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Abstract—In this paper we consider distributed allocation
problems with memory constraint limits. Firstly, we propose
a tractable relaxation to the problem of optimal symmetric
allocations from [1]. The approximated problem is based on
the Q-error function, and its solution approaches the solution
of the initial problem, as the number of storage nodes in the
network grows. Secondly, exploiting this relaxation, we are able
to formulate and to solve the problem for storage allocations
for memory-limited DSS storing and arbitrary memory profile s.
Finally, we discuss the extension to the case of multiple data
objects, stored in the DSS.

I. I NTRODUCTION

In last years, more and more attention is given to wireless
distributed storage systems, or the so called wireless caching
networks, assumed to deal with the problem of the network
bandwidth bottleneck in future-generation wireless networks,
due to the increase of the wireless data traffic related to such
applications as on-line video streaming, web browsing etc.
It is worth mentioning that the nowadays wireless networks
have more and more of available network bandwidth, thanks
to new communication technologies, and also to the fact that
the cell size continues to decrease. This implies that one of
the next problems to be considered in the distributed storage
context is more related to thelimitation on the amount of
storage memory, available in the system, rather than to network
parameters of the system. For instance, the memory limitation
can appear in following situations: 1) when the amount of
data to store is very important (i.e. in order to improve the
service of on-line video streaming, a large choice of video
files is proposed to a user); 2) when the data, related to some
application, is stored over the user devices (i.e. in a Device-
to-Device communication network), while the device memory,
reserved by this application, is limited; 3) in the multi-user
scenario with a large number, the the data is stored with a
high redundancy, thus improving the quality of experience
(QoE) perceived by the users, but also leading to large memory
volumes stored in the network.

Therefore, in this work we focus on memory-limited dis-
tributed storage systems. We study the problem of storing
data objects (files) in a set of storage nodes, each of them
having somemaximum memory volume, available for use. For
simplicity, it is assumed that all storage nodes can be accessed
successfully with the same probabilityp. We consider the

problem of maximizing the probability of success recovery,
and we aim to characterize the optimal storage allocation,
given the memory profile of the system and both number and
sizes of stored files.

The problem is a generalization of a storage allocation
problem with unlimited memory, considered in [1]. However,
if one directly extends the optimization problem of [1] to
the memory-limited case, it becomes difficult to handle. The
reason for that is that the main objective function, on which
the result from [1] is based, is in fact a complimentary cdf
of a binomial distributionB(n, p) with parametersn and p.
This objective function is discrete and non-monotone, and
its analysis is already tedious in the original setting of [1].
So, it needs to be handled very carefully in the memory-
unlimited case, which is even more involved. Therefore, before
addressing the case with limited memory, we make our first
contribution by defining a relaxation of the initial optimization
problem from [1] by using a continuous approximation.We
use the fact that the probability functionfB(n,p)(i), i ∈ N0,
of the binomial distributionB(n, p) can be written as

fB(n,p)(i) =
1

√

2πnp(1− p)
e
− (i−np)2√

2πnp(1−p)

[

1 +O(
1√
n
)

]

,

(1)

which is the normal distribution probability function with
parametersµ = np andσ =

√

np(1− p), up to corrections
that vanish asn → ∞. Based on this result, we propose to
relax the objective function using a Q-error function

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt, x ∈ R
+.

The approximation is accurate even for moderate values of
n (of order several dozens of nodes present in the storage
network, see Section II).

Thanks to the proposed relaxation, we can treat the memory-
limited storage case. Our second contribution is in defining
a tractable optimization problem in the case of an arbitrary
memory profile of the network and in characterizing the
optimal storage allocation in this case.In particular, we define a
relaxed optimization problem in the memory-limited case and
solve it for the case when there is only one data file stored in
the network (see Section III). Moreover, a conjecture on the
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case of two stored data objects is developed in Section IV,
thus opening the problem of storing multiple data objects ina
memory-limited distributed storage system. This our thirdand
last contribution.

II. OPTIMAL SYMMETRIC ALLOCATIONS REVISITED

A. System Model and State of the Art

Assume a distributed storage system withN storage nodes.
A source stores a data object of normalized unit size that is
encoded and stored in a distributed manner over the system,
subject to a given total storage budgetT (T is the inverse
of the rate of the underlying code). Letxi be the amount of
coded data stored in node i,1 ≤ i ≤ N . Then,

N
∑

i=1

xi ≤ T. (2)

The data collector wishes to download and to recover (i.e.
to decode) the stored data object. It is assumed that it accesses
each ofN storage nodes independently with some access
probabilityp. One aims therefore to find an optimal allocation
X = (x1, x2, . . . , xN ), subject to (2), so that the probability
to recover the data successfully is maximized. Assuming that
the data was encoded using a MDS code, the data object can
be recovered if the amount of data collected by the collectoris
above or equal to one unit. This is translated into the following
optimization problem:

X∗ = sup
X

∑

S∈P({1,...,N})
p|S|(1− p)N−|S|

1

(

∑

i∈S
xi ≥ 1

)

,

(3)

subject to (2), whereP({1, . . . , N}) is the power set of
{1, . . . , N} and1[·] is the indicator function. This optimiza-
tion problem can be simplified if the search is restricted to the
set of symmetric allocations, i.e. ifX∗ is assumed to belong
to the following subsetX :

X = ∪N
n=1Xn with Xn = {X :

N
∑

i=1

xi = T andxi ∈ {0, T
n
}}.

(4)

Given that the collector accesses nodes uniformly at ran-
dom, the probability of recovery (objective function) willnot
depend on the exact indexes of non-zero allocations but rather
on the number of nodesn used to symmetrically store the data
object. As each of then nodes used for storage is accessed
with probability p, the probability of successful recovery for
a givenn value is given by [1]

n
∑

i=⌈ n
T ⌉

fB(n,p)(i) =

n
∑

i=⌈ n
T ⌉

(

n
i

)

pi(1− p)n−i. (5)

and the optimization problem reads as follows:

(P1) : n∗ = sup
1≤n≤N







n
∑

i=⌈ n
T ⌉

fB(n,p)(i)






, (6)

where the set of corresponding optimal symmetric allocations
is Xn∗ . The expression above represents a discrete non-
monotone function inn. In order to find its supremum, it is
sufficient to restrict to the following subset of values ofn:

N = {⌊T ⌋, ⌊2T ⌋, . . . , ⌊LT ⌋, N}, (7)

whereL =
⌊

N
T

⌋

. This fact is also stated in equation (9) of [1].
Using the fact, the authors of [1] obtain the following result
(Theorems 3 and 4 in [1]):

n∗ =

{

⌊T ⌋, if p⌊T ⌋ < 1;

⌊LT ⌋ or N, if (1− p)⌊T⌋ + 2⌊T ⌋p(1− p)⌊T⌋−1 ≤ 1.

(8)

The interesting regime of parameters for practical applica-
tions is pT ≥ 1 as in this case the success probability is
unbounded from1. In the section below, we propose a more
tractable optimization problem based on a relaxation to (P1)
which gives a good estimate of solutions regions forn∗.

B. A Q-Function Approximation Applied to (P1)

Let µ = np andσ =
√

np(1− p), for some1 n ∈ R such
thatn ∈ [0, N ] andp ∈ [0, 1]. Define the optimization problem
(P2) as:

(P2) : n∗ = sup
n∈R

Q

(

⌈

n
T

⌉

− µ

σ

)

, 1 ≤ n ≤ N (9)

1Note that heren is a real value and not an integer as before. However, as
it corresponds ton above, we keep call itn. To avoid the abuse of notation
later on, it will always be mentioned ifn ∈ R.
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Figure 1. Objective function (probability of successful recovery) of problems
(P1) and (P2) as a function ofn for N = 45 and various cases ofpT .
From top to bottom:p = 0.2 and T = 10 (o), p = 0.1 and T = 10 (�)
and p = 0.05 andT = 10 (•). For each case, with(♦) markers we show
the solution to(P1) with (�) makers the solution to(P2). For pT > 1 and
pT < 1, the solution to both problems is the same, this is not the case for
pT = 1. Note that(P2) for the pT = 1 case has multiple solutions.



Table I
MEASURING THE DISPARITY BETWEEN(P1) AND (P2)

Size of DSS α β
N = 10 0.8823 0.904
N = 20 0.9048 0.9208
N = 45 0.9345 0.9532

(P2) is obtained from (P1) by applying the normal approx-
imation to fB(n,p) described in (1). Thanks to well-known
properties of theQ(x) function, we can characterize the set
of solutions as follows:

Theorem 1. The solution of (P2) is

n∗ =







































⌊T ⌋, pT < 1 (Case 1);

∈ N\N, pT = 1 (Case 2);

⌊LT ⌋, 1
T < p < L+1

N (Case 3);

N, L+1
N ≤ p ≤ L+1

N−
√
LT

+ 1
N

√
LT−

√
T

(Case 4);

⌊LT ⌋, p > L+1
N−

√
LT

+ 1
N

√
LT−

√
T

(Case 5).

(10)

The outline of proof of Theorem 1 is given in Appendix A.
In Fig. 1, we show the objective function of problems(P1)
and (P2) as a function ofn for N = 45 and different(p, T )
pairs. Note that, while in the casespT > 1 andpT < 1, the
solution to both problems is the same, this is not the case for
pT = 1. Recall here that the range of interest for distributive
storage allocation problems ispT > 1. In Table I includes a
measure of the disparity between(P1) and(P2) for N = 10,
N = 20 and N = 45. For the gridp = 0 : 10−3 : 1 and
T = 0 : 0.1 : N and increasingN values we compute the
following quantities:

• Fractionα of points in the grid for which
|n∗

(P1) = n∗
(P2)|;

• Fraction β of points in the subregion of the grid with
pT > 1 for which |n∗

(P1) = n∗
(P2)|.

Observe that bothα and β improve for largerN values,
which indicates that our approximation gets tight in the limit
N → ∞. The equivalence of (P2) and (P1) for large values of
N , together with the fact that the optimal symmetric allocation
n∗ approaches the optimal (asymmetric) one whenN goes to
infinity [1], gives us the asymptotic optimal solution of the
distributed storage allocation problem. As it is easier to deal
with (P2), we apply it to our case of interest which is the
distributed storage allocation in memory-limited systems.

III. O NE SINGLE DATA OBJECT INMEMORY-L IMITED DSS

Let us consider the DSS of our interest: a storage node
i is assumed to have an available memoryMi, which can
be used to store the coded data. Let a data object of total
budgetT be stored in the DSS. Note that ifT ≤ miniMi,
then the problem is equivalent to the memory-unlimited case.

Also, if T >
∑

iMi, then the allocation solution does not
exist. So let us focus on an interesting region ofT which is
mini Mi < T ≤ ∑

i Mi. With some abuse of notation, let
the set of memory-limited symmetric allocations of sizen be
defined as:

Xn = {X : xi ≤ Mi, xi ∈ {0, T
n
}, #(xi =

T

n
) = n}, (11)

where#(xi = a) denotes the number of elements inX , equal
to a.

A. Constant Memory Profile

We start with developing an intermediate result for a DSS
with a constant memory limitM . Note that the solution to this
problem will differ from the unconstrained memory scenario
summarized by (1) for those cases where we are interested in
storing a large amount of memory in an small set of nodes.
Because of the memory limitM , for pT < 1, the symmetric
minimum spreading solution might not be optimal.

We define the set ofquasi-symmetricallocations of sizen
and of memory volumeM as:

XM
n ={X : xi ≤ M,#(xi = M) = n− 1, #(xi = R) = 1},

(12)

with R = T − Mn. Hence, in such allocation we use the
complete memoryM in n− 1 nodes and the rest of the data
object, i.e.,R < M is stored in an additional node.n nodes
are used in total. By (11) and (12),Xi, i ∈ N, represents a set
of symmetric allocations wherei nodes are used for storing
andXM

i is a set of quasi-symmetric allocations wherei nodes
are sused.

Define nmin = ⌈ T
M ⌉, and let L0 be the smallest in-

teger such that2 nmin ≤ ⌊L0T ⌋. Finally, defineNM =
{⌊L0T ⌋, . . . , ⌊LT ⌋, N}. We have the following result:

Lemma 1. Assume a limited-memory DSS, for whichM1 =
. . . = MN = M. Let p0 be the unique solution of the equation

p

nmin−1
∑

i=⌈ 1−R

M ⌉
fB(nmin−1,p)(i) + (1− p)

nmin−1
∑

i=⌈ 1
M ⌉

fB(nmin−1,p)(i)

−
⌊L0T⌋
∑

i=L0

fB(⌊L0T⌋,p)(i) = 0. (13)

Then the set of optimal storage allocations, maximizing the

2Note thatnmin is the minimum number of nodes we can use to store the
budgetT . Sincenmin might not be contained in the setN in (7), is ⌊L0T ⌋
the possible solution to the problem that is closest tonmin. We assume that
L0 < L. Otherwise the optimaln∗ is given by Cases 3,4, and 5 of (10) if
L0 = L, andn∗ = N if L < L0 ≤ N .



success recovery in this case, is approximated by

X∗ ∈



















































XM
nmin

, pT < 1 and p ≤ p0 (Case 1a);

X⌊L0T⌋, pT < 1 and p > p0 (Case 1b);

Xn, n ∈ NM\N, pT = 1 (Case 2);

X⌊LT⌋,
1
T < p < L+1

N (Case 3);

XN , L+1
N ≤ p ≤ L+1

N−
√
LT

+ 1
N

√
LT−

√
T

(Case 4);

X⌊LT⌋, p > L+1
N−

√
LT

+ 1
N

√
LT−

√
T

(Case 5).

(14)

Moreover, X∗ from (14) approaches to the set of optimal
allocations, whenN goes to infinity.

The outline of the proof of lemma is given in Appendix B.
Note that cases 3, 4, 5 of (14) are equivalent to cases 3, 4, 5 of
(10). Case 2 is also similar, with the only exception that one
should consider nowNM instead ofN . The only difference
from (10) is therefore in the fact that, whenpT < 1, the
minimum symmetric allocation is not always optimal anymore
– there exist values ofL0 and ofp for which the best allocation
is the quasi-symmetric one.

Example 1. Let p = 0.1, T = 1.4, M = 0.5 andN ≥ 3. The
best allocation in this case is the quasi-symmetric one with2
xi’s equal to0.5 and onexi equal to0.4.

Remark 1. By using a Taylor expansion of a Q-function, one
can also get a tight approximation ofp0:

p0 ≈

(

⌈1/M⌉ − L0

√

nmin − 1

⌊L0T ⌋

)

(

nmin − 1−
√

(nmin − 1)⌊L0T ⌋

+⌈1/M⌉ −

⌈

1− R

M

⌉)

−1

. (15)

B. Arbitrary Memory Profile

Now consider an arbitrary memory profileM =
(M1, . . . ,MN). W.l.o.g., letM1 ≤ M2 ≤ . . . ≤ MN . For
this scenario, two possible optimal allocations have to be
considered for the casepT < 1 and another another two for
the casepT > 1. We sketch these four scenarios in Fig. 2.
When pT < 1, the full-load minimum-support asymmetric
allocation, or FLmin allocation for short, uses the complete
memory of the nodes with largest available memory. A small
fraction of residual data can be stored in any of the remaining
nodes in the network. The FLmin allocation is sketched in
Fig. 2(a). Alternatively, we can store the data object using
a symmetric minimal spreading allocation, see Fig. 2(b). For
pT > 1, the all-node maximum support allocation, or ANmax
allocation for short, uses all nodes in the system, defining
a quasi-symmetric allocation. The ANmax allocation is is
sketched in Fig. 2(c). Also, a symmetric maximum-spreading
allocation can be used, Fig. 2(d).

1) Arbitrary Memory Profile withpT < 1:

Notation 1. Let nmin be the smallest integer such that
∑nmin−1

i=0 MN−i ≥ T . As before, letL0 be the smallest integer
such thatnmin ≤ ⌊L0T ⌋.

We formulate now a necessary condition for FLmin alloca-
tion, see Fig. 2(a), to be a better allocation than the symmetric
allocation:

Lemma 2. Denote a FLmin allocation byXFL
nmin

of non-zero
supportnmin to be

XFL
nmin

= (0, . . . , 0, T−
N
∑

i=N−nmin−2

Mi,MN−nmin−2, . . . ,MN−1,MN ).

Then,XFL
nmin

is optimal if

m >
T

nmin
, (16)

where

m =
N
∑

i=1

M2
i

∑M
j=1 Mj

. (17)

For m < T/nmin, then the symmetric minimal spreading
allocation, Fig. 2(b), has higher recovery probability. Besides,
all modifications toXFL

nmin
defined by putting the remainder of

the memory in a different set of positions, see Fig. 2(a), achieve
the same recovery probability. Denote this set byXFL

nmin
.

The proof of Lemma 2 is given in Appendix C. Lemma 2
indicates us that depending on the memory profile, one might
better to chose either FLmin allocation or symmetric, minimal-
spreading allocation.

2) Arbitrary Memory Profile withpT < 1:

Notation 2. Let nmax be the largest integer such thatTnmax
>

MN−nmax . Also, letLmax be the largest integer such that3

nmax ≥ ⌊LmaxT ⌋.
Lemma 3. Denote the ANmax allocationXAN

N to be

XAN

N = (M1, . . . ,MN−nmax , a, . . . , a),

wherea = (T −∑N−nmax

i=1 Mi)/nmax. ThenXAN
N is optimal

if

m(N − nmax) >

N−nmax
∑

i=1

Mi, (18)

where m is defined in (17). If (18) is not verified, then
the symmetric maximum-spreading allocation, Fig. 2(d), has
higher recovery probability.

Proof of Lemma 3 is given in Appendix D. Lemma 3
shows that depending on the memory profile, one might
better to chose either AN-max allocationXmax

N or symmetric,
maximum-spreading allocation.

Putting the results of Lemmas 2 and 3 together, we can state
the following:

Conjecture 1. Assume a DSS with an arbitrary memory
profile with M1 ≤ M2 ≤ . . . ≤ MN . Let NM =
{⌊L0T ⌋, . . . , ⌊LmaxT ⌋}. Then

3We assume thatLmax > L0, otherwisen∗ will not exist.



Figure 2. Possible storage allocations for an arbitrary memory profile: (a) FLmin allocation; (b) symmetric minimal spreading allocation; (c) ANmax
allocation; (d) symmetric maximum-spreading allocation.

X∗ ∈































XFL
nmin

, pT < 1 and (16) does not hold;

X⌊L0T⌋, pT < 1 and (16) holds;

Xn, n ∈ NM, pT = 1;

X⌊LmaxT⌋, pT > 1 and (18) holds;

XAN
N , pT > 1 and (18) does not hold.

X∗ above approaches to the set of optimal allocations, when
N goes to infinity.

IV. EXTENSION: WHEN MORE THAN ONE DATA OBJECT

IS STORED IN THE DSS

In this work we have analyzed memory-limited DSS sys-
tems for a single user. Most of our derivations are based on
a tractable approximation proposed for the unlimited memory
case. Given the above results, our future interest is to address
the multiuser case. We conclude the paper by briefly discussing
the case of two data objects to store (K = 2). Let the
objects have total budgetsT1 and T2 respectively. Also, let
the probability that the data collector downloads the file1
be denoted byp1, and that he downloads the file2 – by
p2 = 1− p1. We assume the system is memory-limited. Note
that if T1+T2

N ≤ miniMi, then the problem is equivalent to the
memory-unlimited case. Also, ifT1 + T2 >

∑

i Mi, then the
allocation solution does not exist. So, the interesting interval
of T ’s is whenN min(M) < T1 + T2 ≤ ∑

i Mi. Let the
allocations for files1 and 2 be denoted byX1 and X2. If
we restrict to symmetric allocations with supportn1 andn2

respectively, then the problem can be approximated by solving
the following optimization problem.

(P4) : sup
(X ,X )

p1Q





⌈

n1

T1

⌉

− µ1

σ1



+ p2Q





⌈

n2

T2

⌉

− µ2

σ2



 ,

with µi = nip; σi =
√

nip(1− p), for i = 1, 2.

The following can be proven about the solution of(P4):

• W.l.o.g., letp1 > p2. To maximize(P4), we first allocate
object 1 given the memory profileM1,M2, . . . ,MN us-
ing the results presented in Section III. Then, we allocate
object 2 using the residual memory profile.

• Let p1 = p2 = p. In this case, the game theory
suggests that three optimal strategies are possible: a) start
allocating the first data object and the allocate the second
one; b) to proceed in the inverse order; c) to allocate data
of two objects in the mixed way.

V. CONCLUSION

In this paper, we have considered a memory-limited DSS,
storing one or two data files. The memory profile of the system
is assumed to be arbitrary; this case is therefore treated inall
its generality. We wish to emphasize two following points:

• For a memory-limited DSS, the optimal storage allocation
is not necessarily a symmetric one, even in for large
network sizeN , even for a constant memory profile when
all nodes have the same amount of memory available for
storage. This differs from the result obtained in the usual
memory-unlimited case, where the optimal allocation is
a symmetric one, in the limit of largeN .

• The obtained result, obtained for the access probability
p, can be combines with the result from [2], developed
for heterogenous storage networks. Thus it is possible
to characterize optimal allocation solutions for memory-
limited, heterogeneous DSS.

• MDS codes, used to prove our results, are the most
storage-efficient erasure-correcting codes, but they are not
efficient complexity-wise, which makes them impractical
to use. It would be interesting to consider a more practical
code solution and to check how the optimal allocation
changes for this case.

APPENDIX A
OUTLINE OF THE PROOF OFTHEOREM 1

First, the following lemma is stated (its proof is quite
straightforward and is omitted for the sake of space):

Lemma 4. Let L =
⌊

N
T

⌋

as previously. Then the solution of
(9) belongs to the setN , given by (7). Next, define

c(n) = Q

(

⌈

n
T

⌉

− µ

σ

)

with µ = np, σ =
√

np(1− p).

Owing to Lemma 4, (9) can be written assupn∈N c(n). To
find a solution of this problem, three possible cases are to



consider:pT < 1, pT = 1 and pT > 1. We discuss only
the latter case,pT > 1. The first two cases can be analyzed
similarly and their result is stated in stated directly in (10).

When pT > 1, c(⌊iT ⌋) is increasing with i. and
supi∈{1,...,L} c(⌊iT ⌋) = L. Therefore, depending on the value
of N , n∗ is either ⌊LT ⌋ or N . Note thatN = ⌊LT ⌋ is a
trivial case (n∗ = N ). So letN > ⌊LT ⌋ and consider

c (⌊LT ⌋)− c(N) = Q

(√
L(1− Tp)

√

Tp(1− p)

)

−Q

(

L+ 1−Np
√

Np(1− p)

)

(19)

Two cases are to be distinguished:

a) Np ≥ L + 1, for which p ≥ L+1
N > 1

T : The expression
(19) is positive, if the following is satisfied:

−
√
L

Tp− 1
√

Tp(1− p)
>

L+ 1−Np
√

Np(1− p)
.

This holds for

p >
L+ 1

N −
√
LT

+
1

N
√
LT −

√
T
. (20)

So, under the condition above,n∗ = ⌊LT ⌋. Note that, if
somep satisfies (20), then it also satisfiesp ≥ L+1

N .
b) 1

T < p < L+1
N : it can be verified that, for any value ofp,

c (⌊LT ⌋) > c(N) and thusn∗ = ⌊LT ⌋.

APPENDIX B
OUTLINE OF THE PROOF OFLEMMA 1

To show cases 2, 3, 4, 5 the proof is similar to the one
of Theorem 1. The only difference now is that the solution
should belong toNM instead ofN . However, for case 1,
the symmetric allocationsX⌊L0T⌋ are not necessarily the best
choice. One can show that it only has to be compared with the
quasi-symmetric allocations occupying the smallest number of
storage nodes, i.e. with the subvector(M1, . . . ,Mnmax). It is
easy to see that the probability of success recovery for the
symmetric and quasi-symmetric minimum spreadings, denoted
respectively byPS andPQS , are given by

PS =

⌊L0T⌋
∑

i=L0

fB(⌊L0T⌋,p)(i)

PQS = p

nmin−1
∑

i=⌈ 1−R
M ⌉

fB(nmin−1,p)(i)

+ (1− p)

nmin−1
∑

i=⌈ 1
M ⌉

fB(nmin−1,p)(i)

Moreover, both of them are monotonically increasing in
p and PS(1/T ) > PQS(1/T ) while PS(0) < PQS(0). So,
there exists a unique parameterp = p0 such thatPS(p0) =
PQS(p0), and one can find it by solving (13).

APPENDIX C
PROOF OFLEMMA 2

We are going to use the Markov inequality, which was
also used in considering heterogeneous data allocations in[2].
Assuming an arbitrary allocationX with a non-zero support
n, the optimization problem is approximated as:

(P3) : X∗ = sup
Xs.t. (2) holds

n
∑

k=0

b(n, p)P(
k
∑

i=1

Yi ≥ 1), (21)

whereYi are i.i.d random variables andYi ∼ pX(x), where
PX(x) is the empirical probability distribution, corresponding
to the non-zero support ofX . The approximation here comes
from the fact thatYi’s are assumed to be i.i.d, i.e. here the
probability distribution, corresponding to the random choice
without replacement, is approximated to the probability distri-
bution, corresponding to the random choice with replacement.
By Markov’s inequality,

P(

k
∑

i=1

Yi ≥ 1) ≤ E

(

k
∑

i=1

Yi

)

= kmX ,

with mX being the mean of the distributionPX(x). Therefore,
the objective function in (21) can be approximated by

mX

n
∑

k=0

nb(n, p) = mXnp. (22)

Note that, ifX is a symmetric allocation, this quantity equals
to pT , asmX = T

n . As pT < 1, then the probability of success
recovery is bounded away from 1. However, ifX is the full-
load allocation with the smallest supportnmin andmX > T

n ,
the objective function will be bounded by a larger quantity
thanpT .

APPENDIX D
PROOF OFLEMMA 3

With the help of the Markov’s inequality as for Lemma 2,
one obtains that the probability of success recovery is upper
bounded byp(T −∑N−nmax

i=1 Mi + m̃(N −nmax)) in the all-
node maximum-spreading case, and bypT in the symmetric,
maximum spreading case. Hence, the condition (18) follows.
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