arxiv:1505.03491v2 [cs.IT] 27 Aug 2015

A Family of Erasure Correcting Codes with Low
Repair Bandwidth and Low Repair Complexity

Siddhartha Kumdr Alexandre Graell i Amdt Iryna Andriyanové, and Fredrik Brannstrom
iDepartment of Signals and Systems, Chalmers Universityeohiiology, Gothenburg, Sweden
1ETIS Laboratory, ENSEA/University of Cergy-Pontoise/CBIRCergy-Pontoise, France

. . » nodes Class A parities Class B parities
Abstract—We present the construction of a new family of k data nodes o e sl s

erasure correcting codes for distributed storage that yied low
repair bandwidth and low repair complexity. The construction ]
is based on two classes of parity symbols. The primary goal
of the first class of symbols is to provide good fault tolerane,
while the second class facilitates node repair, reducing threpair
bandwidth and the repair complexity. We compare the proposd
codes with other codes proposed in the literature.

k data symbols

I. INTRODUCTION

Distributed storage (DS) uses a network of interconnected na+ g — 2k parity nodes
inexpensive storage devices (referred to as storage nades o Fig. 1: System model.
simply nodes) to store data reliably over long periods oftim
Reliability against node failures (commonly referred tdadt tion based on two classes of parity symbols. Corresponging!
tolerancg is achieved by means of erasure correcting codingjiere are two classes of parity nodes. The first class ofyparit
Furthermore, when a node fails, a new node needs to be adfieges, whose primary goal is to provide erasure correcting
to the DS network and populated with data to maintain tH@pability, is constructed using an MDS code modified by
initial state of reliability. The problem ofepairing a failed applying specially designed piggybacks to some of its code
node is known as theepair problem symbols. The second class of parity nodes is constructed usi
Classical maximum distance separable (MDS) codes are @pblock code whose parity symbols are obtained with simple
timal in terms of the fault tolerance/storage overheadeéfd additions. This class of parity nodes does not have the gerpo
However, the repair of a failed node requires the retrieval & bring any additional erasure correcting capability, tmt
large amounts of data from a large subset of nodes. Therefd@gilitate node repair at low repair bandwidth and low repai
in the recent years, the design of erasure correcting coedes €omplexity. In the paper, we compare the proposed codes with
reduce the cost of repair has attracted a great deal of iattentMDR codes, Zigzag codes, piggyback codes and LRCs [2], in
Pyramid code< ]1] were one of the first code constructionts tH&rms of repair bandwidth and repair complexity.
addressed this problem. In particular, they aim at redutieg ~ Notation: We define the operattr+b), = (a+b) mod k.
number of nodes that need to be contacted to repair a failtde Galois field of ordeg” is denoted byF».
node, known as the repair access. Other codes that reduce the
repair access are the local reconstruction codes (LRCs) [2] Il. CODE CONSTRUCTION
and the locally repairable codes [3]] [4]. We consider the distributed storage system depicted in
Other code constructions aim at reducing the repair bangly. [J. There aré: data nodes, each containing a very large
width, defined as the amount of information that needﬁjmber of data Symbo|s OVd? . As we shall see in the
to be read from the DS network to repair a failed nodgequel, the proposed code construction works with blocks of
Among them, we can mention minimum disk I/O repairablg data symbols per node. Thus, without loss of generality, we
(MDR) codes [[5], Zigzag codes [[6] and piggyback codegssume that each node containslata symbols. We denote
[7]. Piggybacking consists of adding carefully chosendine by di;, i,5=0,. — 1, the ith data symbol in thejth
combinations of data symbols (called piggybacks) to théyardata node. We say that the data symbols forih sa k data
symbols of a given erasure correcting code. This results dfray D, whered; ; = [D] . For later use, we also define
a lower repair bandwidth at the expense of a lower erasuffe set of data symbol® £ {dw} Further, there are — k
correcting capability with respect to the original code. parity nodes each Stonﬂgpanty symbols. We denote by ;,
In this paper, we propose a family of erasure correcting—0,... k-1, j = k,. — 1, the ith parity symbol in
codes that achieve low repair bandwidth and low repair cofe jth parlty node, and defme the sBj as the set of parity
plexity. In particular, we propose a systematic code costr symbols in the]th parity node. The set of all parity symbols

is denoted byP = We say that the data and pari
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Our main goal is to construct codes that yield low re-
pair bandwidth and low repair complexity of a single failed doo [ doio | doa | dos ] do.a P05 | Poe +dio
systematic node. To this purpose, we construct a family of
systematlc(n,k) codes consisting of two different classes dio | diy | digo | dis | dia Pis | PR +daa
of parity symbols. Correspondingly, there are two clasdes o
parity nodes, referred to as Cladsand ClassB parity nodes, doo| dot | dea [Ndaa | daa s | Pho+dss
as shown in Fig]1. Class and Class3 parity nodes are built <o
using an(na, k) code and arfng, k) code, respectively, such d J d d d A A

) ) ; +d

thatn = na + ng — k. In other words, the parity nodes of the LRI 27 K& Pas | Pae ™ 343
(n, k) codd correspond to the parity nodes of Cladsand 3 N 3 ; J A A g
ClassB codes. The primary goal of Clagsparity nodes is to LNRERRNIY 2| F44 Pas | Pagt dos

achieve good erasure correcting capability, while the psep
of ClassB nodes is to yield low repair bandwidth and lowFig: 2: A (7,5) ClassA code with7 = 1 constructed from &7, 5) MDS

. . . . code. P2 and P2 are the parity nodes. For each row colored symbols
repair complexity. In particular, we focus on the repair afel ojong for;.  °

nodes. The repair bandwidth (in bits) per node, denoted,by

is proportional to the average number of symbols (data andl) Encode each row of the data array usingsag, k) MDS

parity) that need to be read to repair a data symbol, denoted code (the same for each row). The parity synyb;@l il

by . More precisely, lets be the number of symbols per o1

nodé. Then, pﬁj _ Zaz,jdi,z, =k, A —1, @)

A=L (1) =0
VB’ whereq; ; denotes a coefficient ifi,». Store the parity
symbols in the corresponding row of the code array.
Overall, k(na — k) parity symbols are generated.

2) Modify some of the parity symbols by adding piggy-
backs. Letr, 1 < 7 < na — k — 1, be the number of
piggybacks introduced per row. The parity symbel,
is obtained as

wherev = [log, ¢¥] is the size (in bits) of a symbol can

be interpreted as the repair bandwidth normalized by the siz
(in bits) of a node. Therefore, in the rest of the paper we will
use\ to refer to the normalized repair bandwidth.

The main principle behind our code construction is the
following. The repair is performed one symbol at a time. Afte
the repair of a data symbol is accomplished, the symbols read pﬁu = pﬁu + d(itu—rnatr+1)5,i0 3
to repair that symbol are cached in the memory. Therefore, .
they can be used to repair the remaining data symbols at no whereu = na —7,...,na — L and the second term in
additional read cost. The proposed codes are constructed in the summation |§ the piggyback. )
such a way that the repair of a new data symbol requires al he fault tolerance(i.e., the num_ber_ of npde failures .that
low additional read cost (defined as the number of additiorZ@" P€ tolerated) of Class codes is given in the following
symbols that need to be read to repair the data symbol), so thigorem. _ ,

X (hencey) is reduced. Since we will often use the concepts 1heorem L:An (na, k) ClassA code withr piggybacks per
of read cost and additional read cost in the remainder of tH¥ can correct a minimum ofa — k — 7 + 1 node failures.
paper, we define them in the following. Proof: The proof is given in the appendix. _ [ ]

Definition 1: The read costof a symbol is the number When a fa|Iure. of a data node_occurs, Clasparity nodes
of symbols that need to be read to repair the symbol. TREE used to repair +1 of the k failed symbols. The Clas&
additional read cosbf a symbol is the additional number ofP*”_‘”W symbols are constructed n suph a way that, when _node
symbols that need to be read to repair the symbol, cons@ierﬂ]'s erasedy + 1 data symbols in this node can be repaired

that other symbols are already cached in the memory (i.ee, héeading the (non-failedy - 1 data sym_bols ?n thgth row of
been read to recover some other data symbols previously).the data array and+ 1 pa.mty symbols in thejth row of Cla_ss
A nodes (see also Sectibn TV-C). For later use, we define the

I1l. CLASS A PARITY NODES setR; as follows. ,
Definition 2: For j = 0,...,k — 1, define the selR; as
Class A parity nodes are constructed using a modifier ={dj (i1 dj.Gr2)es > g (k-1 }-
(na, k) MDS code k +2 < na < 2k, overFy. In particular, — The setR; is the set ofi — 1 data symbols that are read
we start from ar{na, k) MDS code and apply piggybacks [7]from row j to recoverr + 1 data symbols of nodé using
to some of the parity symbols. The construction of Class ClassA parity nodes.
parity nodes is performed in two steps as follows. Example 1:An example of Clasé code is shown in Figd.2.

One can verify that the code can correct any 2 node failures.
1with some abuse of language we refer to the nodes storing drigy p
symbols of a code as the parity nodes of the code. SWe use the superscript to indicate that the parity symbol is stored in a
2For our code construction = k, but this is not the case in general. ClassA parity node.



For each rowy, the set Rj is indicated in red color. For In order to describe the code construction, we define the
instance,Ry = {do1,do2,do,3,do 4} functionread(d, p®) as follows.

The main purpose of Clagsparity nodes is to provide good Definition 5: Consider a Clas8 parity node and letP®
erasure correcting capability. However, the use of piggikba denote the set of parity symbols in this node. Alsolet Q;
helps also in reducing the number of symbols that need flar somej and p® € PB be p® = d + Y aep d, wWhere
be read to repair the + 1 symbols of a failed node that areD’ C D, i.e., the parity symbop® is the sum ofd and a
repaired using ClasA code, as compared to MDS codes. Theubset of other data symbols. Then,
remainingk — = — 1 data symbols of the failed node can also ¥
be recovered from Clash parity nodes, but at a high symbol read(d, p°) = D\, )
read cost. Hence, the idea is to add another class of payifereD = {D’' U d}.

nodes, namely Clas8 parity nodes, in such a way that these For a given data symbal, the functionread(d, p®) gives
symbols can be recovered with lower read cost. the additional number of symbols that need to be read to
recoverd (considering the fact that some symbols are already
cached in the memory).

IV. CLASSB PARITY NODES

ClassB parity nodes are obtained using &mg, k) linear
block code oveff,» to encode thé: x k data symbols of the A. Construction Example

data array, i.e., we use tiies, k) codek times. This generates | the following, we propose a recursive algorithm for the

(ng — k) x k ClassB parity symbolsp,, i =0,....k — 1, construction of Clas® parity nodes. To ease understanding,
U=na,...,n—1. _ we introduce the algorithm through an example.
Definition 3: Forj =0,...,k — 1, define the seR; as We construct 10, 5) code starting from thé7, 5) ClassA

(4) code in Fig[2. In particular, we construet-7—1 = 3 ClassB
parity nodes, so that the additional number of reads to repai
Assume that data nodgfails. It is easy to see that the sefeach of the remaining faile#d — 7 — 1 = 3 symbols (after
Q, is the set oft — 7 — 1 data symbols that are not recoveregdecoveringr + 1 = 2 symbols using Clasa parity nodes) is

Qi = {d(jrr+1)n> Ajtr+2)n,i> > AGk=1)0,5 )

using ClassA parity nodes. 1. With some abuse of notation, we denote these parity nodes
Example 2:For the example in Fid.12, the s@; is indi- by P8, PE, andPE.
cate_d by hatched symbols for each colugnp =0, ..., k—1. Denote by A, a;; = [A];;, a temporary matrix of read
For instanceQo = {dx,0,d3,0,d4,0}- values for the respective data symbals;. After ClassA
For later use, we also define the following set. decoding,

Definition 4: For j = 0,...,k — 1, define the se&; as .
oo f di,j S {UtQt}
X = {dj,(j+1)kvdj,(j+2)kv o 'vdj,(j+k—r—1)k}- ) ai,j =<k ifi=j 7

Note thatX; = R; N {U;Q;}. 1 otherwise

Example 3:For the example in Figl2, the sét; is in-
dicated by hatched symbols for each rawFor instance,
Xo=RoN{QoUQ1UQyUQ3U Qu} = {do,1,do,2,do,3}

The purpose of ClasB parity nodes is to allow recovering
of the data symbols i®;, j =0, ...,k—1, at a low additional

wheret = 0,...,k — 1. For our example A after ClassA
decoding is given in Fid.13(a). Our algorithm operates on the
a; ;S whose initial value i and aims to obtain the lowest
possible values for thesg ;s under the given number of Class

read cost. Note that after recovering 1 symbols using Class B parity nodes. ThIS. IS dong ina recurslve manner as follows.
A parity nodes, the data symbols #®; are already stored 1. Construct the first parity ”Od?’ Pr. ) K
in the decoder memory, therefore they are accessible for thda For each symbold;; define the setD;; =

recovery of the remaining — 7 — 1 data symbols using Class {diivs)ye,Girs)n }5;5-

B parity nodes without the need of reading them again. Thelb Start with the elements i@,. Pick an element; o € Qo

main idea is based on the following proposition. such thata; o = oo, anddy; € Xp\D; . For instance,
Proposition 1: If a ClassB parity symbolp® is the sum of we takeds o.

one data symboll € Q; and a number of data symbols in 1c Fort =0,...,k—1 compute
A, then the recovery af comes at the cost of one additional
read (one should read parity symbdi).

This observation is used in the construction of CRgzmrity and update the respectivg, anday ;,
nodes (see Section TVIA below) to reduce the normalized B
repair bandwidth). In particular, we add: — ~ — 1 ClassB Aito)ee = an,(i+e) = 1ead(d(re, o Pig)- - (9)
parity nodes which allow to reduce the additional read cést o The resulting matrixA is shown in Fig[B(b). There are
all k(k — — 1) data symbols in al@;’s to 1. (The addition still entriesa; ; = oo that need to be handled.
of a single ClassB parity node allows to recover one new 1d Fort =0,...,k — 1 update

data symbol in eacl®;, j =0,...,k — 1, at the cost of one B B
additional read). Prr = P+ di (i), (10)

p?j =d(itt),t T Db (i40)n 8)
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(a) Initial. (b) Step 1c. (c) Step 1d. (d) Step 2b. (e) Step 3b.

Fig. 3: Update ofA during the construction of Clad® parity nodes for the example in Section TV-A. The updates.f after each step are highlighted in
red color. The shaded symbols in columdenote the se@;, while the shaded symbols in roivdenote the sef;.

PE PE PE B. Discussion of the Construction Example
The construction of ClasB parity nodes starts by selecting
da0 +doz +doy | dao+doz | dso an elementd, ; of a given Q; such thata;; = oo and
d;; € X;\D;; (for simplicity, as in the example, we can
dsq+diz+dig | dog+dis | dan start with j = 0). The first parity symbol of P after step
1c is thereforepy 7 = d; o + doq, and the remaining parity
diz+doa+das | dig+daa | dog symbols are obtained as {0 (8). By Proposifidn 1 the addition
read cost oll; ; (after step 1c) is. The reason for selecting
dos+dso+dsy | dos+dsp | dis d;; € X;\D;; is due to the fact that, again by Propositidn 1,
’ ' 7 7 its additional read cost is alsb. We remark that for each
dyatdii+dao | dsy+das | dog d;; € Q; it is not always possible to seledi; € X;\D; ;
’ ' ’ ’ ’ ’ and setp; 7 = d; ; +d; ;. This is the case wheh < 2(7+1).
Fig. 4: ClassB parity nodes for the data nodes in Fig. 2. If dj,i € Xj\DiJ does not exist, then we Selet}’t,t € Xj\Di,j

(see AppendikB). In this case, the additional read cost; of

. o (after step 1c) is> 1.
v;;heredog./ EI Xo anquﬁé— OONaftterthSt??hlb' Ugdatle In general, step 1d has to be performgd;|—2 times,
accordingly (see Fid.l3(c)). Note that the read va u(?:%rresponding to the number of entriés; = oo per column
A(it1),,(j+t), have not worsened. This comes from th
fact that the new added data symbol belongs to the cor-, ;

responding se&’ and is already cached in the memory, Adding i — 7 — 1 Class B nodes allows to reduce the
Thus, the additional read cost s On the other hand additional read cost for all data symbols in &l to 1 (see

th | . ’ Fig.[3(e)). However, this comes at the expense of a reduction
€ valuesi(jiv),,(i+t), INCrease. in the code rate, i.e., the storage overhead is increased. In
2. Construct the second parity node,PE. the examplek — 7 — 1 = 3 ClassB parity nodes need to

2a Pick an element, , € Q such that the correspondingbe introduced, which reduces the code rate frBra- 5/7 to
a;; is maximal. In our example, this id, o because & = 5/10 = 1/2. 1If a lower storage overhe_ad is required,
a4"0 — 3 ’ Class B parity nodes can bgunctured starting from the
2b Fort =0,...,k—1, do the following. Pick an element!ast parity node (for the example, nod@y, PP, and P?
dy (urr, € X\Di; such that for alld, ; € D, &€ punctured in this order), at the expense of an increased
reg&z./k ) < CJL ., where pB is set ’ioptsfs _ repair bandwidth. If all Clas® parity nodes are punctured,
17,7 i — 1,0 R

dii1y,. + di.(urr), - FOT OUT example, we choogh . we would remain only with Clas#\ parity nodes and the
Note that the onlykotheroptiodm, is not a good choice "éPair bandwidth corresponds to that of the Classode.

as the new additional read cost would increase from 1 f§1us, our code construction gives a family of rate-compatib
2. If suchd, (1), does not exist, sty = iy, . codes which trades off between repair bandwidth and storage
" (w k ’ ,8 7 kol*

Update A. The updated matrix is shown in Fig. 3(d). overhead: adding more Clads nodes reduces the repair
) bandwidth but increases the storage overhead.
3. Construct PE.

3a Pick an element; o € Q, such that the corresponding
a;,o is maximal. In our example, this i%; .

C. Repair of a Single Node Failure: Decoding Schedule

The repair of a failed systematic node, proceeds as follows.
3b Fort=0,....k—1, do the following.pﬁg = d(ireyt- First, 7 + 1 symbols are repaired using Claagparity nodes.

UpdateA. The resulting4 has valuek for all diagonal Then, the remaining symbols are repaired using Chaparity
elements and elsewhere (Fig3(e)). nodes. With a slight abuse of language, we will refer to the

repair of symbols using Clas&d and ClassB parity nodes
The ClassB parity nodesPE, PE, and P§ are shown in as the decoding of Class and ClassB codes, respectively.
Fig.[4. Suppose that nodg fails. Decoding is as follows.
A general version of the algorithm to construct Cldds « Decoding of ClassA code To reconstruct the failed data
parity nodes is given in Appendix|B. symbol in thejth row of the code array; symbols ¢ —1



data symbols anql;ﬁk) in the jth row are read. TheseD. Encoding Complexity

symbols are now cached in the memory. We then read ther,e encoding complexity of ther, k) code,Ck, is the sum
7 piggybacked symbols in thgth row. By construction of the encoding complexities of the two codes. The generatio
(see [B)), this allows to repair failed symbols, at the of each of thena — & ClassA parity symbols in one row
cost of an additional read each. o _ of the code arrayp;; in (@), requiresk multiplications and

« Decoding of ClassB code Each remaining failed data;. _ | gdditions. Adding data symbols to of these parity
symbold; ; € Q; is obtained by reading a Clagsparity sympols according td13) requires an additionaadditions.

symbol whose corresponding sét (see Definition5) The encoding complexity of the Clagscode is therefore
containsd, ;. In particular, if several Clas8 parity

symbolsp% , containd; ;, we read the parity symbol Ca = O((na — k)(kv® + (k= 1)) + O(tv). (12
with largest index;’. This yields the lowest additional

According to Sectior 1V, the parity symbols in the first
read cost.

ClassB parity node are constructed as the sumkof 7 — 1

V. CODE CHARACTERISTICS AND COMPARISON data symbols, and each parity symbol in the subsequeny parit

. . . ) nodes uses one less data symbol. Therefore, the encoding
In this section we characterize some different propertfes Qomplexity of the Clas® code is

the codes presented in Sectign$ Il V.

A. Fault Tolerance Ce= > O(k—7-1-iw). (13)
=1

The fault tolerance of the Clas& code depends on the
MDS code used in its construction andas stated in Theorem Finally, Cg = Ca + Cg.
[@. Hence, our proposed code has also fault tolerahce £ ~qqe Comparison
na —k—7-+1. Sincel <7 <na—k—1, our codes have a

fault tolerance of at least. Table[] provides a summary of the characteristics of dif-

ferent codes proposed in the literature as well as the codes
B. Normalized Repair Bandwidth constructed in this paprln the table, column 2 reports the

According to Sectiof V=T, to repair the first- 1 symbols value of 3 (see[(l)) for each code construction. For our code,

in a failed node requires that— 1 data symbols plus +1 /~ = k. unlike for MDR and Zigzag codes, for which
ClassA parity symbols are read. The remainihg 7 — 1 data 9rOWS exponentially with:. This implies that_our code_s require
symbols in the failed node are repaired by reading the @asd€SS memory to cache data symbols during repair. The fault
parity symbols. As seen in SectiGnllV, the parity symbols ifplerancef, the normalized repair bandwidth the normalized
the first ClassB parity node are constructed from sets of dat£Pa'" complexity, and the encoding complexity, discussed
symbols of cardinalityf Q;|= k —  — 1. Therefore, to repair the previous subsections, are reported in columns 3, 4,, an
each of thek — 7 — 1 data symbols in this set requires td "espectively. _ _

read at most — r — 1 symbols. The remaining Clags parity In Fig.[H, we compare our codes with other codes in the
nodes are constructed from fewer symbols thanr — 1. An literature. In particular, the figure plots the normalizegair

upper bound on the normalized repair bandwidth is therefdf@MPlexity of (n, k, f) codes ovedlys (v = 8) versus their
A< (k+7+ (k—7—1)?)/k It is observed that whem normalized repair bandwidth. In contrast to the bounds for

increases, the fault tolerance reduces whilenproves. the repair bandwidth and complexity reported in Table I, Big
contains the exact number of integer additions.
C. Repair Complexity of a Failed Node The best codes for a DS system should be the ones that
We first consider the complexity of elementary arithmetigchieve the lowest repair bandwidth and have the lowestrrepa
operations of elements of size = [log, ¢”] in Fyr. An complexny. As_seen in F|g:|5, MD_S codes have both hlgh
addition require©)(v/) and multiplication require®(2). The ePair complexity and repair bandwidth, but they are optima
term insideO(-) denotes the number of elementary binarlf! erms Of fault tolerance for a givem and k. Zigzag codes
additions. To repair the first symbol requiresnultiplications achiéve the same fault tolerance and high repair complexity
and k — 1 additions. To repair the following~ symbols &S MDS codes, but at the lowest repair bandwidth. At the
require an additionark multiplications and additions. The Other end, LRCs yield the lowest repair complexity but a
final k — 7 — 1 symbols require at most — r — 2 additions, higher repair bandwidth and worse fault tolerance thanatigz
since Class3 parity symbols are constructed as the sum of §Pdes: Piggyback codes have a repair bandwidth between

mostk — 7 — 1 data symbols. The repair complexity of ondhat of Zigzag and MDS codes, but with a higher repair
failed node is therefore complexity and worse fault tolerance. For a given storage

overhead, our proposed codes have better repair bandwidth
Cr=O((k — )v + kv?) + O(tk(v + %)) + O((k — 7 — 2)*v). than MDS codes, Piggyback codes and LRCs, and equal or
(11) similar repair bandwidth than Zigzag codes. Furthermdwey t

The first two terms correspond to the Clasode while the 4The variableg, ¢,- andr in Table[] are defined if_]7] and][2] respectively.
last term corresponds to the ClaBscode. The definition of¢ comes directly fromr that is defined in[]7].



TABLE I: Comparison of(n, k) codes that aim at reducing repair bandwidth. The repair Walid and the repair complexity are normalized per symbol,
while the encoding complexity is given per row in the codeayriNote that for MDR codes = k + 2.

B Fault Tolerance Norm. Repair Band. Norm. Repair Compl. Enc. Complexity
MDS 1 n—k k O((k — L)v + kv?) O((n — k)((k — 1)) + kv?)
LRC 1 1 S O(([+=E_T1=1)v)  ro(k—1w+k2) + (0~ k=071~ 1)
MDR [5] 2k 2 L O((k —1)v) O((k —1)v)
Zigzag [6] (n —k)F—1 n—k -t O((k — v + kv?) O((n — k)((k — 1)v) + kv?)
Piggyback [7] 2 1 (k—te) (hbt)Htr(htp£2) - -
Proposed Codes k >n—ng—71+1 < M Cr/k Ce
550 .51 ‘ without piggybacks). U_sing these symbols, one can recover
500 1 na—k—7 data symbols in that row and, thus, —k—7 failures
2 450! | of systematic nodes. In order to prove the theorem, we need
5 100 (7.4,1) to show that by using piggybacked parity symbgls,, i =
g ) (9.5,418.5.3) (5.4.1) (10,5.5), (9.5.4), (8.5.3) 0,. S k—1,in some parity n0(_jeu, itis possm!e to correct one
S 3501 2.0 © 1 arbitrary systematic node failure. To do this, let us coesid
3 (10,5,5) y system _ - _
5300 (8.44) (8,4,4), (7,4,3) | the system of Ilne_ar equatiorGd' = p', representing the
S e o o(7,4,3) ¢ set of parity equations to compupe,,s whereu = na — 7. In
_; (10,5,2) (9,5,2) oMDS code other words,d = (do 0seresdok—1,d1.05--,dr_1 kfl), p =
g o) *LRC [2 | . P ’ '
g *(8.-1 2 - ozigza[g %6] (Po.us---»PE—1.u), aNdG is given by
= 15017 1.);_? X \llii;).{_‘h.zm‘\w-—ﬁ +Piggyback [7] i
g (8,1 (10,5, 3)9,5,3) «Our code, 7 = 1,np = k +2 a w 0 0 ... 0
S 100f  (8,4.3) :8“:°°gwfé”“\f§i? 0 a uw, 0 ... 0
. ur code, 7 = 2, np = G- 0 0 a u ... 0 (14)
(8,4,3),(7,4,2) _(10,5,4),(9,5,3), (8,5,2) . R
* | | | | |
5 2 25 3 3.5 1 15 5 U1 00 0 ... a
normalized repair bandwidth (1) wherea = (qgu,. ..,k 14), u; i a vector of lengthk
Fig. 5: Comparisons of different codés, k, f) with v = 8. with one at positiorni and zeros elsewhere, adis the all-

. _ . _ zero vector of sizék. Now, assume a systematic nodéas
yield lower repair complexity as compared to MDS, Piggybagkjled. In order to repair it, we need to solve the following
and Zigzag codes. However, the benefits in terms of repgjibsystem of linear equatiolG’w’ = pT, in which w =
bandwidth and/or repair complexity with respect to MDS andy, ... d,_;,) and G’ is a k x k submatrix of G such
Zigzag codes come at a price of a lower fault tolerance.  that: a) its diagonal elements are all,; b) it has 1 at row

VI. CONCLUSION r ;’md column(r + 1); c) all other_entries are 0. Note that
G is full rank. Therefore, one arbitrary data symbol can be

In this paper, we constructed a new class of codes i ected and, hence, the erasure correcting capabiliByasis
achieve low repair bandwidth and low repair complexity foR .qde is at leasta — k — 7 + 1, which completes the proof.
a single node failure. The codes are constructed from two ’

smaller codes, ClasA and B, where the former focuses on APPENDIX B
the fa}ult toleranc_e of the_ code, and the !atter focuses ONa| coRrITHM TO CONSTRUCT CLASS B PARITY NODES
reducing the repair bandwidth and complexity. Our proposed
codes achieve better repair complexity than Zigzag codds anWe give an algorithm to construét — 7 — 1 ClassB
Piggyback codes and better repair bandwidth than LRCs tbuPgrity nodes in the ordeP? , P8 .,,...,PS ., . _,. This
the cost of slightly lower fault tolerance. A side effectath a results in the construction ofk — 7 — 1)k parity symbols
construction is that the number of symbols per node thatsiegdf;. The algorithm is given in Algorithni]1. Consider the
to be encoded grows linearly with the code dimension. Thegnstruction of the parity symbols of parity no@,,. The
implies that our codes are suitable for memory constraingd @Igorithm constructs first the parity symhd,,, as the sum of
systems as compared to Zigzag and MDR codes, for which @ elementl; o € Qp andmaz_itr elements inXy. Then, the
number of symbols per node increases exponentially with tather parity symbolg?,, , ¢ > 0, are constructed as the sum
code dimension. of an elementl(; ), , € Q: andmax_itr elements ink}, i.e.,
following a specific pattern. The remaining parity nodes are
APPENDIXA constructed in a similar way, with the only difference thae t
PROOF OFTHEOREMII] number of elements added from the séts maz_itr, varies
Each row in the code array contaims, — k& — 7 parity for each parity node. The construction of the parity symbols
symbols based on the MDS construction (i.e., parity symbqfﬁj depends on the choice of the symbols in the s&tsaand



Algorithm 1: Construction of Clas8 parity nodes

Initialization :
Vi, j=0,...,k—1

additional read cost does not increase (line 20 in the
algorithm). If such a condition is not met, then the symbol
dp,i» is not used in the construction of the parity symbol.

After the construction of each parity symbol, the corre-

1

a; ; as defined in[{7)
bi e
Dij = {d(i4).(+5) Yoo
max_itr =k —7—2
for w <« natona+k—7—2do

2 // construct kK—7—1 nodes

3 ChOOSGd@() € Qg s.t. a;,0 is max && d07i S Xo\ﬁﬁo

4 if dO,i ¢ XO\ﬁi.,O then ChOOSedi70 € Qg s.t. a;,0 is
max

5 | o = dio

6 fort+ 1tok—1do

7 | pEw = d(itt),t

8 end

9 for itr < 1 to maz_itr do

10 temp = pgw +do;

11 if itr =1 && dO,i € Xo\ﬁi70 &&

readdy ;, temp) < ap; then

12 Vi

13 pgw = temp

14 ap,;r = Q1.0 = readdoyi/,pg’_’w) =1

15 fort+ 1tok—1do

16 pth - pth + dt,(i'-i—t)k

17 ay (i1 11y, = readdy iy, o)

18 A(it+t)g,t = readd(i+t)k7t7p158,w)

19 end

20 else

21 if ﬂdoyi/ S X()\ﬁ@o &&

readdo i/, pS ) < ag.ir && ag. > 1 then

22 pg,w = pO,w + dO,i’

23 ao,» = max_itr + 1

24 ag,; = reac(d07i,p537w)

25 for t< 1to k—1do

26 ptB,w = ptB,w + dt,(i"Hﬁ);C

27 ay (it 44), = maz_itr +1

28 A, (i+t)y = readdtv(iﬂ)k’pgw)

29 end

30 end

31 end

32 end

33 max_itr < max_itr — 1

34 end

X;. Assume that a parity symbpg,j is constructed. The data

symbols involved ir;o(‘?j are picked as follows.

» Choice of a data symbol i@,: Select a symbat; o € Qo
such that the corresponding, is maximum and there
existsdy ; € Xo\f)i,o (lines 2 and 3 in the algorithm). If
the latter does not exists, then seldgt such thata; o
is maximum. Such &, always exist.

o Choice ofmax_itr data symbols inty: Selectmax_itr
symbolsdy i € X;\D;,o such thatap, > 1 and its

sponding entry of matrixA is updated.

(1]

(2]

(3]
(4]
(5]

(6]

[7]
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