-

case. Given the above results, our future interest is toemgddr

the multiuser case. We conclude the paper by briefly disagssi

the case of two data objects to stor& (= 2). Let the
objects have total budgefs, and T, respectively. Also, let
the probability that the data collector downloads the file
be denoted byp;, and that he downloads the filz — by

p2 = 1 — p1. We assume the system is memory-limited. Note
that if Z£72 < min; M;, then the problem is equivalent to the

memory-unlimited case. Also, ify + 7> > >, M;, then the
allocation solution does not exist. So, the interestingrivdl
of T’s is when Nmin(M) < Ty + T3 < >, M;. Let the
allocations for filesl and 2 be denoted byX; and Xs. If
we restrict to symmetric allocations with suppert and ns

respectively, then the problem can be approximated by rsplvi

the following optimization problem.
2] v

]
sup p1Q | ———— | +pQ | ——— |,

(P4) :
(X,X) o1 op

with u; = n;p; o; = \/np(l —p), fori=1,2.

The following can be proven about the solution(ét4):

o W.l.o.g, letp; > po. To maximize(P4), we first allocate
object 1 given the memory profilg/;, Mo, ..., My us-

memory-unlimited case, where the optimal allocation is
a symmetric one, in the limit of larg&/.

« The obtained result, obtained for the access probability

p, can be combines with the result from [2], developed
for heterogenous storage networks. Thus it is possible
to characterize optimal allocation solutions for memory-
limited, heterogeneous DSS.

« MDS codes, used to prove our results, are the most

storage-efficient erasure-correcting codes, but theyaire n

efficient complexity-wise, which makes them impractical

to use. It would be interesting to consider a more practical
code solution and to check how the optimal allocation
changes for this case.

APPENDIXA
OUTLINE OF THE PROOF OFTHEOREM[I]

First, the following lemma is stated (its proof is quite

straightforward and is omitted for the sake of space):

Lemma 4. Let L = | £ ] as previously. Then the solution of

T

(@ belongs to the se¥/, given by [[¥). Next, define

n

cn)=Q (@) with = np, o = /np(1l —p).

ing the results presented in Section Ill. Then, we alloca@wing to Lemm&4,[{9) can be written asp,, .\ c¢(n). To

object 2 using the residual memory profile.

find a solution of this problem, three possible cases are to



consider:pT < 1, pT" = 1 and pT > 1. We discuss only APPENDIXC
the latter casepT > 1. The first two cases can be analyzed PROOF OFLEMMA [Z]

When pT" > 1, ¢([iT}]) is increasing withi. and also used in considering heterogeneous data allocatiof@#.in
Sup;equ,....ry ¢([iT]) = L. Therefore, depending on the valuenssuming an arbitrary allocatioX with a non-zero support

of N, n* is either |[LT] or N. Note thatN = |LT] is a p, the optimization problem is approximated as:
trivial case ¢* = N). So letN > | LT'| and consider

n

k

P3): X*= su b(n,p)P Y;>1), (21

c(LLT]) - (N) = Q (Ll ‘T”) - (7“ — Np) " ol B g P2 Y2
Tp(1 —p) Np( —p) whereY; are i.i.d random variables and ~ px(z), where

Px(x) is the empirical probability distribution, corresponding

Two cases are to be distinguished: to the non-zero support of. The approximation here comes

from the fact thatY;'s are assumed to be i.i.d, i.e. here the
probability distribution, corresponding to the random icko

without replacement, is approximated to the probabilistriti

a) Np > L+ 1, for whichp > &1 > 1: The expression
(@9) is positive, if the following is satisfied:

Tp—1 L+1—Np bution, corresponding to the random choice with replacéamen
VL > : By Markov’s inequality,
VTp(L=p) = /Np(l-p)
k k
This holds for P> Y;>1)<E (Z y) = kmx,
i=1 =1

L+1 1
> + .
PN _VIT  NVIT - VT

(20) with mx being the mean of the distributidPx (x). Therefore,

the objective function in[{21) can be approximated by
So, under the condition above? = | LT'|. Note that, if n
o ; iafi L+l
slomep saLtffl.e_s[f(ZD), then it also satisfips> =3~ mx an(n’p) = mxnp. (22)
b) + < p < =it can be verified that, for any value pf =0

¢(lLT]) > ¢(N) and thusn” = |LT]. Note that, if X is a symmetric allocation, this quantity equals

topT,asmx = % As pT < 1, then the probability of success
recovery is bounded away from 1. HoweverXf is the full-
load allocation with the smallest suppert,;,, andmx > %

e objective function will be bounded by a larger quantity

APPENDIXB
OUTLINE OF THE PROOF OFLEMMA

To show cases 2, 3, 4, 5 the proof is similar to the orf

of Theorem1L. The only difference now is that the solutio anpT.
should belong taV,, instead of A'. However, for case 1, APPENDIX D
the symmetric allocationg’ ;| are not necessarily the best PROOF OFLEMMA 3

choice. One can show that it only has to be compared with th
guasi-symmetric allocations occupying the smallest nurobe
storage nodes, i.e. with the subvectdr,,..., M, . ). Itis

easy to see that the probability of success recovery for t
symmetric and quasi-symmetric minimum spreadings, deho

respectively byPs and Py, are given by

SWith the help of the Markov’s inequality as for Lemrh 2,
one obtains that the probability of success recovery is uppe
bounded by(T - SOV M 4 (N — nimay)) in the all-
node maximum-spreading case, andfy in the symmetric,
tI%aximum spreading case. Hence, the condition (18) follows.
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Moreover, both of them are monotonically increasing in
p and Ps(l/T) > PQs(l/T) while Ps(O) < PQs(O). So,
there exists a unique parameter= p, such thatPs(pg) =
Pgs(po), and one can find it by solving_(1L3).
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