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Abstract—We present the construction of a new family of
erasure correcting codes for distributed storage that yield low
repair bandwidth and low repair complexity. The construction
is based on two classes of parity symbols. The primary goal
of the first class of symbols is to provide good fault tolerance,
while the second class facilitates node repair, reducing the repair
bandwidth and the repair complexity. We compare the proposed
codes with other codes proposed in the literature.

I. I NTRODUCTION

Distributed storage (DS) uses a network of interconnected
inexpensive storage devices (referred to as storage nodes or
simply nodes) to store data reliably over long periods of time.
Reliability against node failures (commonly referred to asfault
tolerance) is achieved by means of erasure correcting coding.
Furthermore, when a node fails, a new node needs to be added
to the DS network and populated with data to maintain the
initial state of reliability. The problem ofrepairing a failed
node is known as therepair problem.

Classical maximum distance separable (MDS) codes are op-
timal in terms of the fault tolerance/storage overhead tradeoff.
However, the repair of a failed node requires the retrieval of
large amounts of data from a large subset of nodes. Therefore,
in the recent years, the design of erasure correcting codes that
reduce the cost of repair has attracted a great deal of attention.
Pyramid codes [1] were one of the first code constructions that
addressed this problem. In particular, they aim at reducingthe
number of nodes that need to be contacted to repair a failed
node, known as the repair access. Other codes that reduce the
repair access are the local reconstruction codes (LRCs) [2],
and the locally repairable codes [3], [4].

Other code constructions aim at reducing the repair band-
width, defined as the amount of information that needs
to be read from the DS network to repair a failed node.
Among them, we can mention minimum disk I/O repairable
(MDR) codes [5], Zigzag codes [6] and piggyback codes
[7]. Piggybacking consists of adding carefully chosen linear
combinations of data symbols (called piggybacks) to the parity
symbols of a given erasure correcting code. This results in
a lower repair bandwidth at the expense of a lower erasure
correcting capability with respect to the original code.

In this paper, we propose a family of erasure correcting
codes that achieve low repair bandwidth and low repair com-
plexity. In particular, we propose a systematic code construc-
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Fig. 1: System model.

tion based on two classes of parity symbols. Correspondingly,
there are two classes of parity nodes. The first class of parity
nodes, whose primary goal is to provide erasure correcting
capability, is constructed using an MDS code modified by
applying specially designed piggybacks to some of its code
symbols. The second class of parity nodes is constructed using
a block code whose parity symbols are obtained with simple
additions. This class of parity nodes does not have the purpose
to bring any additional erasure correcting capability, butto
facilitate node repair at low repair bandwidth and low repair
complexity. In the paper, we compare the proposed codes with
MDR codes, Zigzag codes, piggyback codes and LRCs [2], in
terms of repair bandwidth and repair complexity.

Notation: We define the operator(a+b)k , (a+b) mod k.
The Galois field of orderqp is denoted byFqp .

II. CODE CONSTRUCTION

We consider the distributed storage system depicted in
Fig. 1. There arek data nodes, each containing a very large
number of data symbols overFqp . As we shall see in the
sequel, the proposed code construction works with blocks of
k data symbols per node. Thus, without loss of generality, we
assume that each node containsk data symbols. We denote
by di,j , i, j = 0, . . . , k − 1, the ith data symbol in thejth
data node. We say that the data symbols form ak × k data
array D, wheredi,j = [D]i,j . For later use, we also define
the set of data symbolsD , {di,j}. Further, there aren − k
parity nodes each storingk parity symbols. We denote bypi,j ,
i = 0, . . . , k − 1, j = k, . . . , n − 1, the ith parity symbol in
the jth parity node, and define the setPj as the set of parity
symbols in thejth parity node. The set of all parity symbols
is denoted byP , ∪j{Pj}. We say that the data and parity
symbols form ak × n code arrayC, whereci,j = [C]i,j .
Note thatci,j = di,j for i, j = 0, . . . , k− 1 andci,j = pi,j for
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i = 0, . . . , k − 1, j = k, . . . , n− 1.
Our main goal is to construct codes that yield low re-

pair bandwidth and low repair complexity of a single failed
systematic node. To this purpose, we construct a family of
systematic(n, k) codes consisting of two different classes
of parity symbols. Correspondingly, there are two classes of
parity nodes, referred to as ClassA and ClassB parity nodes,
as shown in Fig. 1. ClassA and ClassB parity nodes are built
using an(nA, k) code and an(nB, k) code, respectively, such
thatn = nA +nB− k. In other words, the parity nodes of the
(n, k) code1 correspond to the parity nodes of ClassA and
ClassB codes. The primary goal of ClassA parity nodes is to
achieve good erasure correcting capability, while the purpose
of ClassB nodes is to yield low repair bandwidth and low
repair complexity. In particular, we focus on the repair of data
nodes. The repair bandwidth (in bits) per node, denoted byγ,
is proportional to the average number of symbols (data and
parity) that need to be read to repair a data symbol, denoted
by λ. More precisely, letβ be the number of symbols per
node2. Then,

λ =
γ

νβ
, (1)

whereν = ⌈log2 q
p⌉ is the size (in bits) of a symbol.λ can

be interpreted as the repair bandwidth normalized by the size
(in bits) of a node. Therefore, in the rest of the paper we will
useλ to refer to the normalized repair bandwidth.

The main principle behind our code construction is the
following. The repair is performed one symbol at a time. After
the repair of a data symbol is accomplished, the symbols read
to repair that symbol are cached in the memory. Therefore,
they can be used to repair the remaining data symbols at no
additional read cost. The proposed codes are constructed in
such a way that the repair of a new data symbol requires a
low additional read cost (defined as the number of additional
symbols that need to be read to repair the data symbol), so that
λ (henceγ) is reduced. Since we will often use the concepts
of read cost and additional read cost in the remainder of the
paper, we define them in the following.

Definition 1: The read cost of a symbol is the number
of symbols that need to be read to repair the symbol. The
additional read costof a symbol is the additional number of
symbols that need to be read to repair the symbol, considering
that other symbols are already cached in the memory (i.e., have
been read to recover some other data symbols previously).

III. C LASS A PARITY NODES

Class A parity nodes are constructed using a modified
(nA, k) MDS code,k+2 ≤ nA < 2k, overFqp . In particular,
we start from an(nA, k) MDS code and apply piggybacks [7]
to some of the parity symbols. The construction of ClassA

parity nodes is performed in two steps as follows.

1With some abuse of language we refer to the nodes storing the parity
symbols of a code as the parity nodes of the code.

2For our code construction,β = k, but this is not the case in general.
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Fig. 2: A (7, 5) ClassA code withτ = 1 constructed from a(7, 5) MDS
code.PA

5 and PA

6 are the parity nodes. For each rowj, colored symbols
belong toRj .

1) Encode each row of the data array using an(nA, k) MDS
code (the same for each row). The parity symbolpAi,j is3

pAi,j =

k−1
∑

l=0

αl,jdi,l, j = k, . . . ,nA − 1, (2)

whereαl,j denotes a coefficient inFqp . Store the parity
symbols in the corresponding row of the code array.
Overall,k(nA − k) parity symbols are generated.

2) Modify some of the parity symbols by adding piggy-
backs. Letτ , 1 ≤ τ ≤ nA − k − 1, be the number of
piggybacks introduced per row. The parity symbolpi,u
is obtained as

pAi,u = pAi,u + d(i+u−nA+τ+1)k,i, (3)

whereu = nA − τ, . . . , nA − 1 and the second term in
the summation is the piggyback.

The fault tolerance(i.e., the number of node failures that
can be tolerated) of ClassA codes is given in the following
theorem.

Theorem 1:An (nA, k) ClassA code withτ piggybacks per
row can correct a minimum ofnA− k− τ +1 node failures.

Proof: The proof is given in the appendix.
When a failure of a data node occurs, ClassA parity nodes

are used to repairτ +1 of the k failed symbols. The ClassA
parity symbols are constructed in such a way that, when node
j is erased,τ + 1 data symbols in this node can be repaired
reading the (non-failed)k− 1 data symbols in thejth row of
the data array andτ+1 parity symbols in thejth row of Class
A nodes (see also Section IV-C). For later use, we define the
setRj as follows.

Definition 2: For j = 0, . . . , k − 1, define the setRj as
Rj = {dj,(j+1)k , dj,(j+2)k , · · · , dj,(j+k−1)k}.

The setRj is the set ofk − 1 data symbols that are read
from row j to recoverτ + 1 data symbols of nodej using
ClassA parity nodes.

Example 1:An example of ClassA code is shown in Fig. 2.
One can verify that the code can correct any 2 node failures.

3We use the superscriptA to indicate that the parity symbol is stored in a
ClassA parity node.



For each rowj, the set Ŗj is indicated in red color. For
instance,R0 = {d0,1, d0,2, d0,3, d0,4}.

The main purpose of ClassA parity nodes is to provide good
erasure correcting capability. However, the use of piggybacks
helps also in reducing the number of symbols that need to
be read to repair theτ + 1 symbols of a failed node that are
repaired using ClassA code, as compared to MDS codes. The
remainingk− τ − 1 data symbols of the failed node can also
be recovered from ClassA parity nodes, but at a high symbol
read cost. Hence, the idea is to add another class of parity
nodes, namely ClassB parity nodes, in such a way that these
symbols can be recovered with lower read cost.

IV. CLASS B PARITY NODES

ClassB parity nodes are obtained using an(nB, k) linear
block code overFqp to encode thek × k data symbols of the
data array, i.e., we use the(nB, k) codek times. This generates
(nB − k) × k ClassB parity symbols,pBi,u, i = 0, . . . , k − 1,
u = nA, . . . , n− 1.

Definition 3: For j = 0, . . . , k − 1, define the setQj as

Qj = {d(j+τ+1)k,j, d(j+τ+2)k,j , · · · , d(j+k−1)k ,j}. (4)

Assume that data nodej fails. It is easy to see that the set
Qj is the set ofk− τ − 1 data symbols that are not recovered
using ClassA parity nodes.

Example 2:For the example in Fig. 2, the setQj is indi-
cated by hatched symbols for each columnj, j = 0, . . . , k−1.
For instance,Q0 = {d2,0, d3,0, d4,0}.

For later use, we also define the following set.
Definition 4: For j = 0, . . . , k − 1, define the setXj as

Xj = {dj,(j+1)k , dj,(j+2)k , · · · , dj,(j+k−τ−1)k}. (5)

Note thatXj = Rj ∩ {∪lQl}.
Example 3:For the example in Fig. 2, the setXi is in-

dicated by hatched symbols for each rowi. For instance,
X0 = R0 ∩ {Q0 ∪ Q1 ∪ Q2 ∪Q3 ∪ Q4} = {d0,1, d0,2, d0,3}.

The purpose of ClassB parity nodes is to allow recovering
of the data symbols inQj , j = 0, . . . , k−1, at a low additional
read cost. Note that after recoveringτ+1 symbols using Class
A parity nodes, the data symbols inRj are already stored
in the decoder memory, therefore they are accessible for the
recovery of the remainingk− τ − 1 data symbols using Class
B parity nodes without the need of reading them again. The
main idea is based on the following proposition.

Proposition 1: If a ClassB parity symbolpB is the sum of
one data symbold ∈ Qj and a number of data symbols in
Xj , then the recovery ofd comes at the cost of one additional
read (one should read parity symbolpB).

This observation is used in the construction of ClassB parity
nodes (see Section IV-A below) to reduce the normalized
repair bandwidth,λ. In particular, we addk − τ − 1 ClassB
parity nodes which allow to reduce the additional read cost of
all k(k − τ − 1) data symbols in allQj ’s to 1. (The addition
of a single ClassB parity node allows to recover one new
data symbol in eachQj , j = 0, . . . , k − 1, at the cost of one
additional read).

In order to describe the code construction, we define the
function read(d, pB) as follows.

Definition 5: Consider a ClassB parity node and letPB

denote the set of parity symbols in this node. Also, letd ∈ Qj

for some j and pB ∈ PB be pB = d +
∑

d′∈D′ d′, where
D′ ⊂ D, i.e., the parity symbolpB is the sum ofd and a
subset of other data symbols. Then,

read(d, pB) = |D̆\Xj |, (6)

whereD̆ = {D′ ∪ d}.
For a given data symbold, the functionread(d, pB) gives

the additional number of symbols that need to be read to
recoverd (considering the fact that some symbols are already
cached in the memory).

A. Construction Example

In the following, we propose a recursive algorithm for the
construction of ClassB parity nodes. To ease understanding,
we introduce the algorithm through an example.

We construct a(10, 5) code starting from the(7, 5) ClassA
code in Fig. 2. In particular, we constructk−τ−1 = 3 ClassB
parity nodes, so that the additional number of reads to repair
each of the remaining failedk − τ − 1 = 3 symbols (after
recoveringτ + 1 = 2 symbols using ClassA parity nodes) is
1. With some abuse of notation, we denote these parity nodes
by PB

7 , PB

8 , andPB

9 .
Denote byA, ai,j = [A]i,j , a temporary matrix of read

values for the respective data symbolsdi,j . After ClassA
decoding,

ai,j =











∞ if di,j ∈ {∪tQt}

k if i = j

1 otherwise,

(7)

where t = 0, . . . , k − 1. For our example,A after ClassA
decoding is given in Fig. 3(a). Our algorithm operates on the
ai,js whose initial value is∞ and aims to obtain the lowest
possible values for theseai,js under the given number of Class
B parity nodes. This is done in a recursive manner as follows.

1. Construct the first parity node, PB

7 .
1a For each symboldi,j define the set D̃i,j ,

{d(i+s)k,(j+s)k}
k−1
s=0 .

1b Start with the elements inQ0. Pick an elementdi,0 ∈ Q0

such thatai,0 = ∞, andd0,i ∈ X0\D̃i,0. For instance,
we taked2,0.

1c For t = 0, . . . , k − 1 compute

pBt,7 = d(i+t)k,t + dt,(i+t)k (8)

and update the respectiveai,0 anda0,i,

a(i+t)k,t = at,(i+t)k = read(d(i+t)k,t, p
B

t,7). (9)

The resulting matrixA is shown in Fig. 3(b). There are
still entriesai,j =∞ that need to be handled.

1d For t = 0, . . . , k − 1 update

pBt,7 = pBt,7 + dt,(i′+t)k , (10)
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Fig. 3: Update ofA during the construction of ClassB parity nodes for the example in Section IV-A. The updates ofai,j after each step are highlighted in
red color. The shaded symbols in columnj denote the setQj , while the shaded symbols in rowi denote the setXi.
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Fig. 4: ClassB parity nodes for the data nodes in Fig. 2.

whered0,i′ ∈ X0 and a0,i′ = ∞ after step 1b. Update
A accordingly (see Fig. 3(c)). Note that the read values
a(i+t)k,(j+t)k have not worsened. This comes from the
fact that the new added data symbol belongs to the cor-
responding setX and is already cached in the memory.
Thus, the additional read cost is0. On the other hand,
the valuesa(j+t)k,(i+t)k increase.

2. Construct the second parity node,PB

8 .

2a Pick an elementdi,0 ∈ Q0 such that the corresponding
ai,j is maximal. In our example, this isd4,0 because
a4,0 = 3.

2b Fort = 0, . . . , k− 1, do the following. Pick an element
dt,(u+t)k ∈ Xt\D̃i,j such that for alldi′,j′ ∈ D̆,
read(di′,j′ , pt,8) ≤ ai′,j′ , where pB is set to pBt,8 =
d(i+t)k,t + dt,(u+t)k . For our example, we choosed0,2.
Note that the only other option,d0,3, is not a good choice
as the new additional read cost would increase from 1 to
2. If suchdt,(u+t)k does not exist, setpBt,8 = d(i+t)k,t.
UpdateA. The updated matrix is shown in Fig. 3(d).

3. Construct PB

9 .

3a Pick an elementdi,0 ∈ Q0 such that the corresponding
ai,0 is maximal. In our example, this isd3,0.

3b Fort = 0, . . . , k − 1, do the following.pBt,9 = d(i+t)k,t.
UpdateA. The resultingA has valuek for all diagonal
elements and1 elsewhere (Fig. 3(e)).

The ClassB parity nodesPB

7 , PB

8 , andPB

9 are shown in
Fig. 4.

A general version of the algorithm to construct ClassB

parity nodes is given in Appendix B.

B. Discussion of the Construction Example

The construction of ClassB parity nodes starts by selecting
an elementdi,j of a given Qj such thatai,j = ∞ and
dj,i ∈ Xj\D̃i,j (for simplicity, as in the example, we can
start with j = 0). The first parity symbol of P̧7 after step
1c is thereforep0,7 = di,0 + d0,i, and the remaining parity
symbols are obtained as in (8). By Proposition 1 the additional
read cost ofdi,j (after step 1c) is1. The reason for selecting
dj,i ∈ Xj\D̃i,j is due to the fact that, again by Proposition 1,
its additional read cost is also1. We remark that for each
di,j ∈ Qj it is not always possible to selectdj,i ∈ Xj\D̃i,j

and setpj,7 = di,j +dj,i. This is the case whenk < 2(τ +1).
If dj,i ∈ Xj\D̃i,j does not exist, then we selectdj,t ∈ Xj\D̃i,j

(see Appendix B). In this case, the additional read cost ofdj,t
(after step 1c) is> 1.

In general, step 1d has to be performed|Qj |−2 times,
corresponding to the number of entriesai,j =∞ per column
of A.

Adding k − τ − 1 ClassB nodes allows to reduce the
additional read cost for all data symbols in allQj to 1 (see
Fig. 3(e)). However, this comes at the expense of a reduction
in the code rate, i.e., the storage overhead is increased. In
the example,k − τ − 1 = 3 ClassB parity nodes need to
be introduced, which reduces the code rate fromR = 5/7 to
R = 5/10 = 1/2. If a lower storage overhead is required,
Class B parity nodes can bepunctured, starting from the
last parity node (for the example, nodesPB

9 , PB

8 , and PB

7

are punctured in this order), at the expense of an increased
repair bandwidth. If all ClassB parity nodes are punctured,
we would remain only with ClassA parity nodes and the
repair bandwidth corresponds to that of the ClassA code.
Thus, our code construction gives a family of rate-compatible
codes which trades off between repair bandwidth and storage
overhead: adding more ClassB nodes reduces the repair
bandwidth but increases the storage overhead.

C. Repair of a Single Node Failure: Decoding Schedule

The repair of a failed systematic node, proceeds as follows.
First, τ + 1 symbols are repaired using ClassA parity nodes.
Then, the remaining symbols are repaired using ClassB parity
nodes. With a slight abuse of language, we will refer to the
repair of symbols using ClassA and ClassB parity nodes
as the decoding of ClassA and ClassB codes, respectively.
Suppose that nodej fails. Decoding is as follows.

• Decoding of ClassA code. To reconstruct the failed data
symbol in thejth row of the code array,k symbols (k−1



data symbols andpAj,k) in the jth row are read. These
symbols are now cached in the memory. We then read the
τ piggybacked symbols in thejth row. By construction
(see (3)), this allows to repairτ failed symbols, at the
cost of an additional read each.

• Decoding of ClassB code. Each remaining failed data
symboldi,j ∈ Qj is obtained by reading a ClassB parity
symbol whose corresponding set̆D (see Definition 5)
contains di,j . In particular, if several ClassB parity
symbolspBi′,j′ contain di,j , we read the parity symbol
with largest indexj′. This yields the lowest additional
read cost.

V. CODE CHARACTERISTICS ANDCOMPARISON

In this section we characterize some different properties of
the codes presented in Sections III and IV.

A. Fault Tolerance

The fault tolerance of the ClassA code depends on the
MDS code used in its construction andτ , as stated in Theorem
1. Hence, our proposed code has also fault tolerancef ≥
nA − k− τ + 1. Since1 ≤ τ ≤ nA − k− 1, our codes have a
fault tolerance of at least2.

B. Normalized Repair Bandwidth

According to Section IV-C, to repair the firstτ +1 symbols
in a failed node requires thatk − 1 data symbols plusτ + 1
ClassA parity symbols are read. The remainingk−τ−1 data
symbols in the failed node are repaired by reading the ClassB

parity symbols. As seen in Section IV, the parity symbols in
the first ClassB parity node are constructed from sets of data
symbols of cardinality|Qj |= k − τ − 1. Therefore, to repair
each of thek − τ − 1 data symbols in this set requires to
read at mostk− τ −1 symbols. The remaining ClassB parity
nodes are constructed from fewer symbols thank− τ − 1. An
upper bound on the normalized repair bandwidth is therefore
λ < (k + τ + (k − τ − 1)2)/k. It is observed that whenτ
increases, the fault tolerance reduces whileλ improves.

C. Repair Complexity of a Failed Node

We first consider the complexity of elementary arithmetic
operations of elements of sizeν = ⌈log2 q

p⌉ in Fqp . An
addition requiresO(ν) and multiplication requiresO(ν2). The
term insideO(·) denotes the number of elementary binary
additions. To repair the first symbol requiresk multiplications
and k − 1 additions. To repair the followingτ symbols
require an additionalτk multiplications and additions. The
final k − τ − 1 symbols require at mostk − τ − 2 additions,
since ClassB parity symbols are constructed as the sum of at
most k − τ − 1 data symbols. The repair complexity of one
failed node is therefore

CR = O((k − 1)ν + kν2) +O(τk(ν + ν2)) +O((k − τ − 2)2ν).
(11)

The first two terms correspond to the ClassA code while the
last term corresponds to the ClassB code.

D. Encoding Complexity

The encoding complexity of the(n, k) code,CE, is the sum
of the encoding complexities of the two codes. The generation
of each of thenA − k ClassA parity symbols in one row
of the code array,pAi,j in (2), requiresk multiplications and
k − 1 additions. Adding data symbols toτ of these parity
symbols according to (3) requires an additionalτ additions.
The encoding complexity of the ClassA code is therefore

CA = O((nA − k)(kν2 + (k − 1)ν)) +O(τν). (12)

According to Section IV, the parity symbols in the first
ClassB parity node are constructed as the sum ofk − τ − 1
data symbols, and each parity symbol in the subsequent parity
nodes uses one less data symbol. Therefore, the encoding
complexity of the ClassB code is

CB =

n−nA
∑

i=1

O((k − τ − 1− i)ν). (13)

Finally, CE = CA + CB.

E. Code Comparison

Table I provides a summary of the characteristics of dif-
ferent codes proposed in the literature as well as the codes
constructed in this paper.4 In the table, column 2 reports the
value ofβ (see (1)) for each code construction. For our code,
β = k, unlike for MDR and Zigzag codes, for whichβ
grows exponentially withk. This implies that our codes require
less memory to cache data symbols during repair. The fault
tolerancef , the normalized repair bandwidthλ, the normalized
repair complexity, and the encoding complexity, discussedin
the previous subsections, are reported in columns 3, 4, 5, and
6, respectively.

In Fig. 5, we compare our codes with other codes in the
literature. In particular, the figure plots the normalized repair
complexity of (n, k, f) codes overF28 (ν = 8) versus their
normalized repair bandwidthλ. In contrast to the bounds for
the repair bandwidth and complexity reported in Table I, Fig. 5
contains the exact number of integer additions.

The best codes for a DS system should be the ones that
achieve the lowest repair bandwidth and have the lowest repair
complexity. As seen in Fig. 5, MDS codes have both high
repair complexity and repair bandwidth, but they are optimal
in terms of fault tolerance for a givenn andk. Zigzag codes
achieve the same fault tolerance and high repair complexity
as MDS codes, but at the lowest repair bandwidth. At the
other end, LRCs yield the lowest repair complexity but a
higher repair bandwidth and worse fault tolerance than Zigzag
codes. Piggyback codes have a repair bandwidth between
that of Zigzag and MDS codes, but with a higher repair
complexity and worse fault tolerance. For a given storage
overhead, our proposed codes have better repair bandwidth
than MDS codes, Piggyback codes and LRCs, and equal or
similar repair bandwidth than Zigzag codes. Furthermore, they

4The variablest, tr andr in Table I are defined in [7] and [2] respectively.
The definition ofℓ comes directly fromr that is defined in [7].



TABLE I: Comparison of(n, k) codes that aim at reducing repair bandwidth. The repair bandwidth and the repair complexity are normalized per symbol,
while the encoding complexity is given per row in the code array. Note that for MDR codesn = k + 2.

β Fault Tolerance Norm. Repair Band. Norm. Repair Compl. Enc.Complexity

MDS 1 n− k k O((k − 1)ν + kν2) O((n− k)((k − 1)ν) + kν2)

LRC [2] 1 r + 1 k
n−k−r

O((⌈ k
n−k−r

⌉ − 1)ν) rO((k − 1)ν + kν2) + (n− k − r)O((⌈ k
n−k−r

⌉ − 1)ν)

MDR [5] 2k 2 k+1
2

O((k − 1)ν) O((k − 1)ν)

Zigzag [6] (n− k)k−1 n− k n−1
n−k

O((k − 1)ν + kν2) O((n− k)((k − 1)ν) + kν2)

Piggyback [7] 2 1 (k−tr)(k+t)+tr(k+tr+ℓ−2)
2k

– –

Proposed Codes k ≥ n−nB−τ+1 < k+τ+(k−τ−1)2
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Fig. 5: Comparisons of different codes(n, k, f) with ν = 8.

yield lower repair complexity as compared to MDS, Piggyback
and Zigzag codes. However, the benefits in terms of repair
bandwidth and/or repair complexity with respect to MDS and
Zigzag codes come at a price of a lower fault tolerance.

VI. CONCLUSION

In this paper, we constructed a new class of codes that
achieve low repair bandwidth and low repair complexity for
a single node failure. The codes are constructed from two
smaller codes, ClassA andB, where the former focuses on
the fault tolerance of the code, and the latter focuses on
reducing the repair bandwidth and complexity. Our proposed
codes achieve better repair complexity than Zigzag codes and
Piggyback codes and better repair bandwidth than LRCs, but at
the cost of slightly lower fault tolerance. A side effect of such a
construction is that the number of symbols per node that needs
to be encoded grows linearly with the code dimension. This
implies that our codes are suitable for memory constrained DS
systems as compared to Zigzag and MDR codes, for which the
number of symbols per node increases exponentially with the
code dimension.

APPENDIX A
PROOF OFTHEOREM 1

Each row in the code array containsnA − k − τ parity
symbols based on the MDS construction (i.e., parity symbols

without piggybacks). Using these symbols, one can recover
nA−k−τ data symbols in that row and, thus,nA−k−τ failures
of systematic nodes. In order to prove the theorem, we need
to show that by using piggybacked parity symbolspi,u, i =
0, . . . , k−1, in some parity node,u, it is possible to correct one
arbitrary systematic node failure. To do this, let us consider
the system of linear equationsGdT = pT, representing the
set of parity equations to computepi,us whereu = nA− τ . In
other words,d = (d0,0, . . . , d0,k−1, d1,0, . . . , dk−1,k−1), p =
(p0,u, . . . , pk−1,u), andG is given by

G =















a u0 0 0 . . . 0

0 a u1 0 . . . 0

0 0 a u2 . . . 0

...
...

...
...

. . .
...

uk−1 0 0 0 . . . a















(14)

where a = (α0,u, . . . , αk−1,u), ui is a vector of lengthk
with one at positioni and zeros elsewhere, and0 is the all-
zero vector of sizek. Now, assume a systematic noder has
failed. In order to repair it, we need to solve the following
subsystem of linear equationsG′wT = pT, in which w =
(d0,r, . . . , dk−1,r) and G′ is a k × k submatrix ofG such
that: a) its diagonal elements are allαr,u; b) it has 1 at row
r and column(r + 1)k; c) all other entries are 0. Note that
G′ is full rank. Therefore, one arbitrary data symbol can be
corrected and, hence, the erasure correcting capability ofClass
A code is at leastnA− k− τ +1, which completes the proof.

APPENDIX B
ALGORITHM TO CONSTRUCTCLASS B PARITY NODES

We give an algorithm to constructk − τ − 1 Class B

parity nodes in the orderPB

nA
,PB

nA+1, . . . ,P
B

nA+k−τ−2. This
results in the construction of(k − τ − 1)k parity symbols
pBt,j. The algorithm is given in Algorithm 1. Consider the
construction of the parity symbols of parity nodePnA

. The
algorithm constructs first the parity symbolpB0,nA

as the sum of
an elementdi,0 ∈ Q0 andmax itr elements inX0. Then, the
other parity symbolspBt,nA

, t > 0, are constructed as the sum
of an elementd(i+t)k,t ∈ Qt andmax itr elements inXt, i.e.,
following a specific pattern. The remaining parity nodes are
constructed in a similar way, with the only difference that the
number of elements added from the setsXt, max itr, varies
for each parity node. The construction of the parity symbols
pBt,j depends on the choice of the symbols in the setsQt and



Algorithm 1: Construction of ClassB parity nodes
Initialization :
∀i, j = 0, . . . , k − 1

ai,j as defined in (7)
D̃i,j , {d(i+s)k,(j+s)k}

k−1
s=0

max itr = k − τ − 2
1 for ω ← nA to nA + k − τ − 2 do
2 // construct k − τ − 1 nodes

3 choosedi,0 ∈ Q0 s.t. ai,0 is max&& d0,i ∈ X0\D̃i,0

4 if d0,i 6∈ X0\D̃i,0 then choosedi,0 ∈ Q0 s.t. ai,0 is
max

5 pB0,ω = di,0
6 for t← 1 to k − 1 do
7 pBt,ω = d(i+t)k,t

8 end
9 for itr← 1 to max itr do

10 temp = pB0,ω + d0,i
11 if itr = 1 && d0,i ∈ X0\D̃i,0 &&

read(d0,i, temp) < a0,i then
12 i′ ← i
13 pB0,ω = temp
14 a0,i′ = ai′,0 = read(d0,i′ , pB0,ω) = 1
15 for t← 1 to k − 1 do
16 pBt,ω = pBt,ω + dt,(i′+t)k

17 at,(i′+t)k = read(dt,(i′+t)k , p
B

t,ω)
18 a(i+t)k,t = read(d(i+t)k,t, p

B

t,ω)
19 end
20 else
21 if ∃d0,i′ ∈ X0\D̃i,0 &&

read(d0,i′ , pB0,w) ≤ a0,i′ && a0,i′ > 1 then
22 pB0,ω = pB0,ω + d0,i′

23 a0,i′ = max itr + 1
24 a0,i = read(d0,i, pB0,ω)
25 for t← 1 to k − 1 do
26 pBt,ω = pBt,ω + dt,(i′+t)k

27 at,(i′+t)k = max itr + 1
28 at,(i+t)k = read(dt,(i+t)k , p

B
t,ω)

29 end
30 end
31 end
32 end
33 max itr← max itr − 1
34 end

Xt. Assume that a parity symbolpB0,j is constructed. The data
symbols involved inpB0,j are picked as follows.

• Choice of a data symbol inQ0: Select a symboldi,0 ∈ Q0

such that the correspondingai,0 is maximum and there
existsd0,i ∈ X0\D̃i,0 (lines 2 and 3 in the algorithm). If
the latter does not exists, then selectdi,0 such thatai,0
is maximum. Such adi,0 always exist.

• Choice ofmax itr data symbols inX0: Selectmax itr
symbolsd0,i′ ∈ X0\D̃i,0 such thata0,i′ > 1 and its

additional read cost does not increase (line 20 in the
algorithm). If such a condition is not met, then the symbol
d0,i′ is not used in the construction of the parity symbol.

After the construction of each parity symbol, the corre-
sponding entry of matrixA is updated.
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