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Abstract—Recent studies on cloud-radio access networks
(CRANs) assume the availability of a single processor (cloud)
capable of managing the entire network performance; inter-cloud
interference is treated as background noise. This paper considers
the more practical scenario of the downlink of a CRAN formed
by multiple clouds, where each cloud is connected to a cluster
of multiple-antenna base stations (BSs) via high-capacity wireline
backhaul links. The network is composed of several disjoint BSs’
clusters, each serving a pre-known set of single-antenna users.
To account for both inter-cloud and intra-cloud interference, the
paper considers the problem of minimizing the total network
power consumption subject to quality of service constraints, by
jointly determining the set of active BSs connected to each cloud
and the beamforming vectors of every user across the network.
The paper solves the problem using Lagrangian duality theory
through a dual decomposition approach, which decouples the
problem into multiple and independent subproblems, the solution
of which depends on the dual optimization problem. The solution
then proceeds in updating the dual variables and the active set of
BSs at each cloud iteratively. The proposed approach leads to a
distributed implementation across the multiple clouds through a
reasonable exchange of information between adjacent clouds. The
paper further proposes a centralized solution to the problem. Sim-
ulation results suggest that the proposed algorithms significantly
outperform the conventional per-cloud update solution, especially
at high signal-to-interference-plus-noise ratio (SINR) target.

I. INTRODUCTION

Cloud-radio access networks (CRANs) are considered a
promising network architecture to meet the increasing demands
in mobile data traffic and high energy efficiency for next
generation wireless systems [1] [2]. In CRANs, joint signal
processing is performed at multiple cloud computing centers
(clouds) that are connected to several base stations (BSs) via
high capacity backhaul links. As a result, large scale interfer-
ence management and network power consumption reduction
can be effectively achieved. Conventional strategies in CRANs
assume the existence of a single cloud, and simply treat inter-
cloud interference as part of the background noise. This paper
considers the more realistic multi-cloud scenario. A major
point in this paper is that a significant performance gain can
be reached by accounting for both inter-cloud and intra-cloud
interference, and jointly optimizing the beamforming vectors
and the set of active BSs across the network.
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This paper considers the downlink of a multi-CRAN sce-
nario. The network is formed by a disjoint set of clusters of
multi-antenna BSs, and each cloud is connected to one cluster
via high capacity wireline backhaul links. Each cluster of BSs
communicates with a pre-known set of single-antenna mobile
users (MUs). Unlike the single-cloud model, the performance
of the considered system becomes a function of both inter-
cloud and intra-cloud interference, and depends on the set of
active BSs within each cluster, as well as the beamforming
vectors of the users across the network.

The problem considered in this paper is related in part
to the recent literature on CRAN, especially to reference
[2] which addresses the joint BS selection and beamforming
design problem in the downlink of a single cloud scenario.
The work in [2] considers the problem of minimizing the
total network power consumption and solves the problem
using techniques from compressive sensing literature. This
paper is also related to reference [3] which addresses the
user scheduling and beamforming vectors design problem by
maximizing the weighted sum rate. Both references [2] and [3],
however, assume a single-cloud scenario and do not account
for inter-cloud interference. The problem in this paper is
further related to the multicell beamforming problem studied
in conventional cellular networks literature, e.g., [4] [5], which
propose decentralized algorithms to solve the problem. The
studies in conventional cellular networks [4] [5], however,
assume that one user can be served by one BS only, unlike
the CRAN architecture which is a user-centric architecture and
allows each user to be served by one or more BSs at the same
time.

The multi-CRAN setup considered in this paper is further
related to the setup in [6] [7]. In [6], an iterative auction
approach is used to solve the user-to-cloud association problem
which maximizes the network-wide utility, under the general
assumption of a pre-known set of active BSs and beam-
forming vectors. In [7], further, an iterative algorithm based
on Majorization Minimization approach (MM) is proposed
to jointly design the precoding matrix and the correlation
matrix of the quantization noise to address the weighted sum-
rate maximization problem. The algorithm proposed in [7] is,
however, centralized in nature, which is no longer feasible
in practice, since otherwise, the clouds would require joint
signal-processing and a high level of cloud-to-cloud backhaul
communication.

Unlike all the aforementioned references, this paper consid-
ers a multi-CRAN and focuses on the problem of minimizing
the total network power consumption subject to quality-of-
service requirements, so as to determine the sparse beamform-
ing solution of each user across the network and the active set



of BSs within each cluster of BSs. The main contribution of
this paper is an algorithm that can be implemented in a decen-
tralized fashion across the network, with a reasonable amount
of information exchange between the clouds. The solution is
based on Lagrangian duality theory using a dual decomposi-
tion approach, wherein the original optimization problem is
decoupled into multiple and independent subproblems, each in
charge of finding the local dual functions associated with each
cloud. By allowing a limited information exchange between the
coupled clouds, the proposed approach guarantees a feasible
solution to the original problem at each iteration. The paper
further proposes a centralized solution to the problem based
on the group sparsity structure of the beamforming vectors.
Simulation results show the performance improvement of the
proposed solution as compared to the conventional per-cloud
update solution.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the downlink of a multi-CRAN with C clouds,
where each cloud c is connected to Bc BSs via high-capacity
wireline backhaul links. Each BS b is equipped with Nb

antennas. The network comprises U single-antenna mobile
users (MUs). Figure 1 illustrates an example of the considered
network with 3 clouds, where each cloud is connected to 2
BSs. Let the set C with size C = |C| be the set of clouds, and

Cloud

Base Station

Mobile User

Figure 1. The architecture of multi-CRAN.

Uc be the set of users associated with one cloud c ∈ C. Further,
let Ac denote the set of active BSs connected to cloud c. Let
su be a complex scalar denoting the data symbol for user u,
wcbu ∈ CNb be the beamforming vector at BS b of cloud c
associated with user u’s signal su, and hcbu ∈ CNb be the
channel vector from BS b of cloud c to user u. The received
signal ycu ∈ C of user u in cloud c can be written as:

ycu =
∑
b∈Ac

hH
cbuwcbusu +

∑
u′∈Ucu

∑
b∈Ac

hH
cbuwcbu′su′

+
∑
c′ 6=c

∑
b′∈Ac′

∑
u′∈Uc′

hH
c′b′uwc′b′u′su′ + nu,

(1)

where Ucu = Uc\{u}, and where nu ∼ CN (0, σ2
u) represents

the additive white Gaussian noise which is independent from
the transmitted data symbols su.

Define the beamforming vector of user u ∈ Uc by wcu =
[wT

cbu, ∀b ∈ Ac]
T ∈ CNc , which is the stacking of all

beamforming vectors due to all active BS b ∈ Ac associated

with user u’s signal su, where Nc =
∑

b∈Ac

Nb. Further, let the

channel vector from the set of active BSs b ∈ Ac to user u
be hcu = [hT

cbu, ∀b ∈ Ac]
T ∈ CNc . Therefore, the received

signal at user u in cloud c can be rewritten as:

ycu = hH
cuwcusu +

∑
u′∈Ucu

hH
cuwcu′su′

+
∑
c′ 6=c

∑
u′∈Uc′

hH
c′uwc′u′su′ + nu.

(2)

B. Problem Formulation

Without loss of generality, assume that the average symbol
power for user u is unity, i.e. E(|su|2) = 1, and that the
transmitted data symbols su are independent from each other.
Therefore, based on (2), the signal-to-interference-plus-noise
ratio (SINR) of user u served by cloud c can be expressed as:

Γu =

∣∣hH
cuwcu

∣∣2∑
u′∈Ucu

|hH
cuwcu′ |2 +

∑
c′ 6=c

∑
u′∈Uc′

∣∣hH
c′uwc′u′

∣∣2 + σ2
u

.

One of the constraints of the optimization problem studied
in this paper is the transmit power constraints of every BS b
connected to cloud c, given by:

Uc∑
u=1

||wcbu||2`2 ≤ Pcb, ∀ (b, c) ∈ (Ac × C), (3)

where Pcb is a given nominal maximum transmit power.

The objective function of the optimization problem studied
in this paper is a generalization of the total network power
consumption function studied in [2] in a single cloud setup.
Using similar notations to the setup used in [2], this paper
considers the total network power consumption across the
multiple clouds, which can be written as follows:

p(A,w) =

C∑
c=1

∑
b∈Ac

∑
u∈Uc

1

νb
||wcbu||2`2 +

C∑
c=1

∑
b∈Ac

P r
b ,

where A =
C⋃

c=1
Ac denotes the set of active BSs in the entire

network, νb > 0 is the drain efficiency of the radio frequency
(RF) power amplifier, and where P r

b > 0 denotes the relative
wireline backhaul link power consumption which represent
the difference between the power consumption of the active
BSs and their corresponding transport link in active and sleep
modes. The considered network power consumption model
consists of the transmit power consumption of the active BSs
and the relative wireline backhaul link power consumption.

The optimization problem studied in this paper considers
the minimization of the multi-CRAN total network power
consumption subject to SINR and transmit power constraints,
which can be formulated as follows:

min
w,A

C∑
c=1

∑
b∈Ac

∑
u∈Uc

1

νb
||wcbu||2`2 +

C∑
c=1

∑
b∈Ac

P r
b

s.t.
∑
u∈Uc

||wcbu||2`2 ≤ Pcb, ∀ (b, c) ∈ (Ac × C)

Γu ≥ δu, ∀ (u, c) ∈ (Uc × C),

(4)

where the optimization is over the beamforming vectors
w = [wT

cbu, ∀(b, u, c) ∈ (Ac × Uc × C)]T ∈ CN , where

N =
C∑

c=1
UcNc, and over the set of active BSs A, and where



δu denotes the SINR target for user u. The above problem
(4) is a mixed discrete and continuous optimization problem.
Finding the global optimal solution for such a problem would
likely require a combinatorial search, that is clearly infeasible
for any sized network. Further, centralized solutions to the
problem are no longer feasible, since otherwise, the clouds
would require joint signal-processing and a high level of cloud-
to-cloud backhaul communication. Thus, instead of looking
for global optimal solutions, the following section proposes
a suboptimal decentralized algorithm to solve the problem.
Simulation results suggest that the proposed decentralized al-
gorithm converges to the centralized solution in a finite number
of iterations. Furthermore, the proposed solution significantly
outperforms the conventional per-cloud update solution.

III. DECENTRALIZED MULTI-CLOUD GROUP SPARSE
BEAMFORMING ALGORITHM

A. Proposed Decentralized Solution

This section proposes a decentralization solution to the total
network power minimization problem (4), using a dual decom-
position approach, first proposed in the context of multicell
systems [5]. Specifically, we first start by introducing inter-
cloud interference terms, and additional auxiliary variables so
as to decouple the SINR constraints. The obtained optimization
problem can then be solved locally at each cloud with the help
of a dual decomposition approach [8] [9], thereby allowing the
exchange of the local inter-cloud interference terms between
the coupled clouds. Note that this approach decouples the
original optimization problem into multiple and independent
subproblems in charge of finding the local dual functions,
controlled by a master problem responsible for updating the
dual variables.

1) Problem Relaxation: First, define the inter-cloud inter-
ference terms ξ2c′u from an interfering cloud c′ to user u served
by any cloud (different than c′) as follows:

ξ2c′u =
∑

u′∈Uc′

∣∣hH
c′uwc′u′

∣∣2 . (5)

By relaxing the equality in the inter-cloud interference term
ξ2c′u in (5) into an inequality, the total network power mini-
mization problem (4) can be reformulated as:

min
w,A,ξ

C∑
c=1

∑
b∈Ac

∑
u∈Uc

1

νb
||wcbu||2`2 +

C∑
c=1

∑
b∈Ac

P r
b

s.t.
∑
u∈Uc

||wcbu||2`2 ≤ Pcb, ∀ (b, c) ∈ (Ac × C) (6)

Γu ≥ δu, ∀ (u, c) ∈ (Uc × C)

ξ2c′u ≥
∑

u′∈Uc′

∣∣∣∣∣∣
∑

b′∈Ac′

hH
c′b′uwc′b′u′

∣∣∣∣∣∣
2

, ∀u /∈ Uc′ , ∀c′ ∈ C,

Γu =
|hH

cuwcu|2∑
u′∈Ucu

|hH
cuwcu′ |2 +

∑
c′ 6=c

ξ2c′u + σ2
u

where the optimization is over the beamforming vectors, the
set of active BSs in the entire network A, and the inter-cloud
interference vector ξ = [ξc′u, ∀u /∈ Uc′ ∀c′ ∈ C]T ∈ RU ′

+ ,

where U ′ =
C∑

c=1

∑
c′ 6=c

Uc′ . Relaxing the inter-cloud interference

constraints with inequality in the reformulated problem (6) is,
in general, suboptimal as compared to (4) since the achieved

SINR is lower (i.e., more power is required to achieve the
SINR target). However, the inequality turns out to be always
tight.

Proposition 1. The original optimization problem (4) and
the relaxed optimization problem (6) have the same optimal
solution.

The proof of the above proposition follows by first showing
by contradiction that the relaxed constraints are active at the
optimal solution. Then, we can easily conclude the equivalence
between the two optimization problems. The details are omitted
due to space limitation. Note that the SINR constraints in
problem (6) are still coupled across the different clouds, be-
cause of the inter-cloud interference terms, which still prevents
the derivation of a decentralized strategy. However, using a
similar approach to the decoupling strategy, first proposed in
the multicell problem [5], (6) can be decoupled by introducing
a set of auxiliary local variables at each cloud and a set of
corresponding equality constraints. Problem (6) can then be
reformulated as:

min
w,A,ξ̃

C∑
c=1

∑
b∈Ac

∑
u∈Uc

1

νb
||wcbu||2`2 +

C∑
c=1

∑
b∈Ac

P r
b

s.t.
∑
u∈Uc

||wcbu||2`2 ≤ Pcb, ∀ (b, c) ∈ (Ac × C)

Γ(c)
u ≥ δu, ∀ (u, c) ∈ (Uc × C) (7)

ξ
(c′)2

c′u ≥
∑

u′∈Uc′

∣∣∣∣∣∣
∑

b′∈Ac′

hH
c′b′uwc′b′u′

∣∣∣∣∣∣
2

, ∀u /∈ Uc′ , ∀c′ ∈ C

ξ
(c′)
c′u = ξ

(cu)
c′u , ∀ (u, c′) ∈ (U × C̄u),

Γ(c)
u =

|hH
cuwcu|2∑

u′∈Ucu
|hH

cuwcu′ |2 +
∑
c′ 6=c

ξ
(c)2

c′u + σ2
u

where cu denotes the cloud serving user u, C̄u = {c|c 6= cu},
and where the optimization is over the beamforming vectors,
the set of active BSs A, and the inter-cloud interference vector
ξ̃ = [ξ

(c)
c′u ∀c ∈ {c′, cu} ∀u /∈ Uc′ ∀c′ ∈ C]T ∈ R2U ′

+ . Note that
by introducing the consistency constraints ξ(c

′)
c′u = ξ

(cu)
c′u in (7),

the SINR constraints become separable.

2) Subproblems Formulation: The distributed algorithm to
solve problem (7) is obtained by adopting a dual decompo-
sition approach. Specifically, we start by forming the partial
Lagrangian over the consistency constraints as (i.e., by first
accounting to the consistency constraints only):

L(w,A, ξ,λ) =

C∑
c=1

∑
b∈Ac

∑
u∈Uc

1

νb
||wcbu||2`2 +

C∑
c=1

∑
b∈Ac

P r
b

+

U∑
u=1

∑
c′ 6=cu

λc′u

(
ξ
(c′)
c′u − ξ

(cu)
c′u

)
, (8)

where λc′u denotes the Lagrange multiplier associated with
the consistency constraint ξ

(c′)
c′u = ξ

(cu)
c′u , and λ =

[λc′u, ∀u, ∀c′ ∈ C̄u]T ∈ RU ′
.

Lemma 1. The right hand side term in the partial Lagrangian
(8) can be rewritten as follows:

J =

U∑
u=1

∑
c′ 6=cu

λc′u

(
ξ
(c′)
c′u − ξ

(cu)
c′u

)
=

C∑
c=1

λT
c ξ

(c), (9)

where the local dual variable λc = [λcu′ ∀u′ /∈



Uc, −λc′u ∀c′ 6= c ∀u ∈ Uc]T and the local inter-cloud inter-
ference vector ξ(c) = [ξ

(c)
cu′ ∀u′ /∈ Uc, ξ(c)c′u ∀c′ 6= c ∀u ∈ Uc]T .

Proof: Define the set S1 = { (c, u′) | c ∈ C, u′ /∈ Uc }
,and the set S2 = { (c, u) | c ∈ C, u ∈ Uc }.
S1 and S2 are respectively equivalent to the
following sets S′1 = { (c, u) | u ∈ U , c 6= cu } and
S′2 = { (c, u) | u ∈ U , c = cu }. By exploiting this
equivalence, J can be written as follows

J =

U∑
u=1

∑
c′ 6=cu

λc′u

(
ξ
(c′)
c′u − ξ

(cu)
c′u

)
=

U∑
u=1

∑
c 6=cu

λcuξ
(c)
cu −

U∑
u=1

∑
c6=cu

λcuξ
(cu)
cu

=

C∑
c=1

 ∑
u′ /∈Uc

λcu′ξ
(c)
cu′ −

∑
u∈Uc

∑
c′ 6=c

λc′uξ
(c)
c′u


=

C∑
c=1

λT
c ξ

(c).

(10)

Using the above Lemma, (7) can be transformed into a
separable optimization problem, wherein the local dual func-
tions, called gc(λc), can be found separately at each cloud as
follows:

gc(λc) = min
w,A,ξ(c)

∑
b∈Ac

∑
u∈Uc

1

νb
||wcbu||2`2 +

∑
b∈Ac

P r
b + λT

c ξ
(c)

s.t.
∑
u∈Uc

||wcbu||2`2 ≤ Pcb, ∀ b ∈ Ac (11)

Γ(c)
u =

|hH
cuwcu|2∑

u′∈Ucu
|hH

cuwcu′ |2 +
∑
c′ 6=c

ξ
(c)2

c′u + σ2
u

≥ δu

ξ
(c)2

cu′ ≥
∑
u∈Uc

∣∣∣∣∣∑
b∈Ac

hH
cbu′wcbu

∣∣∣∣∣
2

, ∀ u′ /∈ Uc.

For a fixed active set of BSs A, the optimization problem
(11) can be easily recast as a Second-Order Cone Programming
(SOCP), which can then be solved using efficient numerical
algorithms [10]. Therefore, the global optimal solution of the
above optimization problem can be obtained by searching over
all the possible active sets of BSs and selecting the set that
provides the minimum cost value. Such approach to solve
the optimization problem (11) grows exponentially with the
number of BSs, which makes it unpractical. Since the mini-
mization problem in formulation (11) is decoupled for every
cloud, this paper rather proposes solving (11) using an iterative
group sparse beamforming (GSBF) algorithm, first proposed in
a single cloud setup [2]. Such approach provides a suboptimal
solution to (11), but has a maximum number of iterations that
is linear in the number of BSs. The GSBF approach relies on
finding a tightest convex positively homogeneous lower bound
[11] of the cost function, and then uses the MM algorithm [12]
in order to induce group sparsity.

Proposition 2. The tightest convex positively homogeneous
lower bound of the sparse representation of the cost function
in (11) is given by

Ω(wc) = 2

Bc∑
b=1

√
P r
b

νb
||wcb||`2 + λT

c ξ
(c) (12)

The proof of the above proposition uses steps similar to the ones
used in [2], and hinges upon the fact that the second term in
(12) is convex. Steps for determining the MM algorithm and
the sparse representation of the cost function in (11) are also
omitted in this paper, as they mirror the steps used in [2].

3) Master Problem: Solving (11) for every local dual
function initially at every cloud c requires the knowledge of
the local dual variable λc. Such variables are found by solving
the master problem of the dual decomposition, which can be
written as follows:

max
λ

g(λ) =

C∑
c=1

gc(λc). (13)

This dual problem can be solved iteratively and independently
at each cloud using the subgradient method with the following
update rule:

λc′u(i+ 1) = λc′u(i) + µ
(
ξ
(c′)
c′u − ξ

(cu)
c′u

)
, ∀ c′, ∀ u, (14)

where ξ(c
′)

c′u − ξ
(cu)
c′u is a subgradient of the dual function g at

λc′u [8], i represents the iteration index and µ denotes the step
size. As discussed earlier, for a fixed active set of BSs A, the
optimization problem (6) can be recast as a SOCP. Therefore, a
diminishing step size, i.e. µ = K√

i
where K > 0, guarantees the

convergence of the decentralized algorithm to the same solution
of the centralized problem [13]. In this work, we only focus on
a diminishing step size. As the simulations section suggest, the
decentralized algorithm converges to the centralized solution in
a finite number of iterations. Note that at each iteration of the
subgradient algorithm, the coupled clouds need to exchange
their current local inter-cloud interference terms, which is a
reasonable level of information exchange.

4) Feasible Primal Solution: The dual decomposition ap-
proach consists of iterating between the optimization problem
(11) and the update rule (14). At each iteration of this al-
gorithm, the introduced auxiliary variables may not lead to
a feasible solution for the original total network power mini-
mization problem (4), i.e., ξ(c

′)
c′u 6= ξ

(cu)
c′u during the intermediate

iteration. To reach a set of feasible solution at each iteration,
we propose using fixed average inter-cloud interference terms
defined as follows:

ξc′u =
1

2

(
ξ
(c′)
c′u + ξ

(cu)
c′u

)
, ∀ u /∈ Uc′ , ∀ c′ ∈ C. (15)

Then, resolve the optimization problem (11) for fixed average
inter-cloud interference terms. Note that the obtained solution
remains suboptimal, yet a feasible, solution to the original
problem (4).

5) Iterative Decentralized Algorithm: The proposed decen-
tralized solution requires to iterate between two levels. At the
first level, multiple and independent subproblems are solved lo-
cally. At the second level, there is a master problem responsible
for updating the dual variables. At each iteration, a solution
of feasible beamforming vectors and active set of BSs is
estimated locally. The proposed iterative Decentralized Multi-
Cloud Group Sparse Beamforming (I-DMCGSB) algorithm is
summarized in Table (1).

B. Centralized Solution

In this section, we derive a centralized solution for the
optimization problem (4). To this end, we assume that all the
processing is performed in a shared processor connecting all
the clouds. The total power minimization problem (4) can be



Algorithm 1 The iterative Decentralized Multi-Cloud Group
Sparse Beamforming (I-DMCGSB)
Initialization : Initialize the dual variables λc(0) and set the

iteration index to i = 0.
Repeat :

1: Solve the optimization problem (11). If it is infeasible, go
to End;

2: Update the dual variables as in (14) and then broadcast the
new dual variables to the adjacent clouds;

3: Optional: Compute the average inter-cloud interference
terms as in (15). Then, solve the optimization problem (11)
using the fixed average inter-cloud interference terms to
estimate a feasible primal solution.

4: Update the iteration index i = i+ 1;
Until : Desired level of convergence.
5: Find the optimal beamforming vectors w∗cbu, ∀ b /∈
Bc, ∀ u ∈ Uc, the active set of BSs A∗c and the optimal
power consumption p∗c(A∗c ,w∗cu).

End

reformulated as
min
w′,A

∑
b∈A

∑
u∈U

1

νb
||wbu||2`2 +

∑
b∈A

P r
b

s.t.
∑
u∈U

||wbu||2`2 ≤ Pb, ∀ b ∈ A

Γ′u =
|h′Hu w′u|2∑

u′ 6=u

|h′Hu w′u′ |2 + σ2
u

≥ δu, ∀ u ∈ U

||wbu||`2 ≤ 0, ∀ (u, b) ∈ (U × Āu),

(16)

where w′u denotes the beamforming vector of user u which
is defined as the stacking of all beamforming vectors used by
the set of active BSs b ∈ A to serve user u, and h′u represents
the channel vector from the entire set of active BSs b ∈ A to
user u, wbu denotes the beamforming vector at BS b for user
u, N ′ = U

∑
b∈A

Nb, Āu denotes the active set of BSs that can

not serve user u and Pb denotes the maximum transmit power
of BS b. In order to guarantee the equivalence between the
centralized formulation and the original total network power
minimization problem (4), we introduce additional inequality
constraints ||wbu||`2 ≤ 0, ∀ (u, b) ∈ (U × Āu), so as to
impose that the beamforming vectors form BS b to user u
connected to different cloud is equal to zero. Thus, solving the
optimization problem (16) is equivalent to solving the original
problem (4).

The introduced constraints in (16) are Second-Order Cone
(SOC) constraints. The above optimization problem can, there-
fore, be recast as a SOCP for a fixed active set of BSs A,
which can then be solved efficiently [10]. In order to reduce
the complexity, iterative GSBF algorithm can be used which
provides a suboptimal solution to (16) with low computational
complexity.

C. Per-Cloud Update Solution

Conventional CRANs operate on a per-cloud basis; inter-
cloud interference is treated as background noise. The baseline
approach to solve (4) then consists of iteratively solving the
total network power consumption minimization problem on
a per-cloud basis, where in each iteration, the cloud under
consideration solves the problem locally while treating inter-

cloud interference terms as part of the background noise.
Specifically, in iteration i, cloud c determines its set of beam-
formers and active set of BSs for fixed inter-cloud interference.
The resulting solution then affects the solution at cloud c′ in the
following iteration, as the inter-cloud interference terms need
to be updated. Such solution, called per-cloud update solution,
iteratively proceeds in updating the solution of each cloud, in
view of the other clouds’ solutions.

IV. SIMULATION RESULTS

This section investigates the performance of the proposed
algorithms. Consider a two-cloud CRAN, where each cloud
is connected to two BSs, i.e., B1 = B2 = 2. Each cluster
of BSs serves two single-antenna MUs. Each BS is equipped
with five antennas. We assume that the BSs and MUs in the
first cloud are uniformily and independently distributed in the
square region [0 2000]× [0 2000] meters. In the second cloud,
the BSs and MUs are uniformily and independently distributed
in the square region [2000 4000]×[0 2000] meters. The channel
vectors from the BSs to the MUs are generated assuming a
distance-dependent path loss L(dbu) = 128.1+37.6log10(dbu),
and Rayleigh fading component, where dbu denotes the dis-
tance between BS b and user u in kilometers. The noise power
spectral density is σ2

u = −96 dBm ∀u. The transmit antenna
power gain is set to 9 dBi. We set the initial dual variable to
λcu(0) = 0.01, ∀ u ∈ U , ∀ c ∈ C̄u. The drain efficiency of
the radio frequency power amplifier is set to νb = 0.25, ∀ b.
The relative wireline backhaul link power consumption is set
to P r

b = 2 + lb, ∀ b, where lb denotes the number of BS b in
cloud c. We set the maximum transmit power of BS b in cloud
c to Pcb = 1W .
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Figure 2. Convergence behavior of the I-DMCGSB and the conventional
per-cloud update algorithms with SINR target=5 dB and K = 2.

First, we set the SINR target to 5 dB and the step size
µ = 2√

i
. Figure 2 plots the network power consumption (in

Watts) versus the number of iterations so as to illustrate the
convergence behavior of the proposed I-DMCGSB algorithm
and the conventional per-cloud update algorithm. The figure
shows that the estimated feasible primal solution is a tight
upper bound on the solution of the original optimization
problem. It can be noticed that our proposed decentralized
solution I-DMCGSB algorithm converges to the centralized
solution in less than 100 iterations. Figure 2 particularly shows
that the proposed joint optimization solution (centralized and
decentralized) significantly outperforms the conventional per-
cloud update solution.

Then, we compare the energy efficiency of the proposed
and the conventional per-cloud update decentralized algo-
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Figure 3. Total network power consumption versus SINR target with K = 2.

rithms. Figure 3 plots the total network power consumption
as a function of SINR target. The figure shows that the pro-
posed decentralized solution has the same performance as the
centralized solution for all values of SINR target. Furthermore,
the proposed solution significantly outperforms the per-cloud
update solution, especially at high SINR target.
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Figure 4. Suboptimality versus iteration number for dual decomposition with
different SINR targets and K = 2.

Figure 4 plots the difference between the estimated feasible
primal solution, denoted by Pdecentralized, obtained using the
average inter-cloud interference terms and the solution of the
centralized algorithm, denoted by Pcentralized, as a function of
the iteration index for two values of SINR targets. It can
be noticed that the convergence of the I-DMCGSB algorithm
is faster for low SINR target. This result can be explained
by the fact that increasing the SINR target leads to higher
network power consumption, and so more iterations are needed
to achieve the desirable convergence.

Finally, to investigate the impact of changing the step size
on the convergence speed of the algorithm, Figure 5 shows
Pdecentralized − Pcentralized as a function of the iteration index for
different step sizes under a SINR target of 4 dB. The figure
shows that the convergence speed of the proposed decentralized
I-DMCGSB algorithm is sensitive to the used step size. Figure
5 especially shows how a well chosen step size may lead to
a significant improvement in the convergence speed of the
algorithm.

V. CONCLUSION

In this paper, a downlink multi-cloud radio access net-
work is considered, where each cloud is connected to several
multiple-antenna BSs via high capacity backhaul links. The
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Figure 5. Suboptimality versus iteration number for dual decomposition with
different step-sizes and fixed SINR target=4 dB.

paper proposes a decentralized algorithm to solve the total
network power minimization problem using a dual decompo-
sition approach. A feasible active set of BSs and beamforming
vectors can be obtained locally at each iteration by allowing
a limited information exchange between the adjacent clouds.
Simulation results show that the proposed decentralized algo-
rithm converges to the centralized solution in a finite number of
iterations, and the proposed algorithms significantly outperform
the conventional per-cloud update solution, especially at high
SINR target.
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