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SUMMARY

We show that information leakage occurs in video over IP traffic, including for

encrypted payloads. It is possible to detect events occurring in the field of view of a camera

streaming live video through analysis of network traffic metadata including arrival time

between packets, packets sizes, and video stream bandwidth. Event detection through

metadata analysis is possible even when common encryption techniques are applied to the

video stream such as SSL or AES. We have observed information leakage across multiple

codes and cameras. Through timestamps added to the x264 codec, we establish a basis for

detectability of events via packet timing. Laboratory experiments confirm that this event

detection is possible in practice and repeatable. By collecting network traffic captures from

over 100 Skype video calls we are able to see the impact of this information leakage under

a variety of conditions.
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CHAPTER I

INTRODUCTION

We have been able to demonstrate that information leakage occurs in encrypted video over

IP traffic. Across a range of codecs tested, we observed that through network traffic analysis

it is possible to detect events occurring in view of a camera streaming live video. This work

is similar in concept to voice over IP work by Wright et al. [33], who detected spoken

phrases through analysis of audio network traffic. An original investigation into this area

was conducted by Suriyanarayanan [29] which established that events could be detected

through analysis of video network traffic. We expand on this previous work by establishing

the theoretical basis for information leakage in streaming video and performing several

experiments to quantify what types of events are detectable.

We found that variations in packet size and arrival time could indicate activity in a

video stream and tested what types of events are detectable with a variety of codecs, cam-

eras, and processing hardware. We focus particularly on the H.264 [1] codec both in the

Skype peer-to-peer video chat network [2] [12] and the open source x264 video encoder [9]

implementations. We demonstrate the connection between varying encode times based on

events being encoded and the resulting variation in packet arrival times by collecting timing

measurements from the x264 encoder. We then establish the repeatability and consistency

of measurements for a single camera and computer in a laboratory environment. With con-

sistent results in a laboratory environment we are able to algorithmically detect events. We

have attempted to classify events by type using the k-means auto classification algorithm

but have thus far been unsuccessful. We repeated our laboratory experiments in a broader

environment by recruiting Skype users to call our server and record a specific sequence of

activities. We were able to observe a much wider variety of network traffic measurements

in this manner. Our preliminary manual analysis of these recorded sessions showed that

in over 70% of captures some event was discernible, with much higher probability in high
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bandwidth connections.

In Chapter 1, we introduce the work and give a summary of findings. In Chapter 2,

we give a background of relevant information for video capture and encoding. We discuss

related work in Chapter 3, covering information leakage in VoIP and side channel attacks.

Chapter 4 forms the main body of this document. Section 4.1 discusses the theoretical

basis of information leakage throughout the video pipeline. Our original tests showing

event detection in a variety of codecs are documented in Section 4.2. We give evidence

for our encoder performance theory through time stamps added within x264 encoder in

Section 4.3. In Section 4.4, we demonstrate repeatability of event detection in a laboratory

environment with Skype’s H.264 codec. We extend our experiments outside the laboratory

in Section 4.5 by collecting and analyzing video traffic captures from other Skype users.

Finally, in Chapter 5 we conclude with the results of our research and a discussion of future

work.
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CHAPTER II

BACKGROUND

2.1 Video Encoding

To appreciate the context of this work, some understanding of video encoding and image

processing is necessary. This section gives some of the video encoding background relevant

to this research. A short overview of video compression is given in [27]. More detailed

information about video encoding can be obtained from [23].

Video encoding begins with raw image data from a camera’s photo sensor array. Photons

reflected from a subject strike a sensor element and produce an analog electrical response

corresponding to the wavelength and intensity of the light. This analog output is digitized

as an array of pixels in a particular data format. The number of individual sensing elements

in a camera’s photo sensor array determines the maximum effective resolution of the final

image. A small sensor array, with relatively few photo-sensing circuits, will result in a

low quality image. A large sensor, with a high density of quality photo-sensing circuits,

makes it possible to capture detailed high resolution images. The electrical and photo-

reactive characteristics of the sensor materials and the reaction speed of the circuitry will

determine how much time is needed to gather enough light to make a distinct measurement

and therefore the maximum rate at which new, high-quality, images can be produced from

that camera. A still camera will produce a single digitized representation of the light seen

through its aperture while a video camera will produce a stream of such images.

There are many data formats which can be used to represent a captured image. The

classic RGB format uses one byte each to specify the intensity of red, green and blue light

for each pixel. YUV format instead represents color as luminance and chrominance and

versions of YUV specify how many bits are used to compose a pixel in that format [24]. For

example, the 442 in YUV-442 corresponds with 4 bits used to represent the luminance, and 6

bits for chrominance (Cb, Cr). There are 4 bits Cb, and 2 bits Cr which together represent
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coordinates in a two dimensional color space [23]. Other representations (e.g., YUV444,

YUV420, YUV12) may be used based on what will produce an image which yields a quality

sufficient for the particular application. Using fewer bits to represent each pixel will result

in a smaller image size but also a less precise representation of color. For example, YUV12

which uses 1 bit for luminance, 1 for Cb, and 2 for Cr, will only use 4 bits per pixel rather

than the 10 bits per pixel required for YUV-442 but will have a much more limited range of

colors that can be represented by that format. YUV pixel formatting is often preferred over

the arguably more direct RGB color format because it can take human color perception into

account, allowing smaller data sizes tailored to what the human eye can actually discern.

Once a raw image is captured, it undergoes compression and format changes to match

the standard of the particular codec used. In our work, we are focused primarily on the

H.264 codec which is used in the Skype video chat client, and the MJPEG codec, which

is used widely in security applications. We also give some consideration to the VP8 [20]

codec, the now open source codec used for Google Hangouts. One of the oldest and simplest

codecs is the MJPEG (motion JPEG) codec which takes a series of JPEG [31] compressed

images and displays them in sequence to produce a motion picture [23].

Compression techniques in general convert a large data set to a smaller data set by

finding patterns and repeated information [32]. The original data can then be represented

in a smaller size expressed in terms of those patterns. An image that has many patterns

is considered to have low entropy (i.e., high redundancy) and will be very compressible.

Conversely, an image with high entropy (i.e., low redundancy), will contain fewer patterns

resulting in less compressibility. An image with high entropy is often said to contain a lot

of high frequency information.

In image processing applications, it is possible that some of the high frequency in-

formation may be ignored with minimal impact on the usability of the compressed file.

Compression which drops some high frequency data is considered lossy compression [10].

A compression process that allows the original data to be recovered exactly from the com-

pressed file is called lossless compression. This is the type of compression used for text

or other files where no high level information about the use of the data is known by the

4



compression algorithm, and loss of any information would be considered a failure in the

algorithm. The high level information that allows a lossy image compression algorithm to

drop some data is the fact that humans can only see so much detail in an image.

JPEG uses a combination of lossless and lossy compression. JPEG lossy image com-

pression takes advantage of the fact that the file to be compressed is an image and there are

details in an image that the human eye cannot perceive. The brain will also fill in details

that it knows should be in a particular image even when the actual detail is not there. This

is what allows us to recognize someone from a blurry photograph.

Figure 1: Lossy compression examples 80%, 84%, and 87% compressed, left to right.

Figure 1 demonstrates the effects of lossy compression on an image which is 563 KB

uncompressed. At 80% compressed (112.3 KB), the image remains sharp, retaining most of

its original detail. This is achieved by removing some high frequency information content of

the image that is not even seen in a casual glance. The pixels are not actually deleted, but

rather are changed to match adjacent pixels. This results in more similar pixels throughout

the image decreasing the overall entropy. The image is then compressed using lossless

techniques to achieve the final compression level. The center panel, at 84% compression

(88.9 KB), shows that some detail has been lost in the background grass, in the hair,

and around the eyes due to lossy image processing. In the rightmost panel there has been

significant loss of high frequency detail which has resulted in color distortion. This reduction

in detail allows the image to be compressed an additional 15.7 KB to 87% compressed (73.2
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KB), but the loss of detail is too extreme to be useful in general. A balance is necessary

with lossy compression to achieve a small output size while still producing an image quality

that is acceptable and useful to the end user.

Lossy and lossless compression are both spatial compression techniques which take ad-

vantage of the similarities within a single still image. For video, we can also take advantage

of temporal compression, a technique used by the H.264 and VP8 codecs. Because individ-

ual video frames are captured many times per second (30 frames per second is common),

adjacent images or frames will contain much of the same information. For this reason, a

video sequence may be broken up into a series of I, P, and B-frames where different strategies

of temporal compression are used.

Figure 2: Temporal compression content sources for I, P, and B frames.

Figure 2 shows how temporal compression [13] is performed for each frame type. An

I-frame (Intra-coded-picture) does not take advantage of any temporal compression and

employs only spatial compression techniques. MJPEG could be said to contain only I-

frames. Since other frame types are based on each other’s data, I-frames are necessary in

an environment which experiences data loss to ensure that after a loss the codec will be

able to recover. A P-frame (Predicted-picture) compares its content with the previous I

or P frame and represents only the differences in image content compared to its reference

frame. A P-frame could be considered a compressed delta of the differences between two
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frames. A B-frame (Bi-predictive-picture) utilizes comparison with both the previous and

subsequent I and P frames respectively. It represents its frame as a delta from the source

frame that is most similar to that portion of the frame. These P and B frames are what

give newer codecs such as H.264 and VP8 a significant reduction in output size.

The set of frames from one I-frame to the next is referred to as a group of pictures (GOP).

In Figure 2, the GOP size is nine which counts the P and B frames between two I-frames

and the preceding I-frame. Keeping the GOP size small is a concern when information may

be lost during transmission. If any portion of an I-frame is lost, subsequent P and B frames

which contain deltas from the I-frame continue to visually propagate errors from the loss

of the single I-frame across multiple subsequent frames until a new I-frame is transmitted,

starting a new GOP. A smaller GOP size then results in a more reliable transmission with

few artifacts (pixels that are rendered incorrectly due to information loss), but also takes

less advantage of the excellent compression available from P and B frames.

Moreover, the computation needed to find an optimal set of pixels to compare between

frames is complex and time consuming, but the resulting output data format (including

P and B frames) is relatively simple. This allows the decoder on the receiving end to be

constructed much more cheaply. This front-loading of work in the video pipeline with a

complex encoder and simple cheap decoder has several benefits. For a professional recording

or live broadcast, the studio can use high quality equipment to ensure that the video pro-

duced has been encoded in the best way possible to represent their footage. The consumer

of the video can then use a simple decoder in their television, computer, or hand-held device

making it easier to afford to access the video content. Also, by front-loading the work of

encoding the resulting compressed data is much smaller which makes for easier transmission

of the data whether wirelessly or when stored to media such as a DVD or Blu-ray.

While many of these video encoding decisions are practical, we will show that these

features, together with current encryption methods, result in information leakage in trans-

mitted video streams. We show the presence of this information leakage through network

traffic analysis of common encoding applications in Section 4.2.1 and demonstrate its origins

in encoder algorithm implementation in Section 4.3.
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CHAPTER III

RELATED WORK

3.1 Phrase Detection in Voice Over IP

Our work focuses on side-channel attacks against streaming video technologies. Related

research by Wright et al. [33] investigates the ability to decode spoken phrases from voice

over IP (VoIP) traffic. Video over IP transmissions are similar to VoIP in that IP traffic is

expected to traverse untrusted domains. For this reason video and voice only chats are both

encrypted in an attempt to prevent eavesdropping by an adversary. It was found, however,

that due to the nature of the spoken word and common audio encoding techniques, current

VoIP encryption practices are insufficient [33].

Common voice codecs are based on code-excited linear prediction which has been shown

to produce predictably sized packets based on the input audio stream. Specifically, spoken

words can be broken down into the individual sounds uttered to construct them. These

component sounds are called phonemes and there are only about 50 such phonemes in the

English language. This taken together with the similarity of packet sizes for each specific

encoded phoneme gives a strong starting point for decoding speech through network traffic

analysis [33]. Wright et al. shows that through their techniques, it is possible to identify

a specific spoken phrase from encrypted VoIP traffic with accuracies exceeding 50%. Due

to the differences in video compared to voice traffic, our work focuses on identifying what

the phoneme equivalent would be in video over IP traffic. Through analysis of network

traffic metadata such as packet size, inter-arrival time, and overall stream bandwidth, we

can see that information is being leaked. Similar to VoIP, the commonly used encryption

techniques for video over IP do not pad or attempt to obfuscate the size or timing of their

input data leaving all of these metrics available for exploitation by an adversary.
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3.2 Side-channel Attacks

Side-channel attacks exploit predictability in the operation or output of cryptographic al-

gorithms. This predictability allows an adversary to learn something about the plain text

or key without actually deciphering it; this is information leakage. Figure 3 demonstrates

that while a cryptographic algorithm may be strong in theory, the way that algorithm is

employed may allow information leakage to occur. In this case the strong AES algorithm

used in electronic code book (ECB) mode for image encryption allows a side-channel attack

to occur. An attacker does not need to decrypt the center image in order to determine

what was originally encrypted. Through patterns in the cipher text, the overall message of

the original images becomes apparent. The right panel, which uses the improved cipher-

block chaining (CBC) mode [14], shows that the same frequency analysis attack that was

successful in ECB mode can no longer occur.

Figure 3: Vulnerability of ECB versus CBC encryption to information leakage.

A side-channel attack does not focus on breaking strong cryptographic algorithms, but

instead focuses on analyzing side effects of secure processes to gather information through

alternative methods. Early side-channel attacks allowed an eavesdropper to monitoring

electromagnetic emmisions from a computer monitor to determine what was being displayed

[30]. Recently it has been demonstrated that using an iPhone’s accelerometer, an attacker

can determine passwords being entered on a nearby keyboard [26].

Other side-channel attacks exploit the side effects of the encryption process and have

even been used for encryption key retrieval. For example, a timing or power monitoring

attack takes advantage of the differing complexity required to process a zero or one bit
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in a key. Variations in power consumption and computation time result from an effort

to optimize performance in these areas [16]. Most optimizations in hardware circuity and

software algorithms which allow an operation to complete more quickly, when possible, are

preferable. This results in higher throughput and lower power consumption. However, when

the difference in processing time and power use for processing a zero bit in an encryption

key is significantly different than for processing a one bit, those optimizations can be taken

advantage of to reveal the bits contained in the key itself. Kocher [25] demonstrated that

this type of was possible against RSA decryption keys. Brumley [16] extended this work

showing that timing attacks can be executed remotely.

Our work does not attempt to reveal the original content of a transmitted video but

instead uses network traffic analysis to show that there is a predictable response in the

network traffic when events occur in view of a camera transmitting live video. Chen et al. [17]

discusses the increasing number of web applications vulnerable to side channel analysis and

discusses that effective and efficient mitigations will have to be tailored to each specific

application. Dyer et al. [18] discusses methods used to prevent identification of websites

visited by a user through network traffic analysis. Their work stipulates that that there are

no efficient countermeasures to side-channel traffic analysis for website identification. We

demonstrate that side-channel attacks are possible against live video over IP transmissions

and show what types of analysis reveal information about the encrypted content.
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CHAPTER IV

INFORMATION LEAKAGE IN ENCRYPTED IP VIDEO TRAFFIC

4.1 Leakage Factors Throughout the Video Pipeline

Throughout our investigation, we have identified a number of factors which we believe

affect the detection of recorded events through network traffic analysis (NTA). This list of

contributing elements is given in Table 1. Each of the items listed in Table 1 fit into a stage

of the video encoding pipeline as represented in Figure 4.

Figure 4: Video transmission pipeline.

This figure is useful in conceptualizing the video encoding process, but it is not a precise

representation of how encoders are actually implemented. We represent the general flow of

information from image capture by a video camera, through network transmission, packet

interception and analysis of network traffic. There is no representation of the video decode

and display process which would occur after reception of network packets by the destination

platform. Traffic analysis can occur regardless of whether or not the video is ever received

and decoded at its final destination. Some steps in the pipeline such as encoding and

encryption may also be interleaved in a real world system, but we can still think of the

progression of data through each step as indicated here.

Each of the following sub-sections elaborates on the items in Table 1 and illustrates how

each item could contribute to information leakage through NTA.
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Table 1: Considerations for information leakage detection in the video encoding pipeline.

Image Content

Image complexity and compressibility Speed of moving object
Light to dark transition Moving object contrast with background
Percentage of frame changing Direction of motion
Still to moving scene or object

Video Camera

Image capture resolution Sensor quality
Focus optics Frame rate

Encoding Application

Encoding standard (H.264, MJPEG, VP8) Resolution
Implementation of encoding algorithm Compression effort
Encoder settings Output data rate target
Frame rate Effects when encoder starts and stops
Constant vs. variable frame rate

Encryption

Encrypted vs. unencrypted data Portion encrypted:
Type of encryption (AES, SSL, VPN) - Payload only
Encrypted tunnel - Payload and video headers
Padded data

Computing Platform

Processor speed Other concurrent applications
System memory Camera interface (USB, PCI, embedded)
Operating system scheduling

Network Transmission

Protocol type used (TCP, UDP, RTP) Network bandwidth
Type of network: Jitter
- LAN Varying route through network
- Wi-Fi Contending traffic
- Internet Traffic tap point
- Mobile

Traffic Analysis

Packet filtering Statistical analysis methods:
Source and destination IP address - Moving average
Source and destination port - Standard deviation
Inter-arrival time of packets - Statistical distributions of metrics
Packet size - Frequency analysis
Overall video stream bandwidth Time window length for data averaging
The number of packets received

12



4.1.1 Image Content

The complexity of the captured image is reflected in the network traffic by the bandwidth

of the encoded data. Complex images are less compressible, and due to theoretical limits

on the compressibility of data, they will require more data to be transmitted. As a result

of temporal compression techniques used in codecs like H.264, a still scene will be highly

compressible. Even if the content of that scene is very complex, if it is not changing, it can

be represented as a repetition of already transmitted data, an essentially empty P-frame.

Moving objects in a scene prevent the simple situation of repeating the previous frame and

require additional data to be transmitted and additional computation time to find the set

of pixels on which to base the new changes. This implies that motion can result in both a

bandwidth change as well as a packet arrival time delay.

Similarly, a bright to dim lighting transition has the effect of changing, even if subtly,

every pixel in the represented image. This large change across the entire scene results in

a large amount of new data to be sent across the network. Moreover, a bright to very

dark lighting transition has the effect of changing the amount of detail that is visible in

the texture of the scene, causing a change in the complexity of the image in addition to a

reduction in the range of perceived colors. In the reverse the same is true, in a very dark

scene where image complexity is hidden until lighting increases, the compressibility of the

image is greatly impacted. These types of change have an effect on both temporal and

spatial compression and therefore are more likely to appear across codecs.

Other factors impacting motion detection include the speed and size of a moving object.

If the object moving only effects a small percentage of the image space it will have a

correspondingly small change in the network traffic and may be lost below the noise floor.

Also an object moving slowly through a high frame rate capture can be represented as a

small change set between frames. An object moving very quickly through a low frame rate

capture may be missed altogether or may affect only a small number of frames, making it

less observable in network traffic variations. In a similar fashion, the direction of motion

might also be detected based on variations in the size of individual packets representing

portions of a frame, but no obvious indicators have been observed.
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4.1.2 Video Camera

The capabilities of the capture device will also have an effect on the character of the net-

work traffic. Because the capture device will not change during transmission, however,

whatever effect is seen will be observed throughout the entire video stream. Video camera

characteristics may cause events to be more or less easily observable in NTA.

The resolution of the captured image gives a baseline for video bandwidth. However,

other factors will also have an effect on this baseline such as the focus and resulting sharpness

of an image. A high resolution image in good focus will capture more complex surface

textures thereby resulting in a more complex image requiring higher bandwidth. Also,

more time is required to compute changes for moving objects with detailed texture, possibly

resulting in longer packet arrival times. An out of focus capture blurs image details and

decreases data complexity and therefore network traffic responsiveness to observed activity.

Similar to the optical focus of an image, the camera sensor quality will have an effect on

image complexity independent from the output resolution of the camera. A digital camera

has an array of photo sensors which each sample the wavelength and intensity of arriving

photons as an electrical signal. If the number of pixels in the digital image output is much

larger than the number of individual elements in the sensor array, then those pixels will be

some interpolation of color values which creates an effect similar to image blurring. This

results again in less detailed textures and a less complex image transmission.

Each camera will have a maximum effective frame rate it can operate at based on its

sensor technology. Each photo sensor in the array must be read and reset before the next

capture with sufficient time given for the sensor output to stabilize before each reading. An

attempt to encode a video at 20 frames per second using a camera which is only capable of

refreshing five times per second would result in the same data being transmitted four times.

With temporal compression this results in empty change sets.

Taken as a whole, a high quality camera in good focus has been observed to result

in more dramatic changes in bandwidth and packet arrival times as events occur. A low

quality camera inherently creates a picture which is much less detailed and dynamic and is

thus less susceptible to NTA.
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4.1.3 Encoding Application

The largest variation for detectability of events through NTA comes with the specific en-

coding application. The encoding standard specifies the format of data transmitted and the

type and aggressiveness of methods used to compress the video. MJPEG encoding sends im-

ages at a relatively constant frame rate. This causes most event detection to come through

changes in bandwidth. The H.264 standard, which allows for variable frame rate video, can

have much higher variability on the arrival time of packets. An encoding standard such as

MJPEG or H.264 is only a specification for conforming to a particular protocol and does

not generally give details on the specific algorithms used to implement the encoder software.

Two different implementations of the same standard may be done with widely varying

effectiveness in performance and viewed output quality. Commercial codec vendors attempt

to produce a fast, efficient encoder with good image quality while producing a small data

stream. A goal such as low data output size can make NTA event detection easier. For

example, a very aggressive compression algorithm may complete quickly for a simple image

block, but take somewhat longer for data with high entropy. This aggressive algorithm

results in higher variability in packet arrival times allowing NTA to make a distinction

between complex and simple images being transmitted.

Many encoder settings have the potential to increase or decrease event detectability.

Although the upper limit on effective image resolution and frame rate come from the video

camera, the encoder makes the final determination of what resolution and frame rate will be

transmitted. The compression effort and frame rate may take on many different values or

may be allowed to be variable at run time. For fixed settings, this may affect the character

of the video stream for its entire duration, while settings allowing for variable performance

may result in more dramatic changes in NTA throughout the transmission.

Finally, the most observable, and possibly most difficult to mask, event from the encoder

is when video transmission starts or stops. Due to the inherent bandwidth requirements of

real time video transmission, the beginning and end of a video stream are easily observable

and identifiable in NTA.
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4.1.4 Encryption

Of notable significance for traffic analysis of streaming video is the relatively small effect

that commercial video stream encryption has on the ability to detect events. Encryption of

data across networks has come as an afterthought, and the desire to minimize transmission

latency and limit overhead have constrained its effectiveness in obscuring transmitted video

content.

This work does not dispute the effectiveness of current encryption standards in ob-

scuring specific image content. Unencrypted video would certainly be more vulnerable to

eavesdropping than the methods currently employed. However, the detection methods and

leakage sources mentioned so far are based essentially on packet arrival time and bandwidth

analysis.

A specific goal of streaming encryption algorithms is to minimize the latency introduced

by encryption. The time to encrypt each block of data also needs to be constant to avoid

introducing a side-channel attack vector into the encryption algorithm itself. This results

in a small, constant time impact to each video packet sent. Again, to avoid information

leakage in encrypted output analysis, current encryption algorithms may pad data before

encryption. This is generally only up to a particular block or minimum output size and

these amounts are small by comparison to video transmission bandwidth [21] [22]. Since

latency and bandwidth are essentially maintained through these goals, NTA techniques

already mentioned are not significantly affected by application layer encryption techniques.

Other considerations include the case where only the image payload may be encrypted

rather than both the payload and image headers. If image headers are left unencrypted

then the data contained in those headers contains more specific and detailed information

about the relationship between frames and other image blocks which would be vulnerable

to attack.

Application layer encryption techniques, including AES and SSL, encrypt the network

packet payload but not the packet headers themselves, which include the source and destina-

tion IP addresses as well as the source and destination ports. The port number in particular
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allows the data stream for a particular application to be uniquely identified. This informa-

tion has been used in this work to easily separate video traffic from other network traffic

prior to packet arrival time and bandwidth measurements. Encryption provided through a

VPN would somewhat obscure address and port information, but depending on the band-

width of other traffic being transmitted along the same path, the video bandwidth may

sufficiently overshadow other network traffic so as to render this extra effort ineffective.

4.1.5 Computing Platform

Expecting that variations in the complexity of image processing drives the detectability

of events in network traffic, the capability of the computing platform is again expected

to shape the traffic patterns. The processor speed and available system memory will set

limits on the capabilities of the encoding software. The upper limits of processing speed

and memory capacity can be considered fixed for the duration of a single video call, but the

portion of those resources relegated to the video chat application may vary throughout the

call.

We have mentioned the frame rate of the video as affecting the arrival time of network

packets, but for a variable frame rate codec the image content complexity may not be the

only driver for change. Other applications running concurrently on the system will affect

the resources available to the encoder. If there are many applications running and the

encoding process cannot be scheduled often enough, the encoder may adapt by decreasing

the frame rate or encoding effort. Such variations in scheduling frequency would be seen in

the network traffic analysis and would erroneously appear to indicate activity in the captured

video. Similar issues could arise for other applications actively using system resources, such

as a virus scan.

Other limitations in computing hardware include the interface connecting the camera to

the rest of the system. Total video bandwidth would be limited by raw image bus capacity.

For dedicated camera hardware, we would expect all of these computing platform factors

to be negligible or disappear entirely, making the produced traffic stream more predictable.
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4.1.6 Network Transmission

The state of the network and the protocols used to transmit the video stream are expected to

impact the detectability of events through network traffic analysis. Each network protocol

introduces a different amount of transmission overhead such as whether lost packets are

ignored or retransmitted and the content of packet headers. Packets arriving very late

due to a request for retransmission would be grouped with other packets arriving at a

similar time, skewing both timing and bandwidth measurements. Protocols which allow

for some packet loss in video transmission are common and generally improve the viewing

experience. For NTA of encrypted traffic, dropped packets would appear as longer delays

between packets and lower bandwidth. Some video protocols use feedback from the target

system to allow dynamic adjustment of encoder settings based on network conditions. As

conditions change, the target bit rate of the encoded video may be increased or decreased.

This would be observed in the network traffic as a change in bandwidth but is not the result

of a recorded video event.

The available network bandwidth will vary dramatically between network types. A high

bandwidth, low latency network is expected to leave packet timing data best intact. For

wireless networks the likelihood of packets being lost, possibly requiring retransmission, is

increased which would skew the measurement of timing information. Although some jitter

is expected in timing measurements, the standard deviation from the mean end to end

transmit time would need to be low in order to use packet timing data for event detection.

Variations in end to end transmit time could result from the specific routing of packets

across the network, the workload of switches or routers along that route, the medium used

for transmission at each hop, or other unique conditions.

The tap point for packet collection would also have an effect on the data collected.

Packets collected near the transmitter would not experience the additional jitter and timing

variations introduced by network traversal, but if the total network path is clear enough

those measurements may not be strongly impacted. It may be possible to perform NTA at

a midpoint assuming that the route was predictable and consistent.
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4.1.7 Traffic Analysis

A number of factors have been considered for NTA appropriate to video stream analysis.

We can use shallow packet inpection to gain information about the incoming packets. [28]

The packets can be filtered by IP addresses and port number in order to isolate a specific

video stream from other network traffic. For an uncongested network, the inter-arrival time

of packets may signify the rate at which data is being generated by the encoder. Assuming

that all data associated with a particular frame is sent as soon as that frame has been

encoded, those packets will arrive in a group closer to each other in time than to packets

associated with the previous or subsequent frame. This allows each frame’s data to be

isolated from other frames. Packet timing can therefore serve as an indication of frame

rate, and variations in frame rate can be associated with changes in encode times due

to captured activity. For video data transmitted from a file rather than in real time, no

inference could be made based on arrival time of packets, but for real time data which is

transmitted as soon as it is produced, in order to achieve low latency, packet arrival time

will be indicative of encode rate.

Packet size may be an indicator of packet content. For example, in the Skype appli-

cation, some similarly sized packets are sent at a regular interval even when no video is

being transmitted. Packet size therefore could allow some sub-classification of packets as

either video content or application overhead. By identifying and removing extra application

packets before analyzing the remaining packets as video content, event detection may be

improved.

Video stream bandwidth variations over time can serve as an indicator of activity since

simple images are encoded at a smaller size than complex and therefore less compressible

images. A significant drop in bandwidth could be an indication of changes in lighting while

a smaller, but still noticeable change could indicate more localized image content changes

such as a moving object.

The number of packets received in a time window is essentially a rough estimation of

the average inter-arrival time of packets in that same time frame. This metric on its own

yields information but is not as precise as direct measurement of packet arrival times.
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A number of statistical analysis methods have been considered and employed in NTA

for this work. The moving average helps normalize noise in packet measurements. Values

outside some standard deviation from the moving average indicate that an event of some

type has occurred, either in the recording itself or from other factors introduced throughout

the video transmission pipeline. As mentioned with packet size, by detecting and separating

small packets appearing at a regular interval as application overhead, the remaining packets

may be more effectively analyzed. This is essentially a frequency analysis of packet size over

time. Other frequency analysis may reveal additional information.

4.2 Initial Investigation

This section details the experiments we performed to determine to what extent information

leakage is occurring in live video streaming, including investigation of the source of the

events being measured. Analysis of the experimental results is included with the findings

in this section.

4.2.1 Automated Test Environment

Our initial experimentation aimed to produce the same phenomena observed in the previous

VoIP work and determine both what types of events could be detected and what factors

impacted the ability to detect recorded events in NTA.

An initial proof of concept by our group [29], performed analysis of network traffic

recordings from Wireshark which were post processed using MatShark, a portion of the

SharkTools [11] package. This method of post processing often made identifying events

unreliable. Movement or actions taken in front of the camera would sometimes register

as small changes in bandwidth or inter-arrival time, but other measurement noise made it

difficult to determine whether analysis was being performed correctly or if false positives

were being measured as successful event detection.

In order to improve the ability to tune detection algorithms and understand how various

types of events appeared in the network traffic, we switched from SharkTools post processing
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Figure 5: Light box for controlled test environment.

to real time processing using Python’s Pcapy interface. Pcapy essentially wraps the libpcap

library making live packet capture data, equivalent to that obtainable through Wireshark,

available in a programming environment. Through use of Pcapy and Python’s interface to

MatPlotLib, real time graphs of network traffic statistics could be plotted and inspected

for indication of events. This is the method used to obtain the captures shown in Figures 6

and 7.

With a framework for inspecting live packet capture data established, the next step

in experimentation was to create an environment where reproducible video captures could

be performed. A small radio frequency isolation chamber was re-purposed as a light box

where cameras could observe a subject in a controlled environment as shown in Figure 5.

Using an Arduino micro-controller board with pulse width modulating outputs, several

servos could be programmatically controlled through a serial connection. After creating a

simple command interface to the Arduino, single key commands could be used to control

the movement of a simple vehicle and analog dimming switch.

Each component of the test environment is labeled in Figure 5: a, is a D-Link DCS-932L

security camera which is configured for our tests to produce standard definition (640x480
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resolution) MJPEG video; b, is a Logitech c615 web camera which captures raw high

definition video at 1920x1080 resolution; c, is an incandescent lighting source; d, is an analog

dimmer switch with an attached servo that allows light intensity in the test environment

to be increased or decreased to arbitrary brightness; e, shows the forward and backward

path of motion for the test vehicle; f, is a pivoting arm which can be rotated left or right

at a controlled speed. The combination of forward and backward motion with left to

right movement is designed to simulate fast and slow objects of varying size moving past

the camera at varying but reproducible rates. When the chamber door is closed all light

observed by the cameras in the environment is regulated. Not visible in this figure is a

software controlled power switch which allows immediate switching from full brightness to

no light and back as would be encountered when a light was switched on or off in a dark

room.

4.2.2 Event Detection Across Multiple Codecs

Using this controlled test environment, we observed network traffic graphs as video was

transmitted using each of the cameras as well as through multiple encoding applications. For

the security camera, which contains its own network interface, the traffic was transmitted

directly from the device to the capturing computer platform through a single hop over a

local area network. For the video chat applications, a USB webcam was connected to a

second computer. Both the transmit and receive computers required an Internet connection

in order to log into video chat services, but both Google Hangouts and Skype established a

direct connection across the local building network once the connection was negotiated.

We verified that video transmission of a still scene yielded a stable measurement of

packet average inter-arrival times regardless of the camera or encoding application. Some

variation from this stable level was observed at the beginning of the transmission, but after

five seconds of capture average inter-arrival time (AIT) measurements would level out under

any of our capture methods. This stable rate varied between video sources, but is shown

in Figures 6 and 7 as approximately 7500 µs. The MJPEG video from the D-Link camera

was the most consistent in video transmission measurements with a similar measurement of
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AIT and bandwidth between measurements made on separate days. The video chat services,

however, seemed to negotiate a different bit rate each time a new chat was started. This

is consistent with our understanding of H.264 and video chat protocols. In order to ensure

the best quality of service for a variety of users, an original video connection was made at a

lower bit rate in order to ensure that that the call can be established. Once the connection

is stable and there is no measurement of dropped packets or other factors limiting video

quality, the protocol will attempt to negotiate a transition to a higher bit rate that is capable

of providing a better picture to the user. Across multiple connections, we generally observed

a traffic signature similar to that shown in Figure 6, but for connections originating from

an outside network or for more congested local traffic conditions, the measurements would

vary.

For each connection type, once a stable connection was established, the average inter-

arrival time, packet sizes, and connection bandwidth varied little over time for a still scene.

Once a stable connection was observed we would then initiate events by repositioning the

test vehicle or changing the lighting conditions. By positioning the test vehicle close to

the camera (a few inches away) and moving the arm in the field of view we could simulate

a large object moving. Under good lighting conditions and with a perceived large object

moving, we could observe the change in network traffic both from the Skype and Google

applications. We did not see any noticeable change from the D-Link, but this is consistent

with our understanding of the codecs.

For MJPEG, which does not take advantage of temporal compression, every frame is

transmitted in its entirety. The images are compressed, but for an object that moves within

the image where the background is uniform there is no significant change expected in the

compressibility of the image. Thus, traffic measurements remain constant through the time

frame of the motion.

For Skype’s H.264 encoding, as shown in Figure 6, as well as for Google’s VP8 encoding,

no figure shown, we do observe this motion reflected in network traffic measurements. Most

significantly, the average inter-arrival time of packets increases consistent with a short delay

in transmission of the packets for the frame containing motion. This is again consistent
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with our understanding of the H.264 and VP8 codecs which do take advantage of temporal

compression techniques. We discuss this phenomenon in greater detail in Section 4.3 but,

conceptually, for a still scene the encoder can transmit a delta of the previous frame which is

essentially identical to itself. Thus the computation needed to encode the new information

is reduced, and the quantity of information that must be sent is similarly small. When

motion is added to a scene, more time is required to compute the new encoding; during this

time no new information is sent. The delay is short enough not to be noticed by a human

observer but stands out in measurements accurate to the microsecond level. This appears

as an increase in packet inter-arrival time, a decrease in average packet size during that

gap, and a corresponding drop in the closely related connection bandwidth measurement.

Figure 6: Skype network capture marking time of object passed in front of camera.

Variations in the size and speed of the moving object were observed in NTA but not

with a linear relation to movement itself. When moving the test vehicle to the farthest

position from the camera most movements of the arm were not observable. It is expected

that at that distance the moving object occupied such a small portion of the image as to

be negligible in comparison to other noise factors. Also, in other experiments outside the

light-box a more dramatic change in the scene, which completely changed the scene content

in a short time frame, would register as a large anomaly in the average inter-arrival time
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(AIT) of packets. For example, this would occur each time we opened the door to the light

box.

Another significant factor observed in the measurements was the quality and intensity

of lighting in the scene. In a very dim scene, even a large object’s motion did not register

in traffic measurements. Objects observed under low light lose color content and with low

light the contrast between objects is reduced. This reduces the complexity of the scene and

corresponding encoding effort. It follows that, if it is difficult to detect a moving object

visually, it will be even more difficult to observe that change in the network traffic.

Correspondingly, dramatic changes in lighting were found to be very observable in net-

work traffic and not only for the H.264 codec but also for MJPEG. Figure 7 shows a network

capture from the D-Link camera’s MJPEG video which demonstrates a dramatic change in

all three of the metrics. At the time indicated by the dashed red line on the left, the lights

in the test environment were turned quickly off and then back on again approximately 5

seconds later.

Figure 7: D-Link network capture marking time when lights are turned off then on again.

Similar reactions were observed for both the Skype and Google Hangouts recordings

where changes in arrival time, packet size, and bandwidth all corresponded with the same

moment that the light in the room was turned off and then back on again. Packet capture
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graphs for these applications are included in Appendix B. The specific reason for the

changes in network traffic between the different types of codecs is expected to be different,

but the base understanding of how each of the codecs works is consistent with the network

traffic analyzed. For MJPEG video the dramatic change in the complexity and resulting

compressibility of the captured image, based on brightness, would change the size of the

transmitted frames and appear as a change in both packet size and bandwidth. The specific

reasons for changes in inter-arrival time for an MJPEG codec are still uncertain but could

be a result of the codec vendor implementation that slows down traffic when there are only

black frames to transmit.

For the Skype and Google applications, a change in inter-arrival time seems to be con-

sistent with a change in frame rate. For low complexity frames with similar content, the

frame rate was dramatically decreased. This is expected to be in relation to a conserva-

tion of network bandwidth where there would be almost identical frames transmitted. If

this were detected, the frame rate could be significantly decreased while still presenting a

good representation of recorded activity to the end user. In all three cases the decrease in

complexity of the image would result in higher compressibility and decreased bandwidth

utilization. This would vary based on how much change in light there was. In our test setup

as we varied the light in small increments, there was not generally any dramatic change in

the network traffic. If the light were only slightly dimmed in the test setup, or in a real

world case if the light in a room slowly dimmed as the sun set, there would be no imme-

diate indication of an event occurring, but the overall change would be measurable as the

bandwidth transitioned from a high to a low state.

Table 2 summarizes several video applications that were tested, with the corresponding

video encoding standard implemented by that application, effective methods for detecting

various types of events, and by which metric they were detectable. Light intensity changes

were detectable both through changes in the average inter-arrival time of packets as well

as bandwidth. These indicators were less well defined in the case of Skype traffic. Small

changes in light intensity were observable in all of the codecs except Skype. Dramatic

changes such as lights off to on were observable in all codecs tested. Motion is detectable
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Table 2: Test cases and detection methods.

Source Codec Detection Method Encryption

Small Lights Small Scene
Light On/Off Motion Content

Changes Change

D-Link Camera MJPEG AIT/BW AIT/BW BW BW None
Skype H.264 - AIT/BW AIT/BW AIT/BW AES-256
x264 H.264 - AIT/BW AIT AIT None
Google Hangouts VP8 AIT/BW AIT/BW AIT/BW AIT/BW SSL
WebRTC VP8 - AIT/BW AIT AIT SSL

AIT - Average Inter-arrival Time BW - Bandwidth

through the average inter-arrival time of packets for all but the MJPEG codec. For each

codec where motion was detectable, a variable frame rate is supported and is expected to be

the source of the AIT change. Even with MJPEG, a dramatic change in observed content

– such as a complete background change or a large subject matter change as in a person

occupying most of the frame moving out of view – would be observable, but this is more of

a representation of change in image content compressibility than of motion itself. For the

other codecs, smaller moments such as a hand wave or adjustment in sitting position could

be observed through NTA.

For all of these observations given in Table 2 the tests were performed, as previously

mentioned, over a local area network. Additional noise and complexity introduced through

larger networks or over longer distances such as an Internet connection would change the

detectability and decrease the ability to observe events through network traffic analysis.

Some of these specific effects are discussed further in Section 4.5.

It is again noteworthy that three applications noted in Table 2 used some form of

encryption, and while the content of each individual frame observed is not decipherable,

correlation can still be made between the images and events transmitted and the network

traffic metrics indicated.
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4.3 Encoder Timing Analysis of x264

To better understand the relationship between an encoder software implementation and

the resulting network traffic signature, we decided to measure the time required to encode

frames compared to the resulting network packet arrival times. We chose to make our

measurements for the x264 [9] open source implementation of the H.264 codec. This is the

same codec standard used by the Skype application, and while the specific implementation

of the standard is expected to be very different between the two software packages, the types

of algorithms necessary to produce a video stream for each application are expected to be

similar. This section explains how we obtained our measurements of x264 encoder execution

time as well as the correlation between those measurements and the network packet arrival

times.

4.3.1 Algorithm Time-stamping

The x264 application functions as a stand-alone encoder but also integrates with the

GStreamer [6] framework which offers a simple command line interface to specify and then

instantiate a complete video pipeline. To allow code modification, we built each piece of

the GStreamer framework from version 1.2.3 of the source code. This required a rebuild of

yasm-1.2.0 with no changes to the sources. We started from x264 version 0.120.2151 which

we built as a Linux shared library and then linked with GStreamer framework through its

plug-in interface.

Both x264 and GStreamer are written using the C language. Timing measurements

were added to the x264 encoder encode function in the encoder.c source file. Using the

gettimeofday function available through sys/time.h we were able to obtain timestamps

with microsecond precision. A call to gettimeofday was added as the first operation in the

encode function and then again as the last operation before the function returned. These

timestamps were then written to a log file on disk. It was verified that the time required

to obtain the timestamps and write them to the log were negligible by comparison to the

time elapsed between measurements.

We also made measurements of the time elapsed between frame encoding completion
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and video payload transmission by adding an additional time-stamp log in the GStreamer

udpsink plug-in. We found that there was a consistent time delay of 400 to 500 µs between

encoder completion and the call to g socket send message regardless of events occurring in

view of the camera.

The GStreamer pipeline definition used in our experiment, which is executed on the com-

mand line from a bash terminal, is given in Figure 8. The first assignment to LD PRELOAD

before the execution of gst-launch-1.0 sets an environment variable which specifies that the

v4l2convert.so library must be loaded prior to launching GStreamer and is required in or-

der to use a video for Linux source in the pipeline. The next line launches the GStreamer

application specifying verbose output and enabling debug printouts for the v4l2src plug-in.

The video pipeline itself is then specified with each portion of the pipeline separated by

an exclamation point. For the sake of clarity, and by common convention, line returns are

escaped with a backslash to allow each stage of the pipeline to be placed on a separate line.

LD PRELOAD=”/usr/lib/i386−linux−gnu/libv4l/v4l2convert.so” \
gst−launch−1.0 −v −e −−gst−debug=v4l2src:4 \
v4l2src device=/dev/video0 \
! ’video/x−raw,format=I420,width=1920,height=1080,framerate=30/1’ \
! x264enc speed−preset=veryslow tune=zerolatency bitrate=800 \
! mpegtsmux \
! queue \
! chopmydata max−size=1366 \
! queue \
! udpsink host=10.0.0.1 port=5000

Figure 8: GStreamer pipeline construction.

We first specify that our input will come from the webcam device at /dev/video0. We

give the format, resolution, and desired frame rate of the video. I420 here corresponds to

the YUV-420 pixel format. We then specify that we will use the x264 encoder and give the

settings that will be used with the encoder. We specify a target bit rate of 800 kbps with the

encoder tuned to prefer low latency over high quality encoding. The encoded output is then

packed for an MPEG transport stream with maximum sized payload for each packet set

at 1366 bytes. Queue stages in the pipeline create FIFO buffers between stages to prevent

overflow. Finally, the encoded video is transmitted via UDP on port 5000 to the destination
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host.

The general construction of this pipeline is designed to transmit a high quality low

latency video stream representative of modern video chat applications. The details most

likely do not match any specific chat application but the traffic measurements allow us to

see the relationship between real events captured by a camera, encoder performance, and

network packet arrival timing.

Figure 9: Open source x264 encoder performance profiling.

4.3.2 Analysis of Timing Results

Figure 9 highlights the close connection between frame encode time and network packet

arrival times. The topmost panel shows timing measurements of the encode function which

demonstrates that time elapsed between calls to encode each frame is driven by the time

required to complete the encoding of the corresponding frame. The y-axis shows time
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measured in milliseconds while the x-axis indicates the frame number processed in the call

to the encoder. In this test over 350 frames were encoded, each by a single call to the encode

function.

The plot shows four spikes above 200 ms around frame numbers 75, 150, 200, and 300 as

well as a smooth area in the measurements from frame 200 to 300. These features correspond

to events occurring in view of the camera during the encoding process. While sitting in front

of the camera I passed my hand through the field of view approximately two feet from the

lens corresponding with frame 75. This action was intended to affect approximately 50%

of pixels in the frame. The spike at frame 150 corresponds to passing my hand through

the field of view approximately 2 inches from the lens. This causes the entire field of view

to change as the hand enters and exits the frame. Starting at frame 200 the camera is

completely covered to block any light and remains covered until approximately frame 300

where the camera is uncovered again. At other times during the test I sat motionless several

feet from the camera.

We see from these results that the time required to encode a frame varies dramatically

based on the motion and brightness of the scene in question. As an aid, the second panel

shows the effective frames per second (fps) processed by the encoder. This is computed as

the inverse of the time between encode calls from the first panel. The frame rate is fairly

stable around 15 fps except when activity occurs. This is despite the target specification

of 30 fps given in the pipeline description. We see here that the x264 encoder is allowing a

variable frame rate which has an upper limit bounded by the processing time for each frame.

For the introduction of a moving object, which adds complexity to the encode operation,

the frame rate drops momentarily. While covering the camera the frame rate is able to

stabilize with the decreased complexity of processing an unchanging black image.

The bottom two frames change the x-axis from frame number to a linear time scale in

seconds. This is done by averaging data within a 250 ms window to create each point on

the graph which is then smoothed to reduce noise. We see a correlation between the frame

encode times and the network packet inter-arrival times consistent with the understanding

that the encode time is related to the presence or absence of activity during the frame.
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When an event occurs, it causes the encoding to complete faster or slower; packets are

then transmitted immediately following encoding completion. Assuming consistent latency

between packets, variations in packet arrival times correspond with events captured by the

camera.

4.4 Skype’s H.264 Encoder

Although previous tests had shown that we could detect events in several types of codecs,

our next step involved verifying the repeatability of tests on a single application. In order

to verify that similar traffic signatures resulted from similar event types, we created an

application to record network traffic and a corresponding video recording of Skype calls.

We picked the Skype application due to its popularity and wide user base as well as

its use of the H.264 encoding standard [15]. We do not expect our experiments with the

x264 encoder to be precisely representative of Skype’s H.264 encoder performance, but

since they are based on the same encoding standard the comparison is closer than most

other options. As a commercial application advertising AES 256-bit encryption, Skype is

expected by its users to be a secure and private means of communication. By testing against

the Skype application we take advantage of demonstrating the effect of strong commercial

grade encryption on the ability to detect events through NTA, which we find to be minimal.

Using the Skype4Py [4] python wrapper to the Skype 3rd party API, we are able to

create event handlers for various activities in the Skype application including incoming and

outgoing call initiation, call waiting, call ending and other standard Skype interactions.

This application, which we have named Skype Auto-Answer, executes as a background

service and attaches to a running Skype session which has already been logged into on the

host machine. By detecting the beginning and end of a new video call we could use Python

to execute external applications. We used tcpdump to record all network traffic to a file,

and FFmpeg to make a video screen capture of the Skype window. Although it would have

been preferable to gain access to the decrypted raw video stream in order to better verify

our NTA measurements against video packet headers, this information is not made available
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by the API.

4.4.1 Traffic Analysis in a Laboratory Environment

With a method available for recording the video and network traffic, for purposes of com-

parison between calls, we then proceeded to make calls from various locations and hardware

equipment to the lab server while executing the Skype Auto-Answer application. We were

able to observe under varying conditions that the network traffic and corresponding rec-

ognizability of events through NTA was affected by camera type, computer hardware, and

network connection bandwidth as previously discussed in Section 4.1 (refer to Appendix B

for additional details). Additionally, we observed that when these factors remained con-

stant, the traffic measured was consistent between calls. Figure 10 shows plots for four

such calls made from the same equipment. The calling computer, a Dell Latitude E6530

laptop with a high definition Logitech c615 external camera, initiated the call from within

the Georgia Tech network and the same sequence of events was recorded four times. The

traffic analysis for all four packet captures are combined in the figure.

Figure 10: Laboratory environment captures showing repeatability of measurements.
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The Skype call is connected and we wait approximately 25 seconds for the video stream

traffic to stabilize. Generally the stream stabilizes much more quickly than this as seen

in the 1st, 2nd, and 3rd captures, where stable AIT is observed after only a few seconds,

but may take longer as in the 4th capture where stable traffic is not observed until 10

seconds have passed. After waiting for the stream to stabilize, we turn off the video feed

in the Skype application for ten seconds then turn it back on again. Between each action

throughout the call there is no movement in view of the camera. Next we move our hand

past the camera approximately 12 inches from the lens, crossing through the field of view in

approximately 1 second. After pausing, this action is repeated with the hand passing only

2-3 inches from the camera. Next the camera is completely covered to block out all light

and remains covered for several seconds before uncovering. Finally, the lights in the room

are turned off for several seconds and then back on again.

The annotations in Figure 10 show each event represented in the network traffic anal-

ysis. The eight plots show different event detection metrics. For all of these captures the

sampling window is 250 ms. This sampling window is chosen based on the baseline number

of packets being received. A window size that is too large will average too much data to-

gether preventing the detection of small variations such as those seen for the hand waves.

A window size that is too small may not contain any packets at all. This sampling window

allows us to plot the capture data on a linear time scale.

On the left hand side of Figure 10 from top to bottom, we plot measurements of network

traffic metadata including average inter-arrival time (AIT) between packets, average packet

size (APS), average bandwidth (ABW), and network packet count (PCNT) for packets

received during the sampling window. After averaging data in each window the data set

is then smoothed across 10 samples. On the right hand side of the figure is the discrete

derivative of the corresponding metric from the left hand side. These discrete derivative

plots are additionally smoothed over 3 samples. The derivative plots are the most useful

indicators for event detection by algorithm since they are a relative measurement.

Between the four captures we observe that although there are some changes in the

exact manifestation of events in the NTA, each event is consistently detectable and events
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of different types are discernible from each other through careful observation. When the

video is turned off we see the longest AIT since only audio and control packets are observed,

whereas the camera being covered still causes some video frames to be transmitted, yielding

slightly higher ABW and a corresponding drop in AIT. Covering the camera versus turning

the lights on and off yield essentially the same signature with only a variation in the duration

of the events. We can see, however, that as the lights are turned back on the AIT does

not immediately return to the baseline level. This is due to the fact that the experiment

room lighting is fluorescent rather than incandescent, and the lights turn on in a two stage

process as the bulbs first warm up then reach full brightness. The hand waves yield the

smallest variations and occasionally were not obseravable in the network traffic.

The discrete derivative plots demonstrated by these captures become more important as

we attempt to perform event detection with variations in the video transmission platform.

Although baseline values across these figures are very similar between captures this is not

the case especially for changes in camera resolution and network bandwidth. The high and

low values are indicative of activity in the video but in a more general sense the change in

measurement compared to the baseline value for a specific set of hardware is a more reliable

indicator.

We discovered during our original tests that we could detect events algorithmically by

observing if the measurements differed from the moving average value by more than two

standard deviations. Attempts to classify event types by this same method were unsuccess-

ful, however. Through visual inspection we were able to both detect events occurring and

classify those events by type in many cases.

4.4.2 Event Type Classification

To find an algorithm that would allow us to classify event types we turned to machine

learning. The K-means clustering algorithm [19] allows a data set to be grouped into

categories according to the distance between a particular data point and the center of each

other cluster. The number of clusters is specified by the algorithm. We applied K-means

auto classification to the data sets for each of the captures shown in Figure 10. Figure 11
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Figure 11: K-means classification of traffic analysis for laboratory video captures.

shows the resulting categorization of data points over time.

We began by concatenating the records from all four of the captures into a single data

set. Timestamps were offset to make the captures appear to be a single set of data. Because

of the similarities between traffic analysis metrics we limited ourselves to only two types of

measurements, average inter-arrival time (AIT) and average bandwidth (ABW). We found

that we obtained the best results from the k-means algorithm with smoothed data, the

same as in our previous algorithm attempts. Both AIT and ABW along with their discrete

derivatives were all combined as inputs for k-means. The scales of AIT and ABW are

vastly different with the one originally measured in microseconds and the other in millions

of bits per second. Since the k-means algorithm categorizes data based on distance to a

category’s mean, we first normalize the data set. This prevents k-means from artificially

giving preference to either measurement since average inter-arrival times are much smaller

and therefore would be inherently closer together. Derivatives are also normalized between

zero and one with values less than 0.5 representing negative derivatives and values greater
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than 0.5 represent positive derivatives. This approach is used rather than the absolute value

of the derivatives in order to better convey the beginning and end of events.

The resulting categorization from a run of the k-means algorithm is shown in the bottom

half of the figure. It can be seen that category 2 corresponds, in general, to times where

the transmission was idle. Other categories correspond with various types of changes such

as high bandwidth (category 5), or changing derivatives (categories 2 and 3). This does

give us distinction between the beginning and end of events, but it still does not allow us

to discern algorithmically between event types.

K-means auto-classification does allow us to separate idle time from periods of activity

and does so with high reliability. It is possible with the k-means algorithm to train the data

set for better performance by marking some of the data as belonging to a specific category.

We anticipate that, if we were to specify some data points from each of the categories that

we are interested in classifying, the k-means algorithm would be able to perform better than

it has done in this case, possibly even allowing for the classification of events by type, but

this exercise is left for future work.

4.5 Collecting Outside User Video Calls

4.5.1 Video Capture Collection Framework

To understand how much variation we could expect to see between Skype calls for average

users, we expanded our test setup to allow outside users to contribute to the research. We

limited the contributors to laptop and desktop computing hardware, specifically disallowing

smartphones and tablet devices. This had the effect of both raising the general computing

ability of transmitting computers as well as restricting the network type to exclude cellular

networks in most cases. While this excludes a number of users, we were still able to obtain

a large set of data with a broad range of cameras and Internet connection bandwidths.

Since we intended to record video along with the network capture for each Skype session

we submitted the proposed project to the Institutional Review Board (IRB). It was deter-

mined that no special restrictions would be required since the publishing of participants’
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Figure 12: Excerpts from instruction video shown to participants during calls.

38



video content is not necessary in order to demonstrate the effectiveness of the techniques

under investigation.

Again to reduce complexity in a very large test space, we decided to ask users to follow

a very specific set of instructions. While recognizing that individual users would perform

each task somewhat differently, we wanted to reduce that variability as much as possible in

order to determine the detectability of specific types of events across computing platforms.

To achieve this, a video slide-show presentation was created which could be shown to users

during their session. Several frames from this video are shown in Figure 12 which is read

left to right, top to bottom. The same order and timing of events from the laboratory tests

were duplicated in the instruction video, including video off/on, mid-range and close up

hand waves, camera cover/uncover, and lights off/on.

Figure 13: Control structure for Skype Auto-Answer application.

The complete control flow diagram for the Skype Auto-Answer application is given
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in Figure 13, including the addition of the call instructions video playback. This was

accomplished using the video for Linux loop-back module v4l2loopback [3], which creates

a virtual video device in the /dev tree which can be written to in addition to read from.

When the call answered event was detected through Skype4Py the call instructions video

was opened through MPlayer with the playback controls hidden. The GStreamer framework

was used again to grab the contents of the MPlayer window through an X11 window capture,

and this input was written to the virtual video device in /dev. This same virtual video

device could then be opened in Skype as the input video camera. In this way, any content

playing in the MPlayer window could be seen by the participants on the far end of the

connection. Code listings and scripts used for the Skype Auto-Answer application are

included in Appendix A.

With the framework established for collecting video call recordings from outside users

we began to recruit participants. We collected our first recordings from local university

students and invited them to send a link to our project web page to others around the

country who would be willing to participate in the study. We were able to collect about 30

recordings through this method, but in order to reach our goal of 100 captures we turned to

Amazon Mechanical Turk [5]. Through the Amazon Turk service we were able to advertise

openings in the study nationwide offering $5.00 to each individual. The response was very

quick and we were able to collect an additional 100 captures within three days of opening

the study to workers on Mechanical Turk.

Prior to making their call each participant was given a brief explanation of the nature

of the research and asked to fill out a survey answering questions about their geographic

call location, by zip code, and details about the computer hardware setup that the call

was being established from as shown in Figure 14. We collected the Skype user names of

each participant in the survey which we could match up with the same profile information

available through the Skype API at the beginning of each call. All of this information was

saved to a database. At the end of each call another database record was created containing

information about the recorded call. Many users repeated their call several times when they

encountered some portion of the instructions that they were uncertain of. The database
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Figure 14: Web page showing participant survey and summary of research.

41



Figure 15: Web page showing participant instructions for conducting video calls.
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Figure 15: (continued).

records then allowed us to match up each individual user with all captures collected.

With the survey information gathered the participants were then directed to a second

web page giving step-by-step written instructions about what activities would be performed

during the video recording session. Screenshots from this page are shown in Figure 15. The

instructional video from Figure 12 was also embedded on this page via YouTube. A link on

the page was programmed to open Skype on each participant’s computer and make a call

directly to the research account.

As the server detected a new call ringing, it would automatically answer the call and

started recording the received video, all network traffic, and technical call information
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provided by Skype. At the same time the instruction video would begin providing timing

cues to the user for exactly when to perform each action. A screenshot of the active Skype

Auto-Answer server is shown in Figure 16. The screenshot spans a dual monitor desktop

with the received Skype video filling the left monitor. The top center window show the

Skype technical call information which gives details about the audio and video streams

being transmitted and received as well as other application information. Below this window

we see a graph of network traffic characteristics that could be reviewed in real time during

the call recording. On the top right is the terminal showing the current state of the Skype

Auto-Answer application. On the bottom right is the call instructions video which was

transmitted to callers.

Figure 16: Server desktop view of an incoming video chat recording session.

4.5.2 Overview of Collected Data from Outside Sources

We were able to capture network traffic and video from 155 unique Skype users. Each

individual user may have called in multiple times in order to ensure that they were able

to complete each step in the instructions correctly through the entire call. There were 287

total recordings made with 115 of these recordings verified to have been performed correctly.

Of the 115 verified recordings 91 calls were established from a laptop and 24 from a desktop

computer. Desktop users reported using an external webcam in 96% of cases while laptop

users reported using a built in webcam in 92% of survey responses.

Figure 17 shows the self reported locations of calls originating in the United States.

There are 98 calls plotted on the U.S. map with an additional 12 calls originating from

India (Amazon Mechanical Turk operates in the United State and India) which are not
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Figure 17: Locations of U.S. callers participating in experiment.

shown. Locations were established via zip code with 5 respondents declining to provide

location information or providing invalid values.

Figure 18: Variation in bandwidth versus inter-arrival time for collected data.

The variety of video stream bandwidths received is shown in Figure 18. Average packet

arrival times throughout the entire capture are shown on the x-axis and average bandwidth

for the captures are shown on the y-axis. The trend we observe of higher bandwidth
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connections showing lower inter-arrival times is as expected. In Figures 19 and 20 we show

plots of our event detection metrics from high and low video stream bandwidths respectively.

Figure 19: User captures with average bandwidths of 139, 106, and 77 KBps.

Figure 19 demonstrates several features of particular interest. At the beginning of the

capture the instruction video would give a reminder to the caller to turn on their video.

This reminder appeared several seconds into the video and we observe through ABW for

both the 106 and 77 KBps captures that the video was not turned until 10 seconds into

the recording. We are also able to see variations in lighting between the videos. At the

end of the recording as participants were asked to turn off the lights in the room there was

variation on how dark the room would become. In some cases the light from the computer

monitor was bright enough to illuminate the room by itself. For the 139 KBps capture we

recognize that the camera is covered at 85 seconds and bandwidth drops significantly, but

at 100 seconds when the lights are turned off, it essentially had no effect. In this case the

camera appeared to be able to gather enough light from the room to represent some detailed

textures despite the main room light being turned off. This causes high bandwidth and low
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inter-arrival time to be maintained and although some variation occurs, the event is not

distinct. Hand waves occur at approximately 50 and 70 seconds. These small motions were

difficult to discern, even at high bandwidth.

Figure 20: User captures with average bandwidths of 19, 11, and 9 KBps.

Low bandwidth captures shown in Figure 20 have had the y-axis rescaled in order to

show more detail in the event detection metrics. The video being turned off is still discernible

at 30 seconds in all three captures, although the participant transmitting 11 KBps was five

seconds late turning off the video. Also at 60 seconds for the same user the Skype video

stream stalled for a few seconds and then recovered. At these low bandwidths the only

discernible event is the camera being covered at 70 seconds in the 19 KBps capture. This

tendency to have events be more discernible at higher bandwidths is consistent throughout

all participant recordings.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Our investigation of information leakage in encrypted video over IP traffic has found that

for a variety of codecs and regardless of encryption for the tested datasets we are able to

detect events occurring in the field of view of a streaming video camera through network

traffic analysis. This is possible through analysis of variations in packet sizes and arrival

times. We have discussed the relationship between video stream bandwidth and encoded

image content. We have also measured the time required to encode frames in the x264

encoder and shown the relationship between variations in encode time resulting in similar

variations in network packet arrival time.

Investigation of Skype’s H.264 encoder through packet capture analysis have shown

in a laboratory setting that event detection is repeatable between video calls. We have

demonstrated that these events can be detected algorithmically using k-means clustering

techniques. Collection of over 100 video chat sessions from outside users has shown a

correlation between high network connection bandwidth and the ability to detect events.

It is anticipated that with additional effort in finding an algorithm to detect and classify

events in a laboratory setting that this task can be completed. Data captured from outside

sources can then be tested against the new algorithm to verify its effectiveness in detection

against new video sources.
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APPENDIX A

CODE LISTINGS FOR SKYPE AUTO-ANSWER

Code used to create the Skype Auto-Answer application is included in the listings given in

this appendix. Figure 21 is included here again as a reference to the data and control flow

of the application.

Figure 21: Control and data flow for Skype Auto-Answer application.

The script included in Figure 22 includes important steps necessary to allow the call

instructions video to be played through Skype. Without the loop-back module insertion

and library pre-loading when executing the Skype application, none of these features are
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functional.

1 #!/bin/bash
2

3 # before using this script you need to first insert the v4l2 loopback module
4 # into the kernel
5 # sudo modprobe v4l2loopback
6 #
7 # also the Skype instance needs to have been started with to make it work with
8 # the video for Linux virtual loopback device
9 # env LD PRELOAD=/usr/lib/libv4l/v4l1compat.so sudo skype

10 #
11 # the following code takes the TITLE window and uses GStreamer
12 # to make the contents of that widow act as a video device /dev/video2
13

14 # start MPlayer without console output or control through keystrokes
15 mplayer −quiet −noconsolecontrols /data/callInstructions.mp4 &
16

17 # allow some time for MPlayer to start
18 sleep 1
19

20 # get the X−Windows id for the window named MPlayer as a variable
21 TITLE=”MPlayer”
22 WINDOW XID=$(/usr/bin/xwininfo −tree −root −all | /bin/grep ”$TITLE” | /bin/sed −e ’s/ˆ

∗//’ | /usr/bin/cut −d\ −f1)
23

24 # put the window in the bottom left corner of the screen
25 # we need the size of the window to be exactly 640x480 for v4l2loopback
26 wmctrl −i −r $WINDOW XID −e 0,2950,550,640,480
27

28 # launch GStreamer with an X−Windows application window as the source content
29 # and write that to the v4l2 virtual device /dev/video1
30 gst−launch−1.0 −vvv −−gst−debug−level=3 ximagesrc xid=$WINDOW XID \
31 ! videoconvert \
32 ! video/x−raw,format=YUY2,framerate=30/1 \
33 ! queue \
34 ! videoconvert \
35 ! v4l2sink device=/dev/video1
36

37 # run this command to test whether the GStreamer video device conversion is
38 # working as expected
39 #gst−launch−1.0 v4l2src device=/dev/video1 ! xvimagesink

Figure 22: Test script for video loop-back feature used with call instructions video.

This complete code listing for the application shows details of how the application was

constructed. The code is written for Python and makes extensive use of the Skype4Py

library [4].
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1 import Skype4Py
2 import time
3 import subprocess
4 import json
5 import logging
6 import traceback
7 import signal
8 import sys
9 import urllib

10 import unicodedata
11

12 complete = 0
13

14 class Skype(object):
15 def init (self):#{{{
16 self.nameCounter = {}
17 currentTime = (subprocess.check output(”date +%Y%m%d %H%M%S”.split())).strip()
18 self.callId = 0
19 self.basedir = ”/data/recordings/”
20 self.recordsdir = self.basedir + ”Backup Records Files/”
21

22 logging.basicConfig(filename=self.recordsdir+currentTime + ” autoanswer.log”,level=logging.
INFO,format=’%(asctime)s ∗∗%(name)s %(levelname)s %(message)s’, datefmt=’%Y/%m
/%d %H:%M:%S’)

23 self.rootlogger = logging.getLogger()
24 self.rootlogger.addFilter(logging.Filter(name=’root’))
25 self.rootlogger.setLevel(logging.DEBUG)
26 self.printlogger = logging.StreamHandler(sys.stdout)
27 self.printlogger.setLevel(logging.INFO)
28 self.printlogger.setFormatter(logging.Formatter(’%(message)s’))
29 self.printlogger.addFilter(logging.Filter(name=’root’))
30 self.rootlogger.addHandler(self.printlogger)
31

32 self.callStart = 0
33 self.callEnd = 0
34 self.videoStart = 0
35 self.videoEnd = 0
36 self.TCP DUMP PROCESS = 0
37 self.VIDEO RECORD PROCESS = 0
38 self.TECH RECORD PROCESS = 0
39 self.MPLAYER PROCESS = 0
40 self.GST PROCESS = 0
41 self.pcap proc = 0
42

43 self.CallStatus = 0
44 self.CallIsFinished = set ([Skype4Py.clsFailed, Skype4Py.clsFinished, Skype4Py.clsMissed,

Skype4Py.clsRefused, Skype4Py.clsBusy, Skype4Py.clsCancelled]);
45 self.CallIncoming = set([Skype4Py.cltIncomingPSTN, Skype4Py.cltIncomingP2P]);#}}}
46

47 def launch(self):
48 #global nameCounter
49 ret=0
50 try:
51 self.skype = Skype4Py.Skype()
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52 self.skype.OnAttachmentStatus = self.OnAttachmentStatus
53 self.skype.OnCallStatus = self.OnCallStatus
54 self.skype.OnCallInputStatusChanged = self.OnCallInputStatusChanged
55 self.skype.OnCallSeenStatusChanged = self.OnCallSeenStatusChanged
56 self.skype.OnCallVideoReceiveStatusChanged = self.OnCallVideoReceive
57 self.skype.OnConnectionStatus = self.OnConnectionStatus
58 self.skype.OnCallVideoSendStatusChanged = self.OnCallVideoSend
59 self.skype.OnCallVideoStatusChanged = self.OnCallVideo
60

61 # Starting Skype if it’s not running already..
62 if not self.skype.Client.IsRunning:
63 logging.info(”Skype was not running at launch”)
64 self.SkypeStartup()
65

66 # Attatching to Skype − blocks with a timeout of 10 seconds..
67 logging.info(’Connecting to Skype..’)
68 #self.skype.Attach(Wait=True)
69 self.skype.Attach()
70 logging.info(’Attach completed’)
71

72 #Changing user status seems to be causing an exception
73 #making it retry up to three times before giving up
74 retry=3
75 while retry > 0:
76 try:
77 self.skype.ChangeUserStatus(Skype4Py.cusOnline)
78 break
79 except:
80 logging.error(”Retrying Change User Status: ” + str(retry) )
81 retry = retry − 1
82 logging.info(’User status set to ’ + self.skype.Convert.UserStatusToText(Skype4Py.

cusOnline))
83

84 # Directory for the Video Call’s usernames
85 self.nameCounter = {}
86 logging.info(”Loading the Record...”)
87 CounterFile = open(self.recordsdir + ”SkypeRecords.txt”, ”r”)
88 contents = CounterFile.read()
89 self.nameCounter = json.loads(contents)
90

91 Backup = open(self.recordsdir + ”SkypeBackup.txt”, ”w”)
92 Backup.write(contents)
93 Backup.close()
94

95 CounterFile.close()
96

97 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError), e:
98 logging.error(traceback.format exc())
99 logging.error(”[LAUNCH ERROR]: ” + str(e))

100

101 def SkypeStartup(self):
102 logging.info(’Starting Skype..’)
103 self.skype.Client.Start()
104 #time.sleep(5)
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105

106 def OnCallInputStatusChanged(self, status):#{{{
107 logging.info(”OnCallInputStatusChanged status: ” + status)
108

109 def OnCallSeenStatusChanged(self, call, status):
110 logging.info(”OnCallSeenStatusChanged status: ” + str(status) + ” call.Id: ” + str(call.Id))
111

112 def OnConnectionStatus(self, status):
113 logging.info(”OnConnectionStatus status: ” + status)
114

115 def AttachmentStatusText(self, status):
116 return self.skype.Convert.AttachmentStatusToText(status)
117

118 def CallStatusText(self, status):
119 return self.skype.Convert.CallStatusToText(status)
120

121 def OnCallVideoSend(self, call, status):
122 logging.info(’Video Send status: ’ + status)
123 if status == Skype4Py.cvsSendEnabled:
124 self.screenCapture(self.directory)
125 self.maximizeScreen(call)
126

127 def OnCallVideoReceive(self, call, status):
128 logging.info(’Video Receive status: ’ + status)
129 if status == Skype4Py.cvsReceiveEnabled:
130 self.screenCapture(self.directory)
131 self.maximizeScreen(call)
132

133 def OnCallVideo(self, call, status):
134 logging.info(’Video status: ’ + status)
135 if status == Skype4Py.cvsBothEnabled:
136 self.screenCapture(self.directory)
137 self.maximizeScreen(call)
138

139 def hideSkype(self):
140 self.skype.Client.WindowState = Skype4Py.wndHidden;
141

142 def showSkype(self):
143 self.skype.Client.WindowState = Skype4Py.wndMaximized;#}}}
144

145 def OnCallStatus(self, call, status):
146 try:
147 logging.info(’Call status: ’ + self.CallStatusText(status) + ” ” + status)
148 logging.info(”activeCalls: ” + str(self.skype.ActiveCalls.Count))
149 logging.info(”Call Id: ” + str(call.Id))
150 #placeCall(call.PartnerHandle)
151

152 if status == Skype4Py.clsRinging and ( call.Type in self.CallIncoming):
153 # Only answer one call at a time
154 if self.callId == 0 :
155 self.startNewCall(call)
156

157 elif status == Skype4Py.clsInProgress:
158 logging.info(call.PartnerHandle)
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159

160 try:
161 call.StartVideoReceive()
162

163

164

165 except Skype4Py.SkypeAPIError, e:
166 print ”NO VIDEO SkypeAPIError”
167 except Skype4Py.SkypeError, e:
168 print ”NO VIDEO SkypeError”
169 time.sleep(1)
170

171 elif (status == Skype4Py.clsFinished) or (status == Skype4Py.clsUnplaced): #in self.
CallIsFinished:

172 self.cleanUpCall(call)
173

174 else:
175 logging.warning(”Unhandled status: ” + status)
176

177 except Skype4Py.SkypeAPIError, e:
178 logging.error(traceback.format exc())
179 logging.error(”[ON CALL STATUS ERROR SkypeAPIerror]: ” + str(e))
180 except Skype4Py.SkypeError, e:
181 logging.error(traceback.format exc())
182 logging.error(”[ON CALL STATUS ERROR SkypeError]: ” + str(e))
183

184 def startNewCall(self, call):
185 self.callId = call.Id
186

187 time.sleep(1.0)
188 #as soon as we have a call answered make a folder and start recording network traffic
189 self.callStart = time.time()
190 currentTime = (subprocess.check output(”date +%Y%m%d %H%M%S”.split())).strip()
191 self.calldbtime = (subprocess.check output([’date’, ’+%Y−%m−%d %H:%M:%S’])).strip()
192 self.directory = ”/data/recordings/” + currentTime + ” ” + str(call.PartnerHandle)
193

194

195 # Directory of each Callee
196 logging.debug(”Creating directory: ” + self.directory)
197 subprocess.call([”sudo mkdir ” + self.directory], shell = True)
198 subprocess.call([”sudo chmod 2777 ” + self.directory], shell = True)
199 self.packetCapture(self.directory)
200

201 self.counterFile(call)
202 self.answerCall(call)
203 self.instructionsCall(self.directory)
204

205 def OnAttachmentStatus(self, status):
206 try:
207 logging.info(’API attachment status: ’ + self.AttachmentStatusText(status) + ”(” + str(

status) + ”)”)
208

209 #restart skype if it crashes or gets closed
210 if not self.skype.Client.IsRunning:
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211 self.SkypeStartup()
212

213 self.skype.Attach()
214

215 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError), e:
216 logging.error(traceback.format exc())
217 logging.error(”[ON ATTACH FUNCTION ERROR]: ” + str(e))
218

219 def placeCall(self, who):
220 try:
221 logging.info(’Calling ’ + who + ’...’)
222 self.skype.PlaceCall(who)
223 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError), e:
224 logging.error(traceback.format exc())
225 logging.error(”[PLACECALL ERROR]: ” + str(e))
226 logging.error(”to whom: ” + str(who))
227 logging.error(”skype instance: ” + str(self.skype))
228

229 def cleanUpCall(self, call):
230 try:
231 self.callEnd = time.time()
232 try:
233 user = unicode(str(call.PartnerHandle), ’utf−8’)
234 username = unicodedata.normalize(’NFD’, user).encode(’ascii’, ’ignore’)
235 username = urllib.quote plus(username)
236 except:
237 username = ”UsernameError”
238

239 try:
240 profile = unicode(str(call.PartnerDisplayName), ’utf−8’)
241 profilename = unicodedata.normalize(’NFD’, profile).encode(’ascii’, ’ignore’)
242 profilename = urllib.quote plus(profilename)
243 except:
244 print ”ERROR TRACE: ”, traceback.format exc()
245 profilename = ”ProfilenameError”
246

247 try:
248 self.calldbtime = urllib.quote plus(self.calldbtime)
249 except:
250 print ”ERROR TRACE: ”, traceback.format exc()
251

252 curlCommand = ”curl −sS ’http://di−sec.org/skype test/computerserver.php?” + ”
skypeUsername=” + username + ”&clientName=” + profilename + ”&calltime=” +
self.calldbtime + ”&callduration=” + str(round(self.callEnd − self.callStart, 2)) + ”’”

253

254 print ”URL DATABASE: ”, curlCommand
255

256

257 subprocess.call([curlCommand], shell = True)
258

259 logging.info(”endCall status: ” + call.Status)
260

261 skypeCallWindowName = ”Call with ” + call.PartnerDisplayName
262 logging.info(”closing window: ” + skypeCallWindowName)
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263 subprocess.call([’wmctrl −c ”’ + skypeCallWindowName + ’”’], shell = True)
264

265 techInfoWindowName = ”Call Technical Info”
266 logging.info(”closing window: ” + techInfoWindowName)
267 subprocess.call([’wmctrl −c ”’ + techInfoWindowName + ’”’], shell = True)
268

269 if self.checkProcessRunning(”tcpdump”) == 0:
270 logging.info(”Ending tcpdump”)
271 self.TCP DUMP PROCESS.terminate()
272 ret = self.TCP DUMP PROCESS.wait()
273 logging.debug(”process ended with: ” + str(ret))
274 if self.checkProcessRunning(”ffmpeg”) == 0:
275 logging.info(”Ending video recording”)
276 self.VIDEO RECORD PROCESS.terminate()
277 ret = self.VIDEO RECORD PROCESS.wait()
278 logging.debug(”process ended with: ” + str(ret))
279 if self.checkProcessRunning(”ffmpeg”) == 0:
280 logging.info(”Ending technical info recording”)
281 self.TECH RECORD PROCESS.terminate()
282 ret = self.TECH RECORD PROCESS.wait()
283 logging.debug(”process ended with: ” + str(ret))
284 #end gst before closing window so it doesn’t lose it’s target
285 if self.checkProcessRunning(”gst−launch−1.0”) == 0:
286 logging.info(”Ending GST”)
287 self.GST PROCESS.terminate()
288 ret = self.GST PROCESS.wait()
289 logging.info(”process ended with: ” + str(ret))
290 self.GST PROCESS = 0
291

292 self.waitForProcessEnd(”gst−launch−1.0”)
293 logging.info(”GST shows ended”)
294

295 if self.checkProcessRunning(”mplayer”) == 0:
296 logging.info(”Ending Mplayer”)
297 self.MPLAYER PROCESS.terminate()
298 ret = self.MPLAYER PROCESS.wait()
299 logging.info(”process ended with: ” + str(ret))
300 self.MPLAYER PROCESS = 0
301

302

303 # Close the window when screenshot is taken.
304 subprocess.call([’wmctrl −c ”Figure 1”’], shell = True)
305 self.waitForScreenClosed(”Figure 1”)
306 self.pcap proc.terminate()
307

308 logging.info(”waiting for skype window to close”)
309 self.waitForScreenClosed(skypeCallWindowName)
310 logging.info(”waiting for skype tech info window to close”)
311 self.waitForScreenClosed(techInfoWindowName)
312

313 logging.info(”Processes still running BEGIN”)
314 self.checkProcessRunning(”tcpdump”)
315 self.checkProcessRunning(”ffmpeg”)
316 self.checkProcessRunning(”gst−launch−1.0”)
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317 self.checkProcessRunning(”mplayer”)
318 logging.info(”Processes still running END”)
319

320 self.callId = 0
321 for curr in self.skype.ActiveCalls:
322 if (curr.Status == Skype4Py.clsRinging) and (self.callId == 0) :
323 self.startNewCall(curr)
324

325 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError), e:
326 logging.error(traceback.format exc())
327 logging.error(”[END CALL FUNCTION ERROR]: ” + str(e))
328 except IndexError, e:
329 logging.error(traceback.format exc())
330 logging.error(”IndexError on endCall: ” + str(e))
331

332 def answerCall(self, call):
333 try:
334 call.Answer()
335 logging.info(call.Datetime)
336 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError), e:
337 logging.error(traceback.format exc())
338 logging.error(”[ANSWER CALL FUNCTION ERROR]: ” + str(e))
339 except IndexError, e:
340 logging.error(traceback.format exc())
341 logging.error(”IndexError on answerCall: ” + str(e))
342

343 def packetCapture(self, directory):
344 try:
345 logfile = open(directory + ”/tcpdump.log”, ’w’)
346 logging.info(”Starting Network Capture”)
347 interface = ”eth1”
348 TCP DUMP COMMAND = ”tcpdump −j adapter unsynced −s 65535 −w ” + directory

+ ”/capture.pcap −i ” + interface
349 logging.info(TCP DUMP COMMAND )
350 self.TCP DUMP PROCESS = subprocess.Popen(TCP DUMP COMMAND.split(), shell =

False, stdout=logfile, stderr=logfile)
351 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError, subprocess.CalledProcessError), e:
352 logging.error(traceback.format exc())
353 logging.error(”[PACKET CAPTURE FUNCTION ERROR]: ” + str(e))
354

355 def screenCapture(self, directory):
356 try:
357 logfile = open(directory + ”/ffmpeg.log”, ’w’)
358 windowsize = ”1680x1050”
359 logging.info(”Starting screen capture”)
360 VIDEO RECORD COMMAND = ”/usr/bin/ffmpeg −f x11grab −s ” + windowsize + ” −

r 24 −i :0.0+nomouse −loglevel debug −sameq ” + directory + ”/video.mkv”
361 logging.info(VIDEO RECORD COMMAND)
362 self.VIDEO RECORD PROCESS = subprocess.Popen(VIDEO RECORD COMMAND.

split(), shell = False, stdout=logfile, stderr=logfile)
363

364 # Running a python program to run the graph for the PCAP files.
365 pcap command = ”sudo python /data/livecapplot.py −p 57441 −i eth1”
366 self.pcap proc = subprocess.Popen(pcap command.split(), shell = False)
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367

368 logfile2 = open(directory + ”/ffmpeg technical.log”, ’w’)
369 windowsize = ”1300x400”
370 TECH RECORD COMMAND = ”/usr/bin/ffmpeg −f x11grab −s ” + windowsize + ” −r

24 −i :0.0+1680,25+nomouse −loglevel debug −sameq ” + directory + ”/technical.
mkv”

371 logging.info(TECH RECORD COMMAND)
372 self.TECH RECORD PROCESS = subprocess.Popen(TECH RECORD COMMAND.split

(), shell = False, stdout=logfile2, stderr=logfile2)
373 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError, subprocess.CalledProcessError), e:
374 logging.error(traceback.format exc())
375 logging.error(”[SCREEN CAPTURE FUNCTION ERROR]: ” +str(e))
376

377 def waitForScreen(self, screenName, retry=25):
378 while retry > 0:
379 ret = subprocess.call([’wmctrl −l | grep ”’ + screenName + ’”’], shell = True)
380 if ret == 0:
381 break
382 time.sleep(.250)
383 retry = retry −1
384

385 def waitForScreenClosed(self, screenName, retry=25):
386 while retry > 0:
387 ret = subprocess.call([’wmctrl −l | grep ”’ + screenName + ’”’], shell = True)
388 if ret == 1:
389 break
390 time.sleep(.250)
391 retry = retry −1
392

393 def checkProcessRunning(self, processName):
394 ret = subprocess.call([’ps aux | grep −v ”grep” | grep ”’ + processName + ’”’], shell = True)
395 return ret
396

397 def waitForProcess(self, processName, retry=8):
398 while retry > 0:
399 ret = subprocess.call([’ps aux | grep −v ”grep” | grep ”’ + processName + ’”’], shell =

True)
400 if ret == 0:
401 break
402 time.sleep(.250)
403 retry = retry −1
404

405 def waitForProcessEnd(self, processName, retry=25):
406 while retry > 0:
407 ret = subprocess.call([’ps aux | grep −v ”grep” | grep ”’ + processName + ’”’], shell =

True)
408 if ret == 1:
409 return
410 time.sleep(.250)
411 logging.info(”Process not ended ” + processName + ” ret: ” + str(ret))
412 retry = retry −1
413 logging.error(”Process did not end correctly, retry timeout”)
414

415
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416 def maximizeScreen(self, call):
417 try:
418 self.waitForScreen(”Call with ” + call.PartnerDisplayName)
419 subprocess.call([’wmctrl −r ”Call with ’ + call.PartnerDisplayName + ’” −b add,fullscreen’

], shell = True)
420 self.waitForScreen(”Call Technical Info”)
421 subprocess.call([’wmctrl −r ”Call Technical Info” −e 0,1680,0,1300,400’], shell = True)
422 subprocess.call([’wmctrl −a ”Call Technical Info”’], shell = True)
423

424 self.waitForScreen(”Figure 1”)
425

426 # Set window in position and resize it.
427 windows repos = subprocess.Popen([’wmctrl −r ”Figure 1” −e 0,1680,480,1370,600’], shell

= True)
428 windows repos.wait()
429

430 print ”Moving Window to the front”
431 windows inFront = subprocess.Popen([’wmctrl −a ”Figure 1”’], shell = True)
432 windows inFront.wait()
433

434 WINDOW XID = (subprocess.check output(”xwininfo −root −tree | grep skype | head −n
1 | awk ’{print $1}’”, shell = True)).strip()

435 WINDOW XID = (subprocess.check output(”xwininfo −root −tree | grep skype | grep 307
| awk ’{print $1}’”, shell = True)).strip()

436 print(”WindowID” + WINDOW XID)
437 subprocess.call([’wmctrl −i −r ’ + WINDOW XID + ’ −e 0,3276,0,307,119’], shell = True)
438

439 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError, subprocess.CalledProcessError), e:
440 logging.error(traceback.format exc())
441 logging.error(”[MAXIMIZE SCREEN FUNCTION ERROR]: ” + str(e))
442

443 def counterFile(self, call):
444 #global nameCounter
445

446 if call.PartnerHandle in self.nameCounter:
447 self.nameCounter[call.PartnerHandle] = self.nameCounter[call.PartnerHandle] + 1
448 else:
449 self.nameCounter[call.PartnerHandle] = 0
450

451 # Directory for the Video Call’s names
452 CounterFile = open(”/data/recordings/Backup Records Files/SkypeRecords.txt”, ”w”)
453 CounterFile.write(json.dumps(self.nameCounter))
454 CounterFile.close()
455

456 def instructionsCall(self, directory):
457 try:
458 logfile = open(directory + ”/callInstructions.log”, ’w’)
459 MPLAYER COMMAND = ”mplayer −quiet −noconsolecontrols /data/callInstructions.

mp4”
460 #logging.info(”Starting Instructions Call”)
461 #logging.info(MPLAYER COMMAND)
462 self.MPLAYER PROCESS = subprocess.Popen(MPLAYER COMMAND.split(), shell =

False)
463
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464 MPLAYER Windows = ’MPlayer’
465 self.waitForScreen(MPLAYER Windows)
466 WINDOW XID = (subprocess.check output(”/usr/bin/xwininfo −tree −root −all | /bin/

grep ’” + MPLAYER Windows + ”’ | /bin/sed −e ’s/ˆ ∗//’ | /usr/bin/cut −d\ −f1”,
shell = True)).strip()

467

468 subprocess.call(”wmctrl −i −r ” + WINDOW XID + ” −e 0,2950,550,640,480”, shell =
True)

469 self.waitForScreen(MPLAYER Windows)
470 time.sleep(.250)
471 gst command = ”gst−launch−1.0 −vvv −−gst−debug−level=3 ximagesrc xid=” +

WINDOW XID + ” show−pointer=false ! videoconvert ! video/x−raw,format=YUY2,
framerate=30/1 ! queue ! videoconvert ! v4l2sink device=/dev/video1”

472 self.GST PROCESS = subprocess.Popen(gst command.split(), shell = False, stdout=logfile,
stderr=logfile)

473

474 except (Skype4Py.SkypeAPIError, Skype4Py.SkypeError, subprocess.CalledProcessError), e:
475 logging.error(traceback.format exc())
476 logging.error(”[INSTRUCTION CALL FUNCTION ERROR]: ” +str(e))
477

478 def handler(signum, frame):
479 global complete
480 global rec
481

482 #rec.skype.Client.Shutdown()
483 complete=1
484

485 #exit()
486

487 try:
488

489 if name == ” main ”:
490 global rec
491 signal.signal(signal.SIGINT, handler)
492 rec = Skype()
493 rec.launch()
494

495 while not complete:
496 time.sleep(1)
497

498 except Exception, err:
499 logging.error(traceback.format exc())
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APPENDIX B

ADDITIONAL TRAFFIC ANALYSIS PLOTS

This appendix contains network traffic analysis plots for experiments comparing codec types,

computer hardware, camera variations, and operating system variations.

The following sequence of events was followed in order to produce the plots in Figures 23

to 28.

Table 3: Order of events for captures

Time Action

0 Establish call

10 Lights off

15 Light on

25 Lights dimmed to half brightness

30 Light on full

40 Walk past camera

45 Walk back past camera

50 Wave hand past camera

60 Cover camera

65 Uncover camera

75 End call
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Figure 23: Captures from Google Hangouts and WebRTC.

Figure 23 shows captures obtained from Google Hangouts and WebRTC’s [7] demon-

stration application [8]. Each of these chat services uses an implementation of the VP8

codec.
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Figure 24: Captures from D-Link camera with varying resolution.

Figures 24 and 25 are all obtained from a D-Link DCS-932L security camera which is

encoding using the MJPEG codec.

Figure 24 demonstrates variation in image resolution for each capture. Resolutions

shown include 640x480, 320x240, and 160x120 with the encoder set to 20 frames per second

for each capture.
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Figure 25: Captures from D-Link camera with varying frame rates.

Figure 24 demonstrates variation in frame rate for each capture. Frame rates shown

include 30, 20, 15, and 7 frames per second with the encoder set a resolution of 320x240 for

each capture.
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Figure 26: Captures from Dell, Samsung, and Aspire devices with various cameras.

Figures 26 to 28 are all obtained from Skype video chat sessions with the H.264 codec.

Figure 26 shows captures obtained from three devices: Dell Latitude E6530 laptop,

Samsung Galaxy S4 smartphone, Acer Aspire One D270-1824 laptop. There are two exter-

nal cameras used: Logitech C615, Logitech C525. Combinations of external and internal

cameras are used with each device and the resulting traffic analysis is shown.
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Figure 27: Captures from Acer laptop running Ubuntu 12.04 and Windows 7.

Figure 27 shows captures obtained from the Acer Aspire One D270-1824 laptop. The

same cameras are used as in Figure 26. The laptop which dual boots between Ubuntu 12.04

and Windows 7 executed the same sequence of events running Skype under each operating

system and the resulting traffic analysis is shown.
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Figure 28: Captures with varying levels of bandwidth limitation.

Figure 28 shows captures obtained by bandwidth limiting the video stream. A base-

line capture is shown with no bandwidth limiting applied. In increments of 10 KB/s the

bandwidth is then restricted in a range from 60 KB/s to 10 KB/s.
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