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Abstract—The downlink of a wireless network where multi-
antenna base stations (BSs) communicate with single-antenna
mobile stations (MSs) using maximal ratio transmission (MRT) is
considered here. The locations of BSs are modeled by a homoge-
neous Poisson point process (PPP) and the channel gains between
the multiple antennas of each BS and the single antenna of
each MS are modeled as spatially arbitrarily correlated Rayleigh
random variables. We first present novel closed-form expressions
for the distribution of the power of the interference resulting
from the coexistence of one intended and one unintended MRT
over the considered correlated fading channels. The derived
expressions are then used to obtain closed-form expressions for
the success probability and area spectral efficiency of the wireless
communication network under investigation. Simulation results
corroborate the validity of the presented expressions. A key result
of this work is that the effect of spatial correlation on the network
throughput may be contrasting depending on the density of BSs,
the signal-to-interference-plus-noise ratio (SINR) level, and the
background noise power.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems have been
instrumental in increasing the spectral efficiency and impro-
ving the reliability of wireless links by combating channel
fading and potentially reducing interference. Several multi-
antenna techniques have been proposed, implemented, and
standardized over the past decade, including diversity re-
ception, beamforming, and spatial multiplexing. Diversity-
oriented schemes enable multi-antenna transceivers to enhance
the system performance by exploiting the diversity provided
by the multiple channel fading variations. A classical antenna
diversity technique is maximal ratio combining (MRC) [1],
where the signals from the multiple receive antennas are
weighted such that the signal-to-noise ratio (SNR) of their
sum is maximized in the absence of interference, or when
interference is treated as background noise. Maximum ratio
transmission (MRT) [2] is the dual of MRC at the transmitter
side, i.e. the transmit antenna weights are matched to channel
fading, and exhibits the same performance.

It has been long recognized that the theoretical performance
gains of multi-antenna communication are degraded in practice
due to correlated fading[3]–[8]. Spatially correlated fading
channels are usually encountered in multi-antenna systems
employing not sufficiently wide separated antennas or with
insufficient scattering around the transmitter. While spatial

correlation has been considered as a drawback in both single-
and multi-user MIMO systems (see e.g. [9]), correlated fading
may have a positive impact on spatial diversity techniques if
opportunistic multi-user scheduling is employed [10].

The performance of diversity-oriented multi-antenna tech-
niques in multi-cell networks has not been extensively studied
until very recently, mainly due to significant difficulties in
characterizing and modeling the co-channel/out-of-cell inter-
ference. Recent advances in spatial network modeling using
tools from stochastic geometry were key enablers for analyzing
large spatial networks, departing from the classical simplifying
assumption of Gaussian interference. Several recent papers
have studied multi-antenna processing techniques in wireless
networks with Poisson distributed interferers [11]–[14],ig-
noring, however, the effect of spatially correlated fading. In
[15], [16], the effect of spatial interference correlationacross
diversity branches on the performance of single-input multiple-
output (SIMO) links in Poisson networks was quantified.
These works showed that multi-antenna diversity techniques
suffer a diversity loss when spatial interference correlation is
properly accounted for. Despite this progress, the performance
characterization of multi-antenna techniques in spatially cor-
related fading channels remains open, and is the main focus of
this paper. In contrast to our paper, all aforementioned papers
consider spatially uncorrelated Rayleigh fading, i.e. channel
vectors are spatially white random vectors, and interference
correlation occurs due to the common interference locations.

In this work, we investigate the effect of spatially arbitrarily
correlated Rayleigh fading on the performance of MRT in
wireless Poisson networks, where interferers form a Poisson
point process (PPP) and fading correlation at the antenna
branches is present only at the transmitter. The latter con-
sideration describes, for instance, a network set up in which
multiple antennas are placed at a high-point base station (BS),
while the mobile station (MS) is located in a rich scattering
surrounding. We provide analytical expressions for the success
probability and area spectral efficiency as a means to capture
the effect of spatial fading correlation on the network perfor-
mance. For that, we present novel closed-form expressions for
the distribution of the squared norm of a normalized version
of the dot product of two uncorrelated random vectors, each
having correlated elements described by a common covariance
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Fig. 1. The considered downlink wireless network. BS0 communicates
with the typical MS0 under the presence of interference links (onlyN of the
interference links are illustrated in this figure for exposition convenience).

matrix. The validity of our theoretical analysis is corroborated
through comparisons with equivalent computer simulations.

Notation: Vectors and matrices are denoted by boldface
lowercase letters and boldface capital letters, respectively. The
transpose conjugate is denoted by(·)H, while In (n ≥ 2) is the
n×n identity matrix.||a|| stands for the Euclidean norm ofa,
[a]n representsa’s nth element,[A]i,j representsA’s (i, j)th
element, anddiag{a} denotes a square diagonal matrix with
a’s elements in its main diagonal.N , R andC represent the
natural, real, and complex number sets, respectively, whereas
E{·} is the expectation operator andP[·] represents probability.
The Laplace transform (LT) of RVx is denoted asLx{·} and
x ∼ CN

(

0, σ2
)

indicates thatx is a circularly-symmetric
complex Gaussian RV with zero mean and varianceσ2.
Finally, Γ(·) is the Gamma function [17, eq. (8.310/1)],Ei(·)
is the exponential integral [17, eq. (8.211/1)], and2F1(·, ·; ·; ·)
denotes the Gauss Hypergeometric function [17, eq. (9.14)].

II. SYSTEM AND CHANNEL MODEL

We consider the downlink of a wireless network, as shown
in Fig. 1, where BSs are arranged according to a spatial
homogeneous PPPΦ ⊂ R2 of density λ in the Euclidean
plane. Each BS is equipped withnT ≥ 2 transmit antennas and
communicates with one single-antenna MS at a fixed distance.
Our results can be easily extended for random link distances,
e.g. assuming a geographically nearest BS connectivity model.
All simultaneous downlink transmissions are assumed per-
fectly synchronized, and each BSk, with k ∈ N+, processes
individually its complex symbolssk with a linear precoding
vector fk ∈ CnT before transmitting. It is also assumed that
for each value ofk, ||fk|| = 1 andE{|sk|2} ≤ P, whereP
denotes the transmit power of each BS.

Let h̃k,ℓ ∈ CnT be the narrowband channel vector for the
wireless link between MSk and BSℓ and also letrk,ℓ denote
the Euclidean distance between these nodes. The baseband
received signal at MSk can be mathematically expressed as

yk = r
−α/2
k,k h̃H

k,kfksk + Ik + nk (1)

where the standard power-law pathloss modell(r) = r−α with
common pathloss exponentα > 2 for all links is assumed,

Ik is the cumulative interference from all BSs except the
associated BSk, which is given by

Ik =
∑

i∈Φ\{k}

r
−α/2
k,i h̃H

k,ifisi, (2)

and nk ∼ CN (0, σ2) denotes the additive white Gaussian
noise (AWGN). Based on the considered system model de-
scribed by (1) and (2), the signal-to-interference-plus-noise
ratio (SINR) at MSk can be computed as

γk = r−α
k,k |h̃

H
k,kfk|

2





∑

i∈Φ/{k}

r
−α/2
k,i |h̃H

k,ifi|
2 +

σ2

P





−1

. (3)

The elements of each channel gain vector are assumed to be
arbitrarily correlated and in particular, eachh̃k,ℓ is modeled as
h̃k,ℓ = R1/2hk,ℓ, wherehk,ℓ ∈ CnT is a standard circularly-
symmetric jointly-Gaussian random vector [18, Sec. 3.7] and
R , E{h̃k,ℓh̃

H
k,ℓ} denotes the common covariance matrix of

h̃k,ℓ’s. In addition, we assume thatR is real symmetric having
ones in its main diagonal as well as thath̃k,ℓ’s are independent
across the different BSs and of bothrk,ℓ’s andnk’s.

In this paper, we assume that each BSk knows perfectly
h̃k,k and treats interference as background noise. BSs do
not cooperate [19] and each of them acts selfishly aiming at
maximizing its own SNR. In order to accomplish that, each
BSk is assumed to perform channel-matched precoding, a.k.a.
MRT. Hence,fk at each BSk is designed as [2, Sec. III]

fk =
h̃k,k

‖h̃k,k‖
. (4)

III. PERFORMANCEANALYSIS

In this section we present analytical expressions for the suc-
cess probability and the area spectral efficiency of the conside-
red downlink wireless network. The network performance is
analyzed assuming a typical MS0 located at the origin. As
a result of Palm probabilities (see [20] and references therein
for details) and the stationarity of the PPP, the statisticsof
signal reception at the typical MS0 is seen by any MS in the
considered wireless network.

A. Success Probability

The success probability of a typical MS is defined as

Psuc = P [γ0 > γth] (5)

whereγth denotes a predetermined SINR threshold. By sub-
stituting (4) into (3) for MS0 and then into (5),Psuc can be
expressed using the cumulative distribution function (CDF) of
‖h̃0,0‖2 and the expectation of the real RVΨ0 that represents
the aggregate interference, and is given by

Ψ0 =
∑

i∈Φ/{0}

r−α
0,i |gi|

2 (6)

with the complex RVgi defined as

gi =
h̃H
0,ih̃i,i

‖h̃i,i‖
. (7)



In particular,Psuc can be obtained as

Psuc = 1− EΨ0

{

F‖h̃0,0‖2

[

rα0,0γth

(

Ψ0 +
σ2

P

)]}

(8)

whereEΨ0
{·} represents the expectation ofΨ0. By setting the

Nakagami parameterm = 1 in [3, eq. (20)] (resulting in the
Rayleigh case) and integrating, a closed-form expression for
the CDF of‖h̃0,0‖2 is easily derived as

F‖h̃0,0‖2(x) =

nT
∑

ℓ=1

nT
∏

i=1
i6=ℓ

(

1−
[µ]i
[µ]ℓ

)−1 [

1− exp

(

−
x

[µ]ℓ

)]

(9)
whereµ ∈ RnT contains the distinct eigenvalues ofR in
decreasing order (the non-diagonal elements ofR lie in [0, 1)).
Hence, plugging (9) into (8) and using the definition of the
LT of Ψ0, the following expression forPsuc can be deduced

Psuc =1−
nT
∑

ℓ=1

nT
∏

i=1
i6=ℓ

(

1−
[µ]i
[µ]ℓ

)−1

×

[

1− exp

(

−
rα0,0σ

2γth

P [µ]ℓ

)

LΨ0

(

rα0,0γth

[µ]ℓ

)

]

. (10)

To obtain a closed-form expression forPsuc based on the
latter expression (10), we first derive an exact as well as an
approximate analytical expression for the probability density
function (PDF) of|gi|2 ∀ i ∈ N+ by means of the following
two theorems.

Theorem 1. The PDF of the RVg , |gi|2 ∀ i ∈ N+ for the
special case wherenT = 2 is given by

fg(x) =
1− ρ2

2ρ
[F (1 + ρ, x)−F (1− ρ, x)] (11)

whereρ , [R]1,2 ∈ [0, 1) and functionF(η, x), with η > 0
andx ≥ 0, is defined as

F(η, x) =
η

4(2− η)
exp

(

−
x

η

)

−
2− x

8
exp

(

−
x

2

)

Ei

[

x

(

1

2
−

1

η

)]

.

(12)

Proof: The proof is provided in Appendix A.

Theorem 2. The PDF ofg for the general casenT ≥ 2 can
be approximated by the following exponential PDF

fg(x) =
1

σg
exp

(

−
x

σg

)

(13)

where the scale parameterσg is given by

σg =

nT
∑

n=1

[µ]
2
n

[µ]n
. (14)

Proof: See Appendix B.
Remark 1:Theorem 2 also holds for the special case where

R = In (spatially uncorrelated Rayleigh fading), i.e. [µ]n = 1
∀ n = 2, 3, . . . , nT (identical eigenvalues). For this special
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Fig. 2. Histogram of the positive real RVg for the special case ofnT = 2
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case, (14) simplifies toσg = 1 and Theorem 2 provides
the exact PDF ofg for nT ≥ 2, which coincides with the
equivalent result in [12] and [21].

The validity of the exact PDF expression in Theorem 1 and
the tightness of the approximate PDF expression in Theorem 2
are demonstrated in Figs. 2 and 3, respectively. In these figures
the histogram ofg is plotted for various exponential correlation
matrices, i.e. [R]i,j = ρ|i−j| [5], and various values fornT. As
clearly shown in Fig. 2, the curves for the exact PDF expres-
sion fornT = 2 given by (11) match perfectly with the curves
for the equivalent empirical PDF. In addition, as depicted in
Fig. 3, the curves for the approximate PDF expression (13)
for nT ≥ 2 exhibit a good fit with the empirical ones. This
fit improves asρ and/ornT increase (or equivalently as the
histogram becomes more heavy tailed). The latter substantiates
that Theorem 2 provides an accurate approximation for the
PDF of g for multi-antenna communication networks with
increased spatial fading correlation and very large numbers
of antennas (massive MIMO).

Since|gi|2’s are independent and identically distributed RVs



and independent from the PPPΦ, the LT that appears in (10)
can be obtained using similar steps to [20, Theorem 1] as

LΨ0
(s) = exp

[

−2πλ

∫ ∞

0

H(s, x)fg(x)dx

]

(15)

where functionH(s, x) is defined as

H(s, x) ,

∫ ∞

0

[

1− exp
(

−sxy−α
)]

ydy

(i)
=

(sx)
2/α

2
Γ

(

1−
2

α

)

.

(16)

In (16), (i) follows from the change of variablesy−α → u and
after some algebraic and calculus manipulations. Substituting
(16) into (15), then replacing either (11) or (13), and finally
using the definition of the fractional moment, a closed-form
expression for the LT ofΨ0 can be obtained as

LΨ0
(s) = exp

(

−ξλs2/α
)

(17)

where the parameterξ ≥ 0 is given by

ξ = πΓ

(

1−
2

a

)

E{g2/α}. (18)

A closed-form exact expression for the special case ofnT = 2
and a closed-form analytical approximation for the general
casenT ≥ 2 for the fractional momentE{g2/α} that appears
in (18) are presented in the following two corollaries.

Corollary 1. A closed-form exact expression forE{g2/α} for
the special case wherenT = 2 is given by

E{g2/α} =
1− ρ2

2ρ
[G (1 + ρ, α)− G (1− ρ, α)] (19)

where functionG(η, a) is defined as

G(η, α) =
η2/α+1

4

{

Γ

(

2

α
+ 1

)[

η

2− η
+

α

α+ 2

× 2F1

(

1,
2

α
+ 1;

2

α
+ 2;

η

2

)]

−
αη

4(α+ 1)

× Γ

(

2

α
+ 2

)

2F1

(

1,
2

α
+ 2;

2

α
+ 3;

η

2

)}

(20)

Proof: Starting from the definition of the expectation
operator and using (11) and (12), (20) can be easily obtained
with the use of [17, eq. (3.381/4)], [17, eq. (6.228/2)] and after
some elementary algebraic manipulations.

Corollary 2. A closed-form approximate expression for
E{g2/α} for the case wherenT ≥ 2 is obtained as

E{g2/α} = σ2/α
g Γ

(

2

α
+ 1

)

. (21)

Proof: Substituting (13) and (14) into the definition of
the expectation operator and making use of [17, eq. (3.381/4)]
completes the proof.

Remark 2:Similar to the remark for Theorem 2, for the
special case whereR = In ∀ n = 2, 3, . . . , nT, Corollary 2
presents an exact expression forE{g2/α} by settingσg = 1.

To derive a closed-form exact expression forPsuc for the
special casenT = 2, (17) is substituted into (10) yielding

Psuc =
2
∑

ℓ=1

1− (−1)ℓρ

2ρ
exp

{

−
rα0,0σ

2γth

P [1− (−1)ℓρ]

}

× exp

{

−ξλr20,0

[

γth
1− (−1)ℓρ

]2/α
} (22)

where ξ is given by (18) after substituting (19) with (20).
Similarly, substituting (17) using (18) and (21) into (10),the
following closed-form approximation forPsuc is obtained

Psuc = 1−
nT
∑

ℓ=1

nT
∏

i=1
i6=ℓ

(

1−
[µ]i
[µ]ℓ

)−1

×

{

1− exp

(

−
rα0,0σ

2γth

P [µ]ℓ

)

exp

[

−ξλr20,0

(

γth
[µ]ℓ

)2/α
]}

.

(23)

B. Area Spectral Efficiency

Using the previously derived expressions forPsuc, the
area spectral efficiency of the considered downlink wireless
network is straightforwardly obtained as

ASE = λ log2 (1 + γth)Psuc. (24)

By substituting (22) fornT = 2 and (23) fornT ≥ 2 in (24), a
closed-form exact and a closed-form approximate expression,
respectively, forASE can be easily derived.

IV. PERFORMANCEEVALUATION RESULTS

In this section, numerically evaluated results for the perfor-
mance expressions provided in Section III are presented and
compared with equivalent results obtained by means of com-
puter simulations. In particular, we numerically evaluateboth
the exact and the approximate expressions forPsuc given by
(22) and (23), respectively, as well as those forASE obtained
from (24). Without loss of generality, in the performance
evaluation results that follow, exponential correlation matrices
have been considered and it has been assumed thatα = 3.5,
r0,0 = 1 andσ2/P = 1.

In Fig. 4, Psuc is plotted versusγth for λ = 10−4, nT = 2
and5, and forρ = {0.01, 0.7, 0.95}. As shown for all cases,
the numerically evaluated results for the derived exact (nT =
2) and the approximate (nT = 5) Psuc match perfectly and are
sufficiently close, respectively, with equivalent simulations. In
addition, it is demonstrated thatPsuc improves with decreasing
γth and increasingnT. Interestingly, there exists a criticalγth
value, γ∗th, (crossing point in the figure) that increases with
increasingnT that determines the impact ofρ on Psuc. More
specifically, forγth ≤ γ∗th, Psuc improves with decreasingρ.
However, whenγth > γ∗th, asρ decreasesPsuc degrades.

By setting γth = 3 dB in Fig. 5, ASE is illustrated as
a function ofλ for nT = 2 and ρ = {0.01, 0.7, 0.95}. As
shown in this figure, there exists a perfect match between the
evaluated results for the derived exactASE and equivalent
simulations. In addition, the derived approximation appears to
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be a tight lower bound, which tightness increases asρ tends
to either of its two extreme values (i.e. ρ → 0 or ρ → 1) as
well as whenλ decreases. It is also demonstrated thatASE
degrades with increasingρ and its maximum value happens for
lower values ofλ asρ increases. The same performance metric
overλ is illustrated in Fig. 6 for cases whereρ = 0.7 and0.95,
nT takes the values5 and 20, andγth is increased to5 dB.
In this figure, it is shown thatASE improves with increasing
nT. In contrast to Fig. 5, asρ increases,ASE is shown to
improve. Moreover, the maximum value forASE happens for
lower values ofλ as ρ decreases. As also discussed in the
description of Fig. 4, the latter behavior implies that, for the
parameters’ setting in Figs. 5 and 6,ρ has different impact on
ASE. Finally, it is noted that, as demonstrated in Fig. 6, the
impact ofρ on ASE increases with increasingnT.

V. CONCLUSION

In this paper, we have analyzed the performance of MRT
in a wireless Poisson network assuming spatially arbitrarily
correlated Rayleigh fading channels. Novel closed-form ex-
pressions for the distribution of the power of the interference
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resulting from the coexistence of one intended and one un-
intended MRT over the considered fading channels were first
presented. Based on these expressions and using tools from
stochastic geometry, we further derived closed-form expres-
sions for the success probability and area spectral efficiency
of the downlink network under investigation. Our theoretical
analysis, which is corroborated with simulation results, shed
light on how spatial fading correlation affects the network
performance depending on the interplay between the density
of BSs and the target SINR threshold. Interestingly, depending
on the background noise level, spatial fading correlation may
increase or decrease the network throughput, having a phase
transition for a certain SINR threshold value.

APPENDIX A
PROOF OFTHEOREM 1

Starting from (7) and using the definition of the channel
gain vectors̃h0,i and h̃i,i in Section II,gi ∀ i ∈ N+ can be
equivalently expressed asgi = hH

0,iwi, with the random vector
wi ∈ C2 defined as

wi =
(

R
1/2
0,i

)H

R
1/2
i,i

hi,i

‖R
1/2
i,i hi,i‖

. (A.1)

It is obvious thatgi = wH
i h0,i ∀ i ∈ N+ conditioned onhi,i is

a linear functional of the standard circularly-symmetric jointly-
Gaussian random vectorh0,i, and hence it is a circularly-
symmetric Gaussian RV [18, Sec. 3.7]. The mean value of
eachgi can be easily verified to be independent ofhi,i and
given by

ψ =

nT
∑

n=1

E
{

[h0,i]n
} [

wH
i

]

n

(b)
= 0 (A.2)

where(b) follows from our assumption on the expectation of
the elements ofh0,i in Section II. In addition, it can be shown
that each|gi|

2 conditioned onhi,i is exponentially distributed
with scale parameter obtained as

E

{

|gi|
2 |hi,i

}

=
hH
i,iR

2hi,i

hH
i,iRhi,i

. (A.3)



In the derivation of the latter expression, we have used the
notationR2 , RR and the fact thatE{h0,ih

H
0,i} = I2.

To obtain an analytical expression for the distribution of
|gi|

2 ∀ i ∈ N+, we need first to derive an analytical expression
for the distribution of the generalized Rayleigh quotient that
appears in the right-hand side of (A.3), i.e. for the positive
real-valued RVri = hH

i,iR
2hi,i/h

H
i,iRhi,i. Using the results

of [22], a closed-form expression for the PDF of eachri can
be obtained as

fri(y) =

{

1−ρ2

2ρ (2− y)
−2
, 1− ρ < y < 1 + ρ

0, otherwise
. (A.4)

It is noted that, as shown in (A.4), the PDF of eachri depends
only on ρ, and hence is identical for allri’s (by assumption,
R is common forh̃i,i ∀ i ∈ N+). By using the exponential
conditional PDF of|gi|

2 and (A.4), the unconditional PDF of
each|gi|

2 can be finally computed as

fg(x) =

∫ ∞

0

1

y
exp

(

−
x

y

)

fri(y)dy

=
1− ρ2

2ρ

∫ 1+ρ

1−ρ

exp
(

−x
y

)

y (2− y)
2 dy,

(A.5)

which using [17, eqs. (3.352)] and after some algebraic
manipulations yields (11).

APPENDIX B
PROOF OFTHEOREM 2

BothR2 andR that appear in the scale parameter described
by (A.3) are real symmetric matrices, and hence their eigen-
value decomposition is computed asR2 = Vdiag {ν}VH and
R = Vdiag {µ}VH, respectively, withV ∈ CnT×nT being
an orthogonal matrix and[ν]n = [µ]

2
n ∀ n = 2, 3, . . . , nT. By

introducing the random vectorqi = VHhi,i, which can be ea-
sily shown to be circularly-symmetric jointly-Gaussian, (A.3)
can be re-expressed asE{|gi|

2 |hi,i} = E{|gi|
2 | ri} = ri,

where the positive real-valued RVri that was introduced in
the previous appendix is hereinafter equivalently given by

ri =

nT
∑

n=1

[µ]
2
n |[qi]n|

2

[µ]n |[qi]n|
2 . (B.1)

To derive an approximate expression for the PDF of each
|gi|

2, we make use of one of the results presented in Ap-
pendix A according to which, the PDF of each|gi|

2 is an
exponential one with scale parameter depending onhi,i, or
equivalently onri as expressed as (B.1). We propose the
approximation of the PDF of|gi|

2 ∀ i ∈ N+ with an exponen-
tial PDF having as a scale parameter theE{|gi|

2} = E{ri},
which does not depend onri. To this end,E{|gi|

2} can be
approximated as follows

E{|gi|
2} ∼= E

{

nT
∑

n=1

[µ]
2
n ωi,n

}

E







(

nT
∑

n=1

[µ]n ωi,n

)−1






∼= E

{

nT
∑

n=1

[µ]2n ωi,n

}

/E

{

nT
∑

n=1

[µ]n ωi,n

}

(B.2)

whereωi,n = |[qi]n|
2. By using the fact thatE{ωi,n} = 1 ∀

i ∈ N+ and∀ n = 2, 3, . . . , nT, the right-hand side of (B.2)
can be expressed∀ i ∈ N+ as in (14).
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on the capacity of multiantenna channels,”IEEE Trans. Inf. Theory,
vol. 51, no. 7, pp. 2491–2509, Jul. 2005.

[8] G. C. Alexandropoulos, N. C. Sagias, F. I. Lazarakis, andK. Berberidis,
“New results for the multivariate Nakagami-m fading model with
arbitrary correlation matrix and applications,”IEEE Trans. Wireless
Commun., vol. 8, no. 1, pp. 245–255, Jan. 2009.

[9] D. Park and S. Park, “Effect of transmit antenna correlation on multiuser
diversity,” in Proc. IEEE ISIT, Adelaide, Australia, 4-9 Sep. 2005, pp.
1421–1425.

[10] H. Kim, W. Choi, and H. Park, “Effects of antenna correlation on spatial
diversity and multiuser diversity,” inProc. IEEE WCNC, Las Vegas,
USA, 31 Mar.-3 Apr. 2008, pp. 65–69.

[11] A. Hunter, J. G. Andrews, and S. Weber, “Transmission capacity of ad
hoc networks with spatial diversity,”IEEE Trans. Wireless Commun.,
vol. 7, no. 12, pp. 5058–5071, Dec. 2008.

[12] N. Jindal, J. G. Andrews, and S. Weber, “Rethinking MIMOfor wireless
networks: Linear throughput increases with multiple receive antennas,”
in Proc. IEEE ICC, Dresden, Germany, 14-18 Jun. 2009, pp. 1–6.

[13] O. B. S. Ali, C. Cardinal, and F. Gagnon, “Performance ofoptimum
combining in a Poisson field of interferers and Rayleigh fading chan-
nels,” IEEE Trans. Wireless Commun., vol. 9, no. 8, pp. 2461–2467,
Aug. 2010.

[14] R. H. Y. Louie, M. R. McKay, and I. B. Collings, “Open-loop spatial
multiplexing and diversity communications in ad hoc networks,” IEEE
Trans. Inf. Theory, vol. 57, no. 1, pp. 317–344, Jan. 2011.

[15] M. Haenggi, “Diversity loss due to interference correlation,” IEEE
Commun. Lett., vol. 16, no. 10, pp. 1600–1603, Oct. 2012.

[16] R. Tanbourgi, H. S. Dhillon, J. G. Andrews, and F. K. Jondral, “Effect
of spatial interference correlation on the performance of maximum ratio
combining,” IEEE Trans. Wireless Commun., vol. 13, no. 6, pp. 3307–
3316, Jun. 2014.

[17] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, 6th ed. New York: Academic, 2000.

[18] R. G. Gallager,Stochastic Processes: Theory for Applications. Cam-
bridge: Cambridge University Press, 2013.

[19] A. Lozano, R. W. Heath, and J. G. Andrews, “Fundamental limits of
cooperation,”IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5213–5226,
Mar. 2013.

[20] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractableapproach to
coverage and rate in cellular networks,”IEEE Trans. Commun., vol. 59,
no. 11, pp. 3122–3134, Nov. 2011.

[21] A. Shah and A. M. Haimovich, “Performance analysis of maximal
ratio combining and comparison with optimum combining for mobile
radio communications with cochannel interference,”IEEE Trans. Veh.
Technol., vol. 49, no. 4, pp. 1454–1463, Jul. 2000.

[22] G. C. Alexandropoulos, “On the distribution of the Rayleigh quotient
and applications in the performance analysis of wireless communication
systems,”under preparation, 2015.


	I Introduction
	II System and Channel Model
	III Performance Analysis
	III-A Success Probability
	III-B Area Spectral Efficiency

	IV Performance Evaluation Results
	V Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	References

