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Abstract—In this paper, we propose a novel iterative algorithm
based on successive convex approximation for the nonconvex en-
ergy efficiency optimization problem in massive MIMO networks.
The stationary points of the original problem are found by solving
a sequence of successively refined approximate problems, and the
proposed algorithm has the following advantages: 1) fast conver-
gence as the structure of the original energy efficiency function is
preserved as much as possible in the approximate problem, and 2)
easy implementation as each approximate problem is natural for
parallel computation and all variable updates have a closed-form
expression. The proposed algorithm is guaranteed to converge and
its advantages are also illustrated numerically.

Index Terms—Energy efficiency, fractional programming, mas-
sive MIMO, parallel algorithm, successive convex approximation

I. INTRODUCTION

The increase in capacity, increase in the number of connected

devices, increase in reliability, decrease in latency and increase

in efficiency anticipated by 2020 are some of the trends pushing

the limits of 4G [1]. With the advent of 5G by 2020, the number

of connected devices is predicted to reach 50 millions and target

of the data rate increase is 1000x. The increase in the data rate

is expected to achieve at the same or even a lower level of ener-

gy consumption. Therefore the so-called energy efficiency (EE)

is a key performance indicator that attracts extensive attention

and it imposes stringent requirements on efficient transmission

schemes enhancing the spectral and energy efficiency.

Massive MIMO is identified to be an enabling technique to

increase the spectral efficiency by orders of magnitude, because

the hundreds or thousands of antenna elements at the base

stations can provide a spatial resolution for hundreds of user

equipment per cell at a low level of inter-user interference

[2]. However, large arrays are only attractive if the antenna

elements are of cheap hardware, and hardware impairment is

thus more likely, e.g., amplifier nonlinearities, phase noise and

quantization errors generating self-interference [3].

In this paper, we study the EE maximization problem in

massive MIMO networks and we adopt the notion of EE to

be the sum rate of all users divided by the consumed energy

(bits/Hz/s/Joule). It is well known that sum rate maximization

in interference-limited networks is a nonconvex and NP-hard

problem [4]. The EE maximization problem in interference-

limited massive MIMO networks is an even more challenging

problem because the EE is a fractional function (with the

consumed energy in the denominator) while the sum rate

function in the numerator is a nonconcave function [5]. As

a result, the mathematical tool of fractional programming is no

longer applicable.

In state-of-the-art studies, the EE is usually optimized under

the interference-free assumption by orthogonal transmission

scheme [6] or successive interference cancellation [7] and the

sum rate function in the numerator is thus concave. However,

orthogonal transmission schemes may decrease the spectral

efficiency, especially in dense networks. Other approaches

maximizing the EE in interference-limited networks such as

[8] are largely based on heuristics and the iterative algorithms

proposed therein are not guaranteed to converge to stationary

points of the nonconvex EE function.

An iterative algorithm with guaranteed convergence for EE

maximization problem in interference-limited networks is re-

cently proposed in [5]. This itera12.925tive algorithm consists

of solving a sequence of approximate problems, with increasing

resemblance to the original EE maximization problem. In each

approximate problem, the nonconcave sum rate function is

replaced by its concave global lower bound function, and

the approximate problem can then be solved by fractional

programming tools.

Despite the guaranteed convergence, the complexity of the

iterative algorithm proposed in [5] is very high. On one hand,

the lower bound function is constructed based on logarithmic

approximation, while logarithmic functions are not amenable

for numerical optimization. On the other hand, the approximate

problem does not have other structures that can be exploited to

enable, e.g., parallel computation, and it can only be solved by

general purpose optimization solvers and this may incur a large

latency in the decision making process. Furthermore, the lower

bound of the allocated power must be strictly positive, which

may not be practical in multi-carrier systems where no power

is allocated to a carrier with strong multi-user interference.

In this paper, we develop an iterative algorithm that overcome

the above difficulties. The algorithm is based on the idea of

successive convex approximation, recently advanced in [9], [10]

and further generalized in [11]. In each iteration, the proposed

approximate function only needs to be pseudo-convex, a weak

form of convexity, and this weak assumption makes it possible

to preserve as much structure available in the original EE

function as possible, e.g., the partial concavity in the numerator



function and the division operator. Besides this, the proposed

approximate function is natural for parallel computation. In

particular, the approximate problem can be decomposed into

many independent scalar problems that can be solved in parallel

and each scalar problem has a closed-form solution. The

computational complexity of each variable step is thus much

lower than that of [5]. Based on the line of analysis in [11], we

show that the proposed algorithm is guaranteed to converge.

The advantage of the proposed algorithm is also illustrated

numerically.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the massive MIMO network with K cells and each

cell serves one user with a total number of N resource blocks.

The achievable transmission rate for user k at resource block

n in the uplink can be formulated into the following form:

rk,n(p) , log

(

1 +
wkk,npk,n

σ2
k,n + φk,npk,n +

∑

j 6=k wkj,npj,n

)

,

(1)

where pk,n is the transmission power for user k at resource

block n, σ2
k,n is the covariance of the additive noise at the

receiver of user k, while {φk,n}k,n and {wkj,n}k,j,n are

positive constants that depend on the channel conditions only.

In particular, φk,npk,n is the self-interference that accounts for

the hardware impairments and/or channel estimation error, and
∑

j 6=k wkj,npj,n accounts for the interference from other users

[5]. The form in (1) also arises in other system models, such

as relay-assisted CoMP interference network [12, Sec. 4.1].

In 5G wireless communication networks, the EE (the ratio of

the sum rate and the sum power) is a key performance indicator.

To address this issue, we look for the optimal power allocation

that maximizes the EE:

maximize
p

∑K

k=1

∑N

n=1 rk,n(p)

Pc +
∑K

k=1

∑N

n=1 pk,n

subject to pk ∈ Pk, k = 1, . . . ,K, (2)

where pk = (pk,n)
N
n=1, p = (pk)

K
k=1, and Pc is a positive

constant representing the total circuit power dissipated in the

network. It is straightforward to assign a weight factor αk,n ≥ 0
for rk,n(p), but for the simplicity of presentation, we assume

equal weights αk,n = 1 for all k and n. Note that Pk in (2)

denotes the feasible power allocation strategies for user k:

Pk , {pk : p
k
≤ pk ≤ p̄k,

N
∑

n=1

pk,n ≤ Pk}, (3)

which consists of bound constraint (p
k

and pk is the lower

and upper bound, respectively) and sum power constraint where

Pk is the sum power budget. We assume Pk has a nonempty

interior and problem (2) has a solution.

III. THE UNIFIED SUCCESSIVE CONVEX APPROXIMATION

FRAMEWORK

In this section, we give a brief review of the unified succes-

sive convex approximation method proposed in [11] to solve

the following optimization problem:

minimize
x∈X

f(x), (4)

where f(x) : Cn → R is a proper and differentiable function

with a continuous gradient, and X ⊆ Rn is a closed and convex

set. We assume that problem (4) has a solution.

We start with the definition of pseudo-convex functions: A

function f(x) is said to be pseudo-convex if

f(y) < f(x) =⇒ (y − x)T∇f(x) < 0. (5)

In other words, f(y) < f(x) implies y − x is a descent

direction of f(x). We remark that the (strong) convexity of

a function implies that the function is pseudo-convex, which in

turn implies that the function is quasi-convex. That is:

f(x) is strongly convex→ f(x) is convex

↓
f(x) is quasi-convex← f(x) is pesudo-convex.

(6)

We solve (4) as a sequence of successively refined approx-

imate problems, each of which is presumably much easier to

solve than the original problem (4). In iteration t, let f̃(x;xt)
be the approximate function of f(x) around the point xt. Then

the approximate problem is

minimize
x∈X

f̃(x;xt).

Let us define the operator Bxt as the minimizer of the approx-

imate function f̃(x;xt) over x ∈ X :

Bxt ∈ S(xt) ,
{

x⋆ ∈ X : f̃(x⋆;xt) = min
x∈X

f̃(x;xt)
}

. (7)

It is shown in [11, Proposition 1] that Bxt−xt is a descent

direction of f(x) at x = xt if the approximate function f̃(x;y)
satisfies the following technical conditions:

(A1) f̃(x;y) is pseudo-convex in x ∈ X for any y ∈ X ;

(A2) f̃(x;y) is continuously differentiable in x ∈ X for any

given y and continuous in y for any x ∈ X ;

(A3) The gradient of f̃(x;y) and the gradient of f(x) are

identical at x = y for any y ∈ X , i.e., ∇xf̃(x;y)
∣

∣

x=y
=

∇xf(x)
∣

∣

x=y
.

With the descent direction Bxt−xt, the vector update xt+1

in the (t+ 1)-th iteration is defined as follows:

xt+1 = xt + γt(Bxt − xt), (8)

where γt ∈ (0, 1] is an appropriate stepsize that is determined

by the exact line search or successive line search.

Exact line search: The stepsize is selected such that the function

f(x) is decreased to the largest extent along the descent

direction Bxt − xt:

γt ∈ argmin
0≤γ≤1

f(xt + γ(Bxt − xt)). (9)

Successive line search: If no structure in f(x) (e.g., convexity)

can be exploited to efficiently compute γt according to the

exact line search (9), the successive line search can instead be

employed: given scalars 0 < α < 1 and 0 < β < 1, the stepsize



Algorithm 1 The iterative convex approximation algorithm for

problem (4)

Data: t = 0 and x0 ∈ X ; stop criterion δ.

S1: Compute Bxt according to (7).

S2: Determine the stepsize γt by exact/successive line search.

S3: Update x according to (8).

S4: If
∣

∣(Bxt − xt)T∇f(xt)
∣

∣ ≤ δ, STOP; otherwise go to S1.

γt is set to be γt = βmt , where mt is the smallest nonnegative

integer m satisfying the following inequality:

f(xt + βm(Bxt − xt)) ≤ f(xt) + αβm(Bxt − xt)T∇f(xt).
(10)

The existence of a finite mt is always guaranteed if (Bxt −
xt)T∇f(xt) < 0 [13].

The algorithm is summarized in Algorithm 1. It is shown in

[11, Theorem 1] that if:

(A4) The solution set S(xt) is nonempty for t = 1, 2, . . .;
(A5) Given any convergent subsequence {xt}t∈T where T ⊆

{1, 2, . . .}, the sequence {Bxt}t∈T is bounded,

then any limit point of {xt} is a stationary point of (4).

Apart from the standard assumptions (A2) and (A3) in

successive convex optimization (cf. [9]), the approximate func-

tion f̃(x;xt) only needs to be pseudo-convex (cf. Assumption

(A1)). As a result, it enables us to construct new approximate

functions that can often be optimized more easily or even

in closed-form. This results in a significant reduction of the

computational cost if the approximate problem must otherwise

only be optimized by iterative algorithms as in standard solvers

and we show in the next section how this advantage can be

exploited.

IV. ENERGY EFFICIENCY MAXIMIZATION IN MASSIVE

MIMO SYSTEMS

Problem (2) is nonconvex and it is a NP-hard problem to

find a globally optimal point [4]. Therefore we aim at finding

a stationary point of (2) using the proposed algorithm. To begin

with, we propose the following approximate function at p = pt

in iteration t (we can set p0 = p):

f̃(p;pt) =

∑K

k=1

∑N

n=1 r̃k,n(pk,n;p
t)

Pc +
∑K

k=1

∑N

n=1 pk,n
, (11)

where

r̃k,n(pk,n;p
t) , rk,n(pk,n,p

t
−k,n)

+
∑

j 6=k

(rj,n(p
t) + (pk,n − ptk,n)∇pk,n

rj,n(p
t))

and p−k,n , (pj,n)
N
j=1,j 6=k . Note that the numerator function of

f̃(p;pt) consists of KN separable component functions, one

for each scalar variable pk,n, and r̃k,n(pk,n;p
t) is constructed

as follows: since rk,n(p) is concave in pk,n (shown shortly later

in the right column of this page) but rj,n(p) is not concave

in pk,n for j 6= k (as a matter of fact, rj,n(p) is convex

in pk,n for j 6= k), the concave function rk,n(pk,n,p
t
−k,n)

is preserved in r̃k,n(pk,n;p
t) with p−k,n fixed to be pt

−k,n

while the nonconcave functions (rj,n(p))j 6=k are linearized

w.r.t. pk,n at p = pt. In this way, the partial concavity in

rk(p) is preserved. Similarly, since Pc +
∑N

n=1

∑K

j=1 pk,n in

the denominator is linear in p and thus left intact. Furthermore,

the division operator in the original problem (2) is kept in

the approximate function (11). Although it will destroy the

concavity of the approximate function f̃(p;pt) in (11) is not a

concave function1, it presents the pseudo-concavity as we show

in two steps.

Step 1: The function rk,n(pk,n,p
t
−k,n) is concave in pk,n.

For the simplicity of notation, we define two constants c1 ,

wkk,n/φk,n > 0 and c2 , (σ2
k,n +

∑

j 6=k wkj,np
(t)
j,n)/φk,n >

0. The first-order derivative and second-order derivative of

rk,n(pk,n,p
t
−k,n) w.r.t. pk,n are

∇pk,n
rk,n(pk,n,p

t
−k,n) =

1 + c1
(1 + c1)pk,n + c2

−
1

pk,n + c2
,

∇2
pk,n

rk,n(pk,n,p
t
−k,n) =

1

(pk,n+c2)2
−

(1 + c1)
2

((1+c1)pk,n+c2)2

=−
2c1c2pk,n(1 + c1)+(c21 + 2c1)c

2
2

((1 + c1)pk,n + c2)2(pk,n + c2)2
.

Since ∇2
pk,n

rk,n(pk,n,p
t
−k,n) < 0 when pk,n ≥ 0,

rk,n(pk,n,p
t
−k,n) is a concave function of pk,n in the non-

negative axis pk,n ≥ 0 [14].

Step 2: Given the concavity of rk,n(pk,n,p
t
−k,n), the

function r̃k,n(pk,n;p
t) is concave in pk,n. Since the

component functions (rk,n(pk,n;p
t))k,n are separable in

(pk,n)k,n, the numerator function of f̃(p;pt), namely,
∑K

k=1

∑N

n=1 r̃k,n(pk,n;p
t), is concave in p. Since the de-

nominator function of f̃(p;pt) is a convex function of p, it

follows from [15, Lemma 3.8] that f̃(p;pt), which represents

a quotient of a concave and a nonnegative convex function, is

pseudo-concave. Therefore Assumption (A1) is satisfied.

Then we verify that the gradient of the approximate function

and that of the original objective function are identical at p =
pt. It follows that

∇pk,n
f̃(p;pt)

∣

∣

∣

p=pt

= ∇pk,n

(

r̃k,n(pk,n;p
t)

Pc +
∑K

j=1

∑N

m=1 pj,m

)

∣

∣

∣

∣

∣

pk,n=pt
k,n

=

K
∑

j=1

∇pk,n
rj,n(p

t)(Pc +
∑K

j=1

∑N

m=1 p
t
j,m)− rj,n(p

t)

(Pc +
∑K

j=1

∑N

m=1 p
t
j,m)2

= ∇pk,n

(

∑K

j=1

∑N

m=1 rj,m(p)

Pc +
∑K

j=1

∑N

m=1 pj,m

)∣

∣

∣

∣

∣

p=pt

, ∀ k, n.

Therefore Assumption (A3) is satisfied. Since both the numera-

tor function and the (nonzero) denominator function of f̃(p;pt)
are continuously differentiable, Assumption (A2) is satisfied.

1A concave function divided by a linear function is no longer a concave
function.



pk,n(λ
t
τ ) =









intk,n(p
t)

√

(2φk,n + wkk,n)2 − 4φk,n

(

wkk,n

(πk,n(pt)−λt
τ−µt

τ (k))intk,n(pt) + 1
)

− 1

2φk,n(πk,n(pt)− λt
τ − µt

τ (k))(φk,n + wkk,n)









pk,n

p
k,n

. (17)

Given the approximate function (11), the approximate prob-

lem in iteration t is thus

Bpt = argmax
(pk∈Pk)Kk=1

∑K

k=1

∑N

n=1 r̃k,n(pk,n;p
t)

Pc +
∑K

k=1

∑N

n=1 pk,n
, (12)

where Pk denotes the feasible power allocation strategies for

user k as defined in (3). Since Pk is a closed and bounded set

for all k = 1, . . . ,K , Assumptions (A4) and (A5) are satisfied.

Since the objective function in (2) is nonconvex, it may not

be computationally affordable to perform the exact line search.

Instead, the successive line search can be applied to calculate

the stepsize. As a result, the convergence of the proposed

algorithm with approximate problem (12) and successive line

search readily follows from [11, Theorem 1].

The maximization problem in (12) is a fractional pro-

gramming problem and thus can be solved iteratively by the

Dinkelbach’s algorithm, cf. [5, Algorithm 5]: given λt
τ , the

following optimization problem is solved in iteration τ + 1:

p(λt
τ ) = argmax

{pk∈Pk}K
k=1

{

∑K

k=1

∑N

n=1 r̃k,n(pk,n;p
t)

−λt
τ (Pc +

∑K

k=1

∑N

n=1 pk,n)

}

.

(13)

The variable λt
τ is then updated in iteration τ + 1 as

λt
τ+1 =

∑K

k=1

∑N

n=1 r̃k,n(pk,n(λ
t
τ );p

t)

Pc +
∑K

k=1

∑N

n=1 pk,n(λ
t
τ )

. (14)

It follows from the convergence properties of the Dinkelbach’s

algorithm that

lim
τ→∞

p(λt,τ
k ) = Bpt

at a superlinear convergence rate.

It is easy to see that the optimization problem in (13) can

naturally be decomposed into independent subproblems that can

be solved in parallel: p(λt
τ ) = (pk(λ

t
τ ))

K
k=1 and for all k =

1, . . . ,K ,

pk(λ
t
τ ) = argmax

pk∈Pk

{

N
∑

n=1

r̃k,n(pk,n;p
t)− λt

τ

N
∑

n=1

pk,n

}

. (15)

Since the optimization problem in (15) is convex and Pk has

an nonempty interior (by assumption), strong duality holds

[14] and the optimization problem can be further decomposed

in the dual domain by relaxing the sum power constraint
∑N

n=1 pk,n ≤ Pk in Pk into the Lagrangian [16]: pk(λ
t
τ ) =

(pk,n(λ
t
τ ))

N
n=1 and for all n = 1, . . . , N ,

pk,n(λ
t
τ ) = argmax

p
k,n

≤pk,n≤pk,n

r̃k,n(pk,n;p
t)−λt

τpk,n−µt
τ(k)pk,n,

(16)

where µt
τ (k) is the optimal dual variable that is associated

with the sum power constraint
∑N

n=1 pk,n ≤ Pk and that

satisfies the complementary slackness condition 0 ≤ µt
τ (k) ⊥

∑N

n=1 pk,n(λ
t
τ ) − Pk ≤ 0 (a ⊥ b means a · b = 0). The

variable µt
τ (k) is related to the water level as in the classic

waterfilling algorithm that determines the amount of power

allocated to each resource block [17] and can easily be found

by the efficient bisection method [16], [18]. Note that pk,n(λ
t
τ )

can be expressed in closed-form, as it is simply the projection

of the point that sets the gradient of the objective function

in (16) to zero onto the interval [p
k,n

, pk,n], and it can be

verified that finding that point is equivalent to finding the root

of a polynomial with order 2. We omit the detailed derivations

and directly give the expression of pk,n(λ
t,τ
k ) in (17) at the

top of this page, where πk,n(p
t) ,

∑

j 6=k∇pk,n
rj,n(p

t) and

intk,n(p
t) , σ2

k,n +
∑

j 6=k wkj,np
t
j,n. The above procedures

are summarized in Algorithm 2.

Algorithm 2 The iterative convex approximation algorithm for

the EE maximization problem (2)

S0: t = 0 and p0 = p; stop criterion δp and δλ.

S1: Compute Bpt according to S1.0-S1.3:

S1.0 τ = 0 and λt
0 = 0;

S1.1 Compute pk,n(λ
t
τ ) according to (17), where µt

τ (k)
is found by the bisection method.

S1.2 Compute λt
τ+1 according to (14).

S1.3 If |λt
τ+1−λt

τ | ≤ δλ, go to S2; Otherwise τ ← τ +1
and go to S1.1.

S2: Determine the stepsize γt by successive line search.

S3: Update p according to (8).

S4: If
∣

∣(Bpt − pt)T∇f(pt)
∣

∣ ≤ δp, STOP; otherwise t← t+1
and go to S1.

Some comments on Algorithm 2 are drawn as follows:

On the approximate function: In the approximate function

(11), the desirable structure in the original objective function

is preserved as much as possible, namely, the partial concavity

in the numerator function
∑N

n=1

∑K

k=1 rk,n(p), the linearity

in the denominator function Pc +
∑N

n=1

∑K

k=1 pk,n and the

division operator. Therefore, the proposed algorithm is of a

best-response nature and expected to converge faster than plain

gradient based methods which linearizes the original objective

function
∑K

j=1

∑N

n=1 rk,n(p)/(Pc +
∑K

j=1

∑N

n=1 pk,n) com-

pletely in each iteration, as observed in some previous works

[9], [10], [18]. However, the convergence of Algorithm 2 cannot

be derived from existing works [9], [10], since the approximate

function (11) presents only a weak form of convexity, namely,



the pseudo-convexity, which is much weaker than those re-

quired in state-of-the-art convergence analysis, e.g., uniform

strong convexity in [9], [10].

On the parallel implementation: In each iteration of the

proposed algorithm, the approximate problem (12) is decom-

posed into many independent scalar problems (16) that can

then be solved in parallel. This leads to a natural exploitation

of parallel computing architecture that is nowadays extensively

used to accelerate the computation.

On the computation: The variable update in each iteration

has a simple closed-form expression (up to a Lagrange mul-

tiplier that can be found by the bisection method), cf. (17).

On one hand, the convergence speed is greatly enhanced than

state-of-the-art method [5] as we will illustrate numerically. On

the other hand, only basic algebraic operations are required at

each processor and the hardware cost is significantly reduced.

The massive deployment of the proposed scheme at the base

stations is thus made possible.

On the structure of the proposed algorithm: The proposed

algorithm has three layers: outer layer with index t, middle

layer with index τ and inner layer where the bisection method

is implemented to search the optimal dual variable µt
τ (k).

Since the algorithms in the inner and middle layers converge

very fast (typically in a few iterations) and the convergence

speed is independent of the problem dimension (the dimension

of p), and each update has a simple closed-form expression,

the convergence speed is still very competitive as we show

numerically. In the case of a single resource block (N = 1),

µt
τ (k) = 0 and the inner layer consists of one iteration

only. A centralized coordinator is foreseen to coordinate the

information exchange, and this can be performed by the base

stations.

Simulations: We consider a single resource block, i.e., N =
1 and the subscript n is dropped for simplicity of presentation.

The number of antennas at the BS in each cell is M = 50, and

the channel from user j to cell k is hkj ∈ CM×1. We assume

a similar setup as [5]: wkk =
∣

∣hH
kkhkk

∣

∣

2
, wkj =

∣

∣hH
kkhkj

∣

∣

2
+

ǫhH
kkDjhkk for j 6= k and φk = ǫhH

kkDkhkk, where ǫ =
0.01 is the error magnitude of hardware impairments at the

BS and Dj = diag({|hjj(m)|2}Mm=1). The noise covariance

σ2
k = 1, and the hardware dissipated power pc is 10dBm, while

p
k

is -10dBm and pk is 10dBm for all users. The benchmark

algorithm is [5, Algorithm 1], which successively maximizes

the following lower bound function of the objective function

in (2), which is tight at p = pt:

maximize
q

∑K

k=1 b
t
k + atk logwkk

Pc +
∑K

k=1 e
qk

+

∑K

k=1 a
t
k(qk − log(σ2

k + φke
qk +

∑

j 6=k wkje
qj ))

Pc +
∑K

k=1 e
qk

subject to log(p
k
) ≤ qk ≤ log(pk), k = 1, . . . ,K, (18)

where

atk ,
sinrk(p

t)

1 + sinrk(pt)
,

btk , log(1 + sinrk(p
t))−

sinrk(p
t)

1 + sinrk(pt)
log(sinrk(p

t)),

and

sinrk(p) ,
wkkp

t

σ2
k + φkpk +

∑

j 6=k wkjpj
.

Denote the optimal variable of (18) as qt (which can be

found by the Dinkelbach’s algorithm); then the variable p is

updated as pt+1
k = eq

t
k for all k = 1, . . . ,K . We thus coin

[5, Algorithm 1] as the successive lower bound maximization

(SLBM) method.

In Fig. 1, we compare the convergence behavior of the

proposed method and the SLBM method in terms of both the

number of iterations (the upper subplots) and the CPU time (the

lower subplots), for two different number of users: K = 10 in

Fig. 1 (a) and K = 50 in Fig. 1 (b). It is obvious that the

convergence speed of the proposed algorithm in terms of the

number of iterations is comparable to that of the SLBM method.

However, we remark that the approximate problem (12) of the

proposed algorithm is superior to that of the SLBM method in

the following aspects:

Firstly, the approximate problem of the proposed algorithm

consists of independent subproblems that can be solved in

parallel, cf. (16), while each subproblem has a closed-form

solution, cf. (17). However, the optimization variable in the

approximate problem of the SLBM method (18) is a vector

q ∈ RK×1 and the approximate problem can only be solved

by a general purpose solver.

In the simulations, we use the Matlab optimization toolbox

to solve (18) and the iterative update specified in (13)-(14) to

solve (12), where the solution of (13) is given by (16) (with

µt
τ (k) = 0 for all t, τ, k) and the stopping criterion for (14) is
∥

∥λ
t
τ

∥

∥

∞
≤ 10−5. The upper subplots in Fig. 1 show that the

numbers of iterations required for convergence is approximately

the same for the SLBM method when K = 10 in Fig. 1 (a) and

when K = 50 in Fig. 1 (b). However, we see from the lower

subplots in Fig. 1 that the CPU time of each iteration of the

SLBM method is dramatically increased when K is increased

from 10 to 50. On the other hand, the CPU time of the proposed

algorithm is not notably changed because the operations are

parallelizable2 and the required CPU time is thus not affected

by the problem size.

Secondly, since a variable substitution qk = epk is adopted

in the SLBM method (we refer to [5] for more details), the

lower bound constraint p
k
= 0 (which corresponds to qk =

−∞) cannot be handled by the SLBM method numerically.

2By stacking the pk(λ
t
τ )’s into the vector form p(λt

τ ) = (pk(λ
t
τ ))

K

k=1
we

can see that only element wise operations between vectors and matrix vector
multiplications are involved. The simulations on which Fig. 1 are based are
not performed in a real parallel computing environment with K processors,
but only make use of the efficient linear algebraic implementations available
in Matlab which already implicitly admits a certain level of parallelism.
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Fig. 1. EE Maximization: achieved EE versus the number of iterations

This limitation impairs the applicability of the SLBM method

in many practical scenarios.

V. CONCLUSIONS

In this paper, we have proposed a novel iterative algorithm

based on successive convex approximation for the nonconvex

energy efficiency optimization problem in massive MIMO

networks. The proposed algorithm is guaranteed to converge

to a stationary point of the nonconvex EE maximization prob-

lem, and we have shown its advantages from the theoretical

perspective: fast convergence and easy implementation as the

approximate problems are natural for parallel computation and

all variable updates have a closed-form expression. These

advantages are finally illustrated by numerical simulations.
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