
HAL Id: hal-01244858
https://hal.science/hal-01244858

Submitted on 9 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient Automatic Scaling and Adaptive
cost-optimized eHealth Services in Cloud

Elie Rachkidi, El Hadi Cherkaoui, Mustapha Ait-Idir, Nazim Agoulmine,
Nada Chendeb Taher, Marcelo F. Santos, Stenio Fernandes

To cite this version:
Elie Rachkidi, El Hadi Cherkaoui, Mustapha Ait-Idir, Nazim Agoulmine, Nada Chendeb Taher, et
al.. Towards Efficient Automatic Scaling and Adaptive cost-optimized eHealth Services in Cloud.
2015 IEEE Global Communications Conference: Selected Areas in Communications: E-Health (GC’
15 - SAC - E-Health), Dec 2015, San Diego, CA., United States. (elec. proc.), �10.1109/GLO-
COM.2014.7417751�. �hal-01244858�

https://hal.science/hal-01244858
https://hal.archives-ouvertes.fr

Towards Efficient Automatic Scaling and Adaptive

cost-optimized eHealth Services in Cloud

Elie Rachkidi, El Hadi Cherkaoui,

Mustapha Ait-idir and Nazim Agoulmine

COSMO, IBISC Laboratory

University of Evry Val d’Essonne

Evry, France

Nada Chendeb Taher

Lebanese University, Faculty of Engineering

and Azm Center for Researches

Tripoli, Lebanon

Marcelo Santos and Stenio Fernandes

Informatics Center (CIn)

Federal University of Pernambuco

Recife, Brazil

Abstract—Cloud Computing is an emerging commercial model
which allows organizations to eliminate the need to maintain
costly hardware, software and network infrastructures. It also
permits to avoid the high operational cost for operating and
maintaining these infrastructures. Similarly, in the eHealth area,
emerging eHealth applications used in conjunction with wearable
medical sensor devices and personal devices are being adopted by
more and more people with the aim to improve their lifestyle and
health. eHealth organizations, willing to provide remote eHealth
management, are integrating Wireless Body Area Networks
(WBANs) technology and Cloud Computing technology. This
integration allows eHealth organizations to deploy their eHealth
services on demand and instantly to monitor patients health
status. We propose in this paper, a solution for such organizations
to efficiently deploy their eHealth services and adapt provisioned
physical resources dynamically to satisfy the quality of health of
potentially millions of subscribers.

Index Terms—Cloud Computing, eHealth, SLA, Self-adaptive,
Auto-scaling

I. INTRODUCTION

Through the use of virtualization and resource time-sharing,

Cloud Computing technology offers the possibility to orga-

nizations to use IT solutions on-demand. The technology is

aimed to be flexible and scalable enough to allow clients

to request computing, storage or networking capacities with-

out investing in new infrastructures. In the area of eHealth,

wearable medical sensor devices have improved significantly

this last decade. They are impacting significantly nowadays

peoples daily lives, offering them the possibility to monitor

their own health status. These advances in technology are

considerably extending the capacity of individuals to take

control over their own personal health information. Tradi-

tionally, personal medical monitoring systems have been used

only to collect data while the data processing and analyzing

were performed off-line. This, has been for many years a

refrain to the development of eHealth since these devices were

impractical for continual monitoring and early detection of

medical disorders. Systems with multiple sensors for physical

rehabilitation often feature inconvenient wires between the

sensors and the monitoring system. These wires eventually

limits the patient’s activity and level of comfort and thus

negatively influence the measured results [1]. However, during

the last few years there has been a significant advance in wear-

ables and connected health monitoring devices constituting the

so called Wireless Body Area Networks (WBANs). Sensors

actually ranges from simple pulse monitors to sophisticated

and expensive implantable sensors where health monitoring is

performed remotely.

One of the most promising approaches to improve remote

health monitoring is indeed the integration of WBAN tech-

nology [2] with Cloud Computing technology [3], [4]. The

WBAN role will be to sense various physiological parameters

(heart rate, blood pressure, oxygen saturation, activity) and/or

environmental data (location, temperature, and humidity) and

transmit them to the eHealth application via a gateway. A PDA

(Personal Digital Assistance) or a smart-phone can play the

role of a gateway for the WBAN [5]. It gathers the health

data sensed by the WBAN sensors and transmits it to remote

health provider(s) server(s) for diagnosis using any available

long range communication network (3G, WLAN, GPRS or

LTE). These data are stored in the Cloud and queried for more

processing [6]. The eHealth applications running in the Cloud

permit to analyze the data, diagnose the patient health state,

and detect any anomaly.

As the cost of healthcare services increases, it is mandatory

that healthcare organizations consider adopting a new imple-

mentation models where eHealth applications are hosted in the

Cloud. With this model, eHealth Service Providers (HSP) will

be able to deploy eHealth services rapidly and on demand.

Hence, they may compose new services from already avail-

able service components to speed up the new healthcare ser-

vice deployment. With this approach, Cloud Providers deploy

1

eHealth services in their infrastructure and invoke them upon

patients’ demands.

Service composition and smart placement problems are

mainly addressed in Cloud Computing where a requested

service is dynamically composed of basic services that are

deployed in the network [7]. This approach helps the service

provider to make the best choice when deploying customer’s

services. The main challenges for the Cloud Provider (CP) is

to provide dynamically and accurately resources to eHealth

services as the demand changes (number of patients, local-

ization, mobility, etc.). Furthermore, optimizing the use of

assigned physical resources requires tasks scheduling algo-

rithms [8] in order to distribute optimally the end-users’ load.

Several authors have proposed solutions to these problems.

In [9], authors propose an auto-scaling mechanism which

dynamically allocates resources in hybrid clouds for parallel

and sequential tasks. They distribute these tasks on different

available Virtual Machines (VMs). Authors have considered

the execution deadline of the tasks as a decision metric. If

the current execution time of one or more tasks has exceeded

the estimated time, more resources are allocated. Whereas, if

the execution time is respected, unused physical resources are

released. However, this approach did not explicitly consider

the VM’s instantiation and setup time. In [10], Roy N. et al.

tried to solve this issue and stated that in order to auto-scale

physical resources efficiently in the Cloud, a predictive model

is needed. In fact, physical resources allocation needs time

(i.e. the same as the state transfer from an old overloaded

VM to a newly instantiated one). In this context, they used

a second order Auto-Regressive Moving Average (ARMA)

filter in order to predict the behavior of the workload for

the next time interval. This look-ahead approach enables an

early auto scaling mechanism, which allows new VMs to boot

and be in a ready state before workload increases. Another

predicting based auto-scaling approach is proposed by Yang

J. et al. in [11]. Authors used a linear regression model in

order to forecast next interval workload. Furthermore, in their

approach, authors have considered two ways to scale physical

resources, horizontal scaling (add or delete a VM) and vertical

scaling (increase or lower physical resources for a given VM).

In a second case, authors have adapted physical resources

based on both the current workload value and the predicted

workload value.

Finally, in [12], authors focused on real time services which

must respect a given deadline. Authors considered a healthcare

application where transmission rate might vary depending on

the status of the patient and where the generated data should

be treated within a specified deadline. A moving average filter

method is used to predict future system performance in order

to scale up physical resources to meet the required workload

for future tasks.

However, all these approaches did not take into account the

localization on mobility of the patients which we consider as

important and highly impacts the performances of the cloud.

Care Home

Hospital

Elderly Housing

Medical

Healthcare

Provider

eHealth Service Provider

Figure 1. Medical Healthcare Provider Global Architecture

II. SCENARIO AND PROBLEM STATEMENT

A. Scenario

Patients or the medical healthcare provider subscribe to the

HSP which provides its services on the Cloud. Similarly, the

HSP establishes a contract with the Cloud Provider to define

which services to deploy and the QoS terms to be respected.

The Service Level Agreement (SLA) should clearly specify the

Quality of Service (QoS) objectives with the expected target

performances from a virtual service usage. Each party has

to implement the SLA using its own tools and processes. In

particular, in this work, we are interested on how the automatic

provisioning in the Cloud Infrastructure is performed and how

to monitor the QoS of the deployed eHealth services while

ensuring that SLA’s terms are fulfilled. These mechanisms

should be able to detect any deviation in the services behavior

and automatically trigger particular techniques to maintain

the patients eHealth services QoS, either by scaling up the

resources in case of increasing workload or by scaling down

the resources when the workload decreases. This approach

allows efficient use of physical resources and optimal pricing

with the ”PAYG” (Pay-As-You-Go) [13] for a given SLA.

In Figure 1, we consider a scenario where several patients

rely on a medical healthcare provider to monitor their health

state in real time. The medical healthcare provider establishes

a contract with the HSP in order to define the service(s) to

deliver for end-users and the QoS these end-users must expe-

rience. Given the system set of specifications, the HSP defines

the service(s) to deploy and the SLA terms which ensure the

required QoS and sends them to a Cloud Provider. The latter

deploys required services and monitors them continuously.

The Cloud Provider, upon any violation of SLA terms, must

take appropriate actions such as scaling physical resources to

ensure expected QoS.

2

B. Problem Statement

Building a cloud-based platform for personal health sensor

data management is costly and may depend on many criteria

such as: geographical location, medical facilities and the appli-

cation services. Many existing CPs (identified as Infrastructure

as a Service (IaaS) providers) such as Amazon or Rackspace

offer to their customers the possibility to deploy eHealth

services in different sites located in different world regions.

These sites are different in hardware capacity and support

different cloud services. Although the same provider manages

these sites, they are independent systems in terms of resources

management, scheduling and provisioning. Based on this fact,

we consider in this work a similar environment where an HSP

could request to its CP a list of medical services to deploy.

These services can be modeled as a composition of a service

graph request formed by a set of basic services to instantiate

(i.e. virtual machines, storage, etc.) and the edges between

these nodes (i.e. required network links between the nodes).

The deployment of the service request graph will depend on

the terms specified in the SLA. These terms can be either

localization, QoS or pricing objectives.

In order to satisfy the SLA with the HSP, the CP should

solve the three following problems:

1) Find an initial instantiation of eHealth service based on

the described demand.

2) Based on the demand changes (number of requests/s)

from patient WBANs, or mobility of the patients, how

to auto-scale physical resources to satisfy the QoS of

eHealth services.

3) Since the instantiation of new VMs (i.e. eHealth service

instance) is not instantaneous, how to derive from the

mobility pattern a change in the resource demand.

The first problem can be seen as a Facility Location Problem

(FLP), particularly under the metric distance. Given a network

graph where each node is either a client or a location where

a facility may be built, the FLP tries to find a set of loca-

tions to set up facilities in order to minimize the total cost.

Traditionally, FLP deals with the problem of placing large

facilities such as storage, supermarkets, or distribution centers

which once installed, could not or should not be removed.

Such facilities are much more costly compared to the cost

that is needed to serve clients. Thus replacing one facility by

another is only considered in extreme conditions. In contrary,

service placing strategies in the cloud have to deal with the

ever changing environment. While traditional FLP refers to

large costly facilities, cloud services can be easily deployed

and removed.

In this paper, we focus mainly on the second and third

problems that are: given the location of the patients, what is

the best provisioning plan that minimizes the cost of deploying

service replicas while satisfying the eHealth service QoS level.

To address the aforementioned issues, we aim to answer these

following questions:

• How to choose a set of locations (provisioning plan) to

set up the services that minimizes the total cost, including

Processing TimeAcquisition Time

Propagation Delay

Deadline

Processing TimePropagation Delay

Deadline

Hospital Sends Image For Processing

Figure 2. eHleath Service Requests Time Phases

the installation cost and service delivery cost?

• In case of change in the demands, how to modify the

provisioning plan to minimize the total cost while keeping

the modification as small as possible?

III. AUTO-SCALING MECHANISM

The unpredictable evolution of medical services usage and

patient’s mobility could introduce peak loads at different

location of the network, which could exceed the computing

resources initially allocated to these services (i.e. VM, stor-

age). This may negatively affect the QoS experienced by the

end users (i.e. longer response time) and may violate the terms

of the agreed SLA between the CP and the patients. In figure 2,

we illustrate that each task, such as heart monitoring and ana-

lyzing, is affected by three parameters: (a) the acquisition time

which is specific to the monitor belonging in the WBAN, (b)

the propagation delay which corresponds to the delay between

sending the information, and receiving it at the eHealth service

side, and (c) the processing time which represents the time

needed to finish treating the received information (compute,

store, send notifications, etc.). The Cloud Provider needs to

optimize the propagation delay and processing time in order

to respect the QoS requested by the HSP in case of violations.

Therefore all tasks must finish before their assigned deadline.

In order to respect the QoS, while optimizing the physical

resources use, the Cloud Provider must auto scale the eHealth

services. Services can be scaled horizontally or vertically.

Vertical scaling consists of allocating more physical resources

to a given running VM and is considered instantaneous, while

horizontal scaling is instantiating a new VM to offload some

tasks and needs time to be performed. The objective is to

respect given deadline while minimizing the deployment cost

on the HSP.

3

1

2

µ1

µ2

Auto Scale

T10

T20

T11 / d11

Figure 3. Auto-scaling Mechanism of the eHealth service by the Cloud
Provider

A. Service replica placement optimization

Let us consider a connected network graph G = (N,E),
where each node nj ∈ N is a cloud datacenter. E is the set of

edges interconnecting these datacenters. Let s be an eHealth

service deployed by the Cloud Provider upon the HSP request

and sj the eHealth service s deployed in data center nj . The

contracted SLA between both parties will define the level of

QoS required and how the Cloud Provider will perform auto

scaling. We define a set T representing all tasks requested by

the eHealth service s. A subset of tasks Tj ⊂ T include the

pending tasks of the eHealth service sj , and where Tj,i ∈ Tj

is the ith task in the queue of sj . dj,i is the deadline assigned

to task Tj,i.

λi and µi correspond respectively to the measured request

arrival rate and the measured service rate of the eHealth

service at datacenter ni as depicted in Figure 3. Upon the

arrival of new requests we sort each queue in descending order

with respect to deadline. After sorting queues, the following

equation must be satisfied for each data center nj ∈ N :

dj,|Tj | > (1+ | Tj |) ×
1

µj

(1)

When condition (1) is satisfied, it means that all eHealth

services are able to process pending tasks before their dead-

line. On the other hand, if the condition is not valid, scaling

allocated resources is required. In this context, horizontal and

vertical scaling can be performed. However, horizontal scaling

introduce new VM instantiation and setup delay δ which might

be long enough to violate the SLA, but horizontal scaling can

decrease propagation delay by replicating the eHealth service

closer to the client. In order to benefit from the speed of

vertical scaling and location awareness of horizontal scaling

we adopt both solutions. If the expected deadline violation

occurs in a delay greater than the horizontal scaling completion

or local physical resources do not allow vertical scaling, we

proceed with horizontal scaling. Otherwise vertical scaling is

used to decrease processing time and try meeting QoS terms.

(| Ti | −1) ×
1

µi

> δ + ǫ (2)

Where ǫ is the average time to transfer a task from one queue

to another.

Condition (2), if valid, means that horizontal scaling can be

performed. When horizontally scaling the eHealth service, the

host for the replica, is the closest data center to the client who

sent the task expected to be violated in terms of execution

deadline. If the chosen data center already hosts an eHealth

service s, we perform vertical scaling on this service instead

of horizontal scaling. To optimize cost, we consider deploying

in less costly data centers if several candidates were found for

the service s replica. Replicating eHealth services is limited

to the maximal cost the medical healthcare provider is willing

to pay.

Since we measure the arrival rate λi for each service si, we

can obtain the overall arrival rate λ of the system by adding

arrival rates of all services (first equation in 3). The same

goes for the service rate (second equation in 3). Knowing the

behavior of the overall system, we can judge when to release

scaled up physical resources. In fact, we calculate the Average

Waiting Time (AWT) of the system considering we undid the

last performed scale up (equation 4). If we already performed

k scales up with k > 0, we calculate the AWT as following:

λ =
∑

i

λi, µ =
∑

i

µi (3)

AWT =
k

(k − 1) × µ − k × λ
−

k

(k − 1) × µ
(4)

if the average waiting time calculated in equation 4 is

lower than the highest deadline in the system, the system is

able to deliver required QoS if some physical resources are

released. We perform a scale down in this case and undo the

last performed scale up. However, in the case of horizontal

scaling down, we do not remove the last created VM, instead

we remove the farthest VM from clients to decrease at most

propagation delay. Therefore we allow the system to adapt to

client movements and density. if k = 0, then AWT = 0, and

no scaling down can be performed.

B. Service Placement Orchestrator

In order to calculate the optimal provisioning plan of a

service graph request in such a multi-site cloud infrastructure,

we use in this work a solution called Multi-site Orchestration

System (MOSt) which relies on a placement algorithm called

IGM (Iterative Graph Mapping) described in [14]. MOSt

permits to find the best placement of the service request graph

onto a networked multi-site cloud infrastructure. Each site is

located in a specific geographical location and represented by

a full IaaS cloud operated by a Site Manager (e.g., Openstack

[15]) which has its own service portfolio and pricing. The

system is responsible for the global provisioning only, meaning

4

Service Provider

(6) Network

Configuration

(5) Post

Configuration

Site Manager

(i.e. OpenStack)

VM Gateway VM Service VM Postconf

(3) Provision Physical Resources

(7) Configure

VM Gateway

(8) Configure

VM Postconf

(2) Deploy eHealth

Services

Global Orchestration

MOSt++

(1) Sends eHealth Services (11) Sends Results

Network

Manager

Post

Config

(10) Use the postconf

script installed the VM

(9) Use the network

script installed the VM

(4) Reports details

about created VMs

Figure 4. MOSt++ components and global architecture

that it will decide which service component will be initiated

where (i.e. which datacenter site). Local provisioning depends

on the local implementation. Therefore the core system of

MOSt is responsible for building the provisioning plan and

requesting the underlying sites to instantiate or replicate the

resources based on the demand changes of the patients, on

mobility patterns in order to fulfill the SLA terms.

The handling of a customer service request deployment is

achieved in three phases:

1) Multi-site provisioning phase: MOSt calculates the op-

timal provisioning plan and engages the resources.

2) Post-configuration phase: MOSt launches the post-

configuration of the deployed VMs based on the cus-

tomer’s request.

3) Networking provisioning phase: MOSt launches the con-

figuration of the network connections between datacen-

ters sites to fulfill nodes communication requirements of

the service.

Figure 4 describes the complete diagram of a complex

service deployment process in a multi-site datacenter.

Although MOSt calculates the best placement at the initial

instantiation, it does not however guarantee the QoS delivered

to patients during its all lifetime. In order for the CP to

ensure that the SLAs terms are not violated, two solutions

are possible:

1) scaling up/down the resources provided to the service

based on the expected load or,

2) scaling up/down by duplicating the service components

and efficiently load balancing between them as described

in [16], [17] and [18].

However, both solutions introduce higher costs to the cus-

tomer as well as weak resource utilization for the cloud

provider.

In this context, we propose to leverage MOSt to MOSt++.

A solution with new features such as dynamic auto-scaling

management of complex services to solve both problems. The

main features of MOSt++ are the capacity to monitor the

eHealth service QoS and to scale up and down dynamically

the computing resources allocated to these services in order

to fulfill the patient’s SLA terms.

IV. IMPLEMENTATION AND EXPERIMENTATION

The aim of the implementation is to highlight how MOSt++

will achieve the automatic scale up/down of services in a

distributed cloud infrastructure.

A. OpenStack Infrastructure

For our experimentation, we have used OpenStack as a

cloud management operating system for our data centers.

The substrate nodes in the network graph are sites located

in different geographical locations. Each site is a full IaaS

cloud operated by a Site Manager (OpenStack in our imple-

mentation) which has its own service catalog and price. Node

resources are Virtual Machines and Storage Volume that cloud

customers (patients) may request, and their price depends

on the node, service and the type of the resources (Virtual

Machine/Volume). In our design, MOSt++ system plays the

role of the global orchestrator that interfaces with the various

underlying sites via OpenStack API.

B. Auto-scaling Evaluation

We have implemented the MOSt++ component and con-

ducted a collection of evaluations, with and without the auto

scaling mechanism. In order to evaluate the performance of

auto scaling in this distributed cloud infrastructure, we have

instantiated three sites, each site executes its own OpenStack

platform. We have conducted an experiment to highlight the

efficiency of the auto scaling mechanism and its impact on

the users QoS. We deployed an eHealth service in one of the

three sites. We have used Poisson distribution for the request

model, λ parameter represents the requests arrival rate.

We considered that the medical healthcare provider wants

the deadline to be respected for at least 99% of the requests

(failure rate equal to 1%), however no more than two scaling

up can be performed to keep the cost affordable. We send

equal numbers of requests from two distinct locations (When

λ = 100, it means we are sending 50 requests per second

from location 1 and the rest from location 2). Each 5 minutes

we change the arrival rate value and calculate the average

failure rate during these 5 minutes, and indicate whether a

scaling occurs. We can observe the evolution of the failure

rate in Figure 5 for different λ. For low λ, the service

is capable of treating all incoming requests. However, for

λ ≥ 500 requests per second, the failure rate starts to increase

significantly without the auto scaling mechanism, while it’s

maintained when performing auto scaling. With MOSt++, an

SLA violation is detected and a replica has been created

to allow more requests to respect their given deadline and

enhance the system’s performance. However, for λ = 1000
requests per second, the cost limitation prevented more than

two scales up which were insufficient to maintain the required

QoS.

5

50 300 400 500 600 1000 1000 900 800 700 600 400 300 100 50
0

1

2

3

4

5

Requests arrival rate λ (req/s)

P
e

rc
e

n
ta

g
e

 o
f

v
io

la
te

d
 r

e
q

u
e

s
ts

Percentage of violated requests in terms of time deadline with and without auto scaling mechanism

0

1

2

3

N
u

m
b

e
r

o
f

m
a

c
h

in
e

s

MOSt++ (with auto scale)

MOSt (without auto scale)

SLA violation

Scale ups
vertical scaling

horizontal scaling

Figure 5. Percentage of violated requests in terms of time deadline with and
without auto scaling mechanism

V. CONCLUSIONS AND FUTURE WORKS

In this work, we have presented a new contribution towards

an efficient auto-scaling mechanism for an eHealth Service

Provider in a Cloud infrastructure. With the development of

cloud and eHealth technologies, eHealth service providers

are requiring new mechanisms to efficiently instantiate their

eHealth services in cloud infrastructure and ensure that al-

located resources are compatible with the signed SLA terms

and QoS terms with their customers. We have proposed in

this paper a location aware auto-scaling mechanism (MOSt++)

that leverages a previously developed service orchestration

mechanism called MOSt. The new component called MOSt++

allows to calculate the best provisioning plan for complex

eHealth services requested by an eHealth service provider.

These services providers are also requesting efficient and au-

tomatic scale up and scale down mechanism. This auto-scaling

mechanism relies on vertical and horizontal provisioning with

application-delay constraints. MOSt++ has been implemented

and its performance analyzed and highlighted its value. Further

works are planned in this area to enhance the capabilities of

MOSt++ to interpret any high level service requirement and

translate it into infrastructure level mechanisms.

ACKNOWLEDGMENT

This research is partially funded by the AMSud SLA4Cloud

project. Thanks to all the partners of the project who have

helped with their discussions to improve the research work

presented in this paper.

REFERENCES

[1] J. E and all., “A wireless body area network of intelligent motion sensors
for computer assisted physical rehabilitation.” J Neuroeng Rehabil.,
vol. 1, no. 6, 2005.

[2] C. Otto, A. Milenković, C. Sanders, and E. Jovanov, “System archi-
tecture of a wireless body area sensor network for ubiquitous health
monitoring,” J. Mob. Multimed., vol. 1, no. 4, pp. 307–326, 2005.

[3] P. Mell and T. Grance, “The nist definition of cloud computing,” NIST

Special Publication 800-145, September 2011.
[4] E. C. Project. Extensible architecture and service infrastructure for

cloud-aware software. [Online]. Available: http://www.easi-clouds.eu/

[5] M. Chen, J. Wan, S. Gonzalez, X. Liao, and V. C. M. Leung, “A survey
of recent developments in home M2M networks,” IEEE Communications

Surveys and Tutorials, vol. 16, no. 1, pp. 98–114, 2014.
[6] O. Diallo, J. J. Rodrigues, M. Sene, and J. Niu, “Real-time query

processing optimization for cloud-based wireless body area networks,”
Information Sciences, vol. 284, no. 0, pp. 84–94, Nov. 2014.

[7] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar,
“Towards composition as a service - a quality of service driven ap-
proach,” in Data Engineering, 2009. ICDE ’09. IEEE 25th International

Conference on, March 2009, pp. 1733–1740.
[8] C.-w. Tsai, J. J. P. C. Rodrigues, and S. Member, “Metaheuristic

Scheduling for Cloud : A Survey,” Systems Journal, IEEE, vol. 8, no. 1,
pp. 279–291, 2014.

[9] Y. Ahn, J. Choi, S. Jeong, and Y. Kim, “Auto-
scaling method in hybrid cloud for scientific applications,”
in The 16th Asia-Pacific Network Operations and

Management Symposium, 2014, pp. 1–4. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6996527

[10] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Proceedings - 2011

IEEE 4th International Conference on Cloud Computing, CLOUD 2011,
2011, pp. 500–507.

[11] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen,
“Workload Predicting-Based Automatic Scaling in Service
Clouds,” 2013 IEEE Sixth International Conference on

Cloud Computing, pp. 810–815, 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6740226

[12] Y. W. Ahn, A. M. K. Cheng, J. Baek, M. Jo, and H. H. Chen, “An auto-
scaling mechanism for virtual resources to support mobile, pervasive,
real-time healthcare applications in cloud computing,” IEEE Network,
vol. 27, no. 5, pp. 62–68, 2013.

[13] C. Janssen. (2014) Techopedia: What does pay as you go (payg) mean?
[Online]. Available: http://www.techopedia.com/definition/26951/pay-
as-you-go-payg

[14] K.-T. Tran, N. Agoulmine, and Y. Iraqi, “Cost-effective complex service
mapping in cloud infrastructures,” in Network Operations and Manage-

ment Symposium (NOMS), 2012 IEEE, April 2012, pp. 1–8.
[15] “OpenStack Cloud Software,” Available at : http://www.openstack.org.
[16] J. James and D. B. Verna, “Efficient load balancing algorithm in vm

cloud environment,” International Journal on Computer Science and

Engineering (IJCSE), vol. 4, pp. 1658, 1663, 2012.
[17] P. S. Meenakshi Sharma, “Performance Evaluation of Adaptive Virtual

Machine Load Balancing Algorithm,” International Journal of Advanced

Computer Science and Applications(IJACSA), vol. 3, no. 2, 2012.
[18] M. D. Shah and H. B. Prajapati, “Reallocation and allocation of virtual

machines in cloud computing,” CoRR, vol. abs/1304.3978, 2013.

6

