
ar
X

iv
:1

90
1.

06
45

1v
1

 [
cs

.N
I]

 1
9

Ja
n

20
19

A Reconfigurable High-Performance Optical Data

Center Architecture

Chong Liu, Maotong Xu, and Suresh Subramaniam

Department of Electrical and Computer Engineering, The George Washington University

Email: cliu15@gwu.edu, htfy8927@gwu.edu, suresh@gwu.edu

Abstract—Optical data center network architectures are be-
coming attractive because of their low energy consumption, large
bandwidth, and low cabling complexity. In [1], an AWGR-based
passive optical data center architecture (PODCA) is presented.
Compared with other optical data center architectures, e.g., DOS
[2], Proteus [3], and Petabit [4], PODCA can save up to 90% on
power consumption and 88% in cost. Also, average latency can
be low as 9 µs at close to 100% throughput. However, PODCA is
not reconfigurable and cannot optimize the network topology to
dynamic traffic.

In this paper, we present a novel, scalable and flexible recon-
figurable architecture called RODCA. RODCA is built on and
augments PODCA with a flexible localized intra-cluster optical
network. With the reconfigurable intra-cluster network, racks
with mutually large traffic can be located within the same cluster,
and share the large bandwidth of the intra-cluster network. We
present an algorithm for DCN topology reconfiguration, and
present simulation results to demonstrate the effectiveness of
reconfiguration.

I. INTRODUCTION

The number of data-intensive applications is rapidly in-

creasing in data center networks. These applications, such as

MapReduce, Hadoop, and Dropbox, require low latencies and

high throughput and bring new challenges for future data center

networks (DCNs). Data-intensive computing platforms typi-

cally use high speed communications switches and networks,

which allow the data to be partitioned among the available

computing resources and processed independently to achieve

performance and scalability based on the amount of data.

In order to address these problems, recent research has

focused on novel interconnect topologies for data center net-

works. The typical design is to place 20-50 servers in a rack,

with an aggregation (“Top of Rack”, or ToR) switch in each

rack. Further, only a few ToRs are hot in DCNs and most

of the traffic from these ToRs goes to a few other ToRs [5],

requiring DCNs to be rapidly reconfigurable. Conventional

DCNs, such as fat tree [6], flattened butterfly [7], and VL2

[8], use commodity electrical switches to optimize the limited

bandwidth available. However, these DCNs require a large

number of links and switches, thus leading to rapidly increasing

wiring complexity as the network scales. Moreover, electrical

switches are also power-hungry devices. By contrast, optical

DCNs provide the advantage of reduced power consumption

and network cost as the network can be constructed using

predominantly passive components [1], [9], [10].

A. Related Work

Existing optical data center networks are commonly based

on optical switching, e.g., Semiconductor Optical Ampli-

fier (SOA)-based switch, Micro-Electro-Mechanical Systems

(MEMS) switches and Arrayed Waveguide Grating Routers

(AWGR). MEMS switch, used in c-through [11] and Helios

[12], is a power-driven reconfigurable optical switch and its

reconfiguration time could be on the order of a few milliseconds

[3], and is therefore not well suited for fast packet switching

in DCN applications. Nevertheless, optical MEMS switches

could be reconfigured at coarse time scales for switching

large volumes of data. Dynamically provisioning lightpaths for

relatively stable traffic between server racks makes optical net-

works a cost-effective solution for allocating large bandwidth

on-demand across the data center. Also, high-speed MEMS

switches with switching times on the order of microseconds [9],

[13] are on the horizon, and are expected to be commercialized

in the near future. Despite the relatively slow switching times,

MEMS switches are scalable. FARBON [14], RODA [15] and

Wavecube [16] are three recent reconfigurable optical DCN

architectures that use specialized fast switches or expensive

wavelength selective switches that do not scale well.

AWGR is a passive optical device that does not require

reconfiguration, and can achieve packet contention resolution

in the wavelength domain. The cyclic routing characteristic of

the AWGR allows different inputs to reach the same output

simultaneously by using different wavelengths. Recently, a

few AWGR-based DCN architectures have appeared in the

literature such as DOS and Petabit. They employ tunable wave-

length converters (TWCs), which are power-hungry devices

[9]. Moreover, TWCs significantly increase the total cost of

the architectures. We presented our own AWGR-based passive

optical data center architecture (PODCA) in [1]. There are

three versions of the PODCA architecture suited to small (S),

medium (M), and large (L) DCNs. Compared with DOS and

Petabit, PODCA-L employs a large-scale AWGR as a central

switch, and can easily accommodate over 2 million servers.

We also presented algorithms for wavelength assignment and

http://arxiv.org/abs/1901.06451v1

for scheduling packets in PODCA in [1]. We showed in [1] that

average packet latencies (excluding protocol overhead) can be

as low as 9 µs at close to 100% throughput. However, PODCA

is not reconfigurable, and cannot adapt to fluctuations in traffic

that are common in DCNs today.

B. Our Approach and Contributions

In this paper, we concurrently employ AWGR and MEMS-

based optical switches to develop a scalable and reconfigurable

architecture called RODCA. RODCA augments PODCA-L

with a flexible intra-cluster optical network, which is a Clos

multi-stage MEMS-based network, to adapt the network to

traffic dynamics. The backbone of RODCA is a hierarchi-

cal optical DCN topology – several ToRs are interconnected

through an AWGR to form a cluster, and several clusters can

be interconnected through a higher-level AWGR. The design

for the intra-cluster network includes a reconfigurable switching

network that can be reconfigured at relatively coarse time scales

(i.e., reconfiguration times are comparable to or larger than

packet transmission times), so that racks with mutually large

traffic can be located within the same cluster, and enjoy the

large bandwidth of the intra-cluster network.

The following contributions are made in this paper:

• We employ passive AWGRs and MEMS switches to

develop a flexible and hierarchical DCN architecture.

• We present an algorithm to trigger cluster reconfiguration

based on traffic fluctuations.

• We present extensive performance results from simulations

exploring the effects of various algorithm and component

parameters.

The rest of this paper is organized as follows: Section II

presents a brief description of the PODCA architecture. Sec-

tion III presents the proposed reconfigurable optical data center

architecture, and an algorithm for topology reconfiguration in

response to dynamic traffic changes. In Section IV, we present

performance evaluation results. Finally, we conclude the paper

in Section V.

Figure 1. The PODCA-L architecture [1].

II. BACKGROUND

In this section, we briefly review PODCA-L [1], which is the

architecture RODCA builds on. As shown in Fig. 1, PODCA-L

is a hierarchical, AWGR-based architecture. Suppose the total

number of racks is S and a P ×P AWGR is available. We split

the S racks into P clusters and each cluster has M racks, where

M =
⌈

S
P

⌉

. M racks of the same cluster connect to an input

port of the P×P AWGR through a M×1 coupler and connect

to an output port of the AWGR through a 1×M demultiplexer.

The signal from an output port of a demultiplexer can be either

a fixed wavelength or a fixed range of wavelengths. The P ×P

AWGR is for inter-cluster communication. Within each cluster,

there is an M × M AWGR for intra-cluster communication.

We denote W = F · P as the number of wavelengths, where

F ≥ 1 is an integer. The AWGR routes wavelengths from an

input port to a specific output port in a cyclic way; the cth

wavelength λc is routed from input port i to output port [9]:

[(i + c− 2) mod P] + 1, 1 ≤ i≤ P, 1 ≤ c ≤ W. (1)

Each ToR has one or more fast tunable transmitters and

fixed wide-band receivers. PODCA is a time-slotted system,

where the time to transmit a packet is one time slot. Packets

arriving to a ToR and needing to be transmitted to another ToR

are placed in a virtual buffer in the ToR (one for each desti-

nation ToR). In each time slot, a central controller schedules

packet transmissions for the next time slot and follows three

scheduling constraints. First, a tunable transmitter or receiver

can only transmit (respectively, receive) one packet at a time.

Second, because of the cyclic wavelength routing property of

the AWGR, at most F packets can be transmitted from an

input port of the AWGR to an output port of the AWGR in a

time slot. Third, tunable transmitters connecting to the same

AWGR port need to transmit on distinct wavelengths. The

central controller first selects packets for transmission based

on these three scheduling constraints, and then uses a packet

scheduling algorithm to tune wavelengths and schedule packets

for transmission.

In PODCA-L, some packets may need two hops to arrive at

their destinations – packets may need to be first routed to a ToR

different from the destination ToR but in the same cluster as the

destination ToR, by inter-cluster transmission, and then utilize

intra-cluster transmission to reach the destination ToR. For each

selected packet, the packet scheduling algorithm first checks if

there is any available wavelength for transmitting directly to

the packet’s destination. If there is more than one available

wavelength, a round robin method is used to choose one of the

available wavelengths. If direct transmission is not possible,

then the algorithm checks if a two-hop transmission is possible

on any available wavelength. If this is not possible either, the

packet waits in the source buffer until the next slot when the

above steps are repeated. The interested reader can refer to [1]

for full details of the architecture and the scheduling algorithm.

Figure 2. The reconfigurable optical data center architecture (RODCA).

III. RODCA ARCHITECTURE AND RECONFIGURATION

In this section, we present the proposed reconfigurable

optical data center architecture (RODCA), and an algorithm

for reconfiguration. Fig. 2 shows the proposed architecture.

A. RODCA Design

The architecture, shown in Fig. 2, augments PODCA with

two switches (switching networks, in fact) – a wavelength

switch (this is not to be confused with a wavelength-selective

switch) and a pair of cluster switches. The cluster switches

are used to reconfigure cluster memberships dynamically, i.e.,

to partition the set of rack transmitters and receivers into

clusters based on traffic demands so that rack pairs with large

traffic demands are placed in the same cluster. The use of the

wavelength switch is explained below.

Currently, the size of the fast (microsecond-level) MEMS

optical switch mentioned in [9] is limited to a few tens of

ports. In order to scale the network to large sizes (hundreds

or thousands of racks), we use a Clos multi-stage network

of MEMS optical switches to build large-sized cluster and

wavelength switches. The path diversity and non-blocking

nature of the Clos network enables the routing of arbitrary

traffic patterns with no loss of throughput [7], and plays an

important role in the scalability of RODCA.

We now explain why the wavelength switch is needed.

During the topology reconfiguration process, RODCA recon-

figures the wavelength switch to make each cluster to be

able to receive all W wavelengths from an output port of

the inter-cluster AWGR. Without the wavelength switch, some

racks might not be able to receive certain wavelengths. To

illustrate this point, in Fig. 3, consider a network of four racks,

R1,1, R1,2, R2,1, and R2,2, and suppose two wavelengths are

available. Without the wavelength switch, R1,1 and R2,1 can

only receive λ1, and R1,2 and R2,2 can only receive λ2 (as per

the design of PODCA [1], which uses fixed-band receivers).

After reconfiguration, suppose R1,1 and R2,2 are placed into

one cluster. Then, if the wavelength switch is not used, this

cluster cannot receive any packet from racks that are connected

to the second/bottom input port of the inter-cluster AWGR,

since the second input port of the inter-cluster AWGR can

reach the first/top output port of the inter-cluster AWGR only

by using λ2, but this wavelength cannot be received by R1,1.

Similarly, the second input port of the inter-cluster AWGR

can reach the second output port of the inter-cluster AWGR

by using λ1, but the wavelength cannot be received by R2,2.

However, by using the wavelength switch, we can connect R1,1

and R2,2 to the second output port of the inter-cluster AWGR.

Now, R1,1 and R2,2 can receive λ1 and λ2, respectively. The

second input port of the inter-cluster AWGR can reach this

cluster by sending packets to R1,1 by using λ1; it can also

reach it by sending packets to R2,2 on λ2.

!"

!#

!"#$

!"#"

!$#$

!$#"

%&'()*

!"

!#

%&'()*

!"#$

!"#"

!$#$

!$#"

✂"

✂$

✂"

✂$

✂"

✂$

✂"

✂$
✂$

%✂"

%✂$

✂"

%%+,-./)-%+01'2'34-.%

56,-7. %+01'2'34-.%56,-7.

8+9!

"

8+9!

$

8+9!

"

8+9!

$

:3-';<=2)>-';

8+9!

✂$

✂"

:3-';<=2)>-';

8+9!

✂$

✂"

Figure 3. The need for the wavelength switch.

B. Reconfiguration Algorithm

We use the number of packets in the virtual buffers to

decide when the RODCA topology should be reconfigured. In

particular, we consider the total number of packets waiting

for inter-cluster transmission (Linter), the total number of

packets waiting for intra-cluster transmission (Lintra), and use

a threshold parameter (β) to make the reconfiguration decision.

For this purpose, every rack is required to send the number

of packets waiting in each of its virtual buffers to the central

controller. We then propose to perform reconfiguration if:

β · Lintra ≤ Linter, (2)

Thus, reconfiguration is triggered if (a multiple of) the number

of intra-cluster packets falls below the number of inter-cluster

packets. Since sampling the buffers and reporting the buffer

occupancy to the controller causes control message overhead,

we introduce a sampling interval (SI) to balance the overhead

with performance. SI = δ means that the buffers are sampled

every δ time slots, and the reconfiguration condition above is

checked.

If the condition is satisfied, the controller suspends all inter-

and intra-cluster packet transmissions in order to reconfigure

the network based on the number of packets waiting for

transmission in the virtual buffers. We denote a set containing

all P ·M racks as Θ and call the number of packets between

two racks as the mutual number of packets. A simple greedy

heuristic is used to form clusters. We first find two racks with

the largest mutual number of packets in Θ, and remove these

two racks from Θ. Then, we find another rack in Θ with the

largest mutual number of packets with the previous two chosen

racks and remove this rack from Θ. We repetitively find a

rack from Θ owning the largest mutual number of packets

with all chosen racks in the previous two steps and remove

the rack from Θ, and so on, until we have collected M racks

to generate a cluster. We repeat the above steps until we have

P clusters. The pseudocode of this reconfiguration algorithm,

which is executed every time slot, is shown in Algorithm 1.

In Algorithm 1, we use a counter to indicate if it is time to

reconfigure.

Algorithm 1: RECONFIG

1: if counter == SI and β · Lintra ≤ Linter then
2: counter = 0
3: for p = 1 : P do
4: find a pair of racks with the largest mutual number of

packets
5: remove this pair of racks from Θ

6: for m = 1 : M do
7: find a rack with the largest mutual number of packets

for all racks removed in iteration p
8: remove the rack from Θ

9: end for
10: end for
11: else
12: counter++
13: end if

Once reconfiguration is complete, we resume packet trans-

mission by following the packet scheduling for PODCA-L al-

gorithm [1]. The central controller schedules both intra-cluster

and inter-cluster transmission based on scheduling constraints.

Recall that some packets can be transmitted in one hop, and

some need two hops to arrive at their destinations. For example,

suppose P equals 2 and W equals 8. There are 8 racks

within each cluster, i.e., M = 8. On each rack, there is one

tunable transmitter and one wide-band receiver for intra-cluster

communication. Also, there is one tunable transmitter and one

wide-band receiver for inter-cluster communication. Suppose

a packet is from T 1
1,1 to R1

2,1. The only wavelength R1
2,1 can

receive, within inter-cluster transmission, is λ1. However, based

on the routing characteristics of the AWGR, the receivable

wavelengths from the first input port of the AWGR to the

second output port of the AWGR can only be λ2, λ4, λ6 and

λ8. Therefore, λ1 transmitted from T 1

1,1 cannot arrive at the

second output port of the AWGR in a single hop. Thus, a two-

hop transmission is needed. We first choose one wavelength

from {λ2, λ4, λ6, λ8}; suppose we choose λ2. The packet is

transmitted to R2,2 by using λ2, and then in the next time slot,

R2,2 can transmit the packet to R2,1 by using an intra-cluster

transmission.

Algorithm 2: RODCA PACKET SCHEDULING

1: for packets at the head of virtual buffers do
2: RECONFIG ()
3: Load-balance between inter- and intra-cluster network by

using PODCA-L PACKET SCHEDULING () [1]
4: end for

If the source and destination racks are in the same cluster, we

can use either intra-cluster transmission or inter-cluster trans-

mission. Here, we define a threshold to determine if the packet

uses intra-cluster transmission or inter-cluster transmission. If

the number of packets waiting for intra-cluster transmission is

less than the threshold, then we place the packet at the tail of

the waiting queue of the intra-cluster transmission. Otherwise,

we use inter-cluster transmission to transmit that packet. To

transmit more than one packet in a time slot, each ToR can

have more than one tunable transmitter and wide-band receiver

for intra-cluster transmission, or inter-cluster transmission, or

both.

The operation of RODCA follows the algorithm whose

pseudocode is shown in Algorithm 2.

IV. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the latency

and throughput performance of RODCA. For space reasons,

we fix the network configuration and conduct experiments by

varying the algorithm and component parameters only. Both

the inter-cluster and intra-cluster AWGR sizes are set to be

30×30; thus, the DCN is made up of 900 racks, and we assume

48 servers per rack for a total of 43,200 servers in the DCN.

The number of wavelengths is set to 120. On each rack, there

are 3 tunable transmitters for intra-cluster transmission and 1

tunable transmitter for inter-cluster transmission. Each rack has

P ·M = 900 virtual queues and each virtual queue buffers

packets for each destination rack. The buffer size of a ToR

is 5 Mb. The transmission rate of each tunable transmitter is

assumed to be 10 Gbps, and its tuning time is 8 ns [1]. Since

the network only connects racks with each other, we assume

traffic arrives to racks, and do not model server traffic in our

simulations. Following [14], we assume that tasks arrive to the

data center according to a Poisson process with a mean rate

of 3 tasks/sec. Each task arrives to a random source rack, and

triggers κ flows, where κ ∈ [1, 900] is an integer chosen based

on a uniform distribution. We model two types of traffic flows,

mice flows and elephant flows. Following [17], we use two

Gaussian distributions to model mice and elephant flow rates.

(If the Gaussian distribution gives a negative value, we set the

value to be 0.) Mice flow arrival rates for each server follow

a Gaussian distribution with mean 0.01 Mbps, and elephant

flow arrival rates for each server follow a Gaussian distribution

with mean 40 Mbps. Thus, mice arrival rates for each ToR

follow a Gaussian distribution with mean 0.48 Mbps (48×0.01
Mbps), and elephant flow arrival rates for each ToR follow a

Gaussian distribution with mean 1.92 Gbps (48 × 40 Mbps).

We dynamically change the number of elephant flows and mice

flows to make the ratio between total elephant arrival rate and

total mice arrival rate to be 9:1.

Recall that β is a threshold parameter that is used by our

algorithm to trigger network reconfiguration. Each packet is

assumed to be 1500 bytes long, which implies that each slot

is 1.2 µs long (assuming 10 Gbps wavelength capacity and

transmitter rates). The time to reconfigure the topology, RT, is

set to 1 slot (fast switches) or 10 slots (relatively slow switches).

In all of our simulations, we observed no packet drops and thus

the throughput is 100%, except for the case when RT = 10
and β = 0. In this case, we observed a 5% packet drop rate,

suggesting that too frequent reconfiguration can be detrimental

to performance when RT is not small.1 We therefore focus on

packet latency, and make references to throughput only when

it is less than 100%.

♦

�

✁

✂

✄

☎♦

☎�

☎✁

♦

�♦

✁♦

✂♦

✄♦

☎♦♦

☎�♦

✆✝✞✟ ✠✡☛

♦ ☞

✌
✍
✎✏
✑
✒
✓
✔✕
✖
✗

✘✙✚✛✜✢✚ ✣✤✥✦✧★✩✪✫✣✬✭✩✦✧

✘✙✚✛ ✣✤✥✦✧★✩✪✫✣✬✭✩✦✧

✮✯☞

Figure 4. The effect of reconfiguration on packet latency.

We first compare the throughput and latency performance

with and without reconfiguration. We set SI = 1, β = 15, and

RT = 10, and simulate the DCN for 5 seconds (corresponding

to approximately 600 million packet arrivals). Our results show

that no packets are dropped with reconfiguration, whereas

approximately 4% of the packets are dropped when the network

does not reconfigure in response to traffic changes. Fig. 4

1We will see later that the latency is also negatively impacted in this scenario.

shows the evolution of packet latency with time as the network

starts from an empty state. The latency quickly reaches steady

state and settles around 12 µs with reconfiguration, whereas

it increases rapidly to around 110 µs when no reconfiguration

is done. This 90% improvement in latency clearly shows the

benefits of adapting the network topology to dynamic traffic

variations.

♦♦�✁✂✄

♦♦�✁✂☎

♦♦�✁☎✄

♦♦�✁☎☎

♦♦�✁✁✄

♦♦�✁✁☎

♦♦�✁✆✄

✝✞✟✠ ✡☛☞

✄�✄✄☎✄ ✄�✄✄☎✁

✌

!"
#$

%&
'(✍

)*

✄�✄✄☎✎

Figure 5. Latency dynamics upon reconfiguration.

In Fig. 5, we zoom into a 0.6 ms window of Fig. 4 to

better illustrate the behavior of latency when reconfiguration

happens. Reconfiguration initiation times are marked with a

dashed vertical line in the figure. When the reconfiguration

condition is satisfied, RODCA initiates reconfiguration, and

suspends all packet transmissions. During this time, no packets

are received by any destination rack and thus the packet

latency remains constant. RODCA resumes packet transmission

after reconfiguration is complete, and packet latency starts to

increase initially and then goes down. The initial increase in

latency is due to the fact that packets that are backlogged during

reconfiguration contribute to an increase in latency, but soon

after, the latency starts decreasing because of the optimized

topology. Fig. 5 also shows that two reconfigurations could

occur back to back, and the effect of the first reconfiguration

on packet latency is never noticed. This is a consequence of

choosing a small value of SI. In our experiments, we have not

seen this occur when SI and β are large.

3.99

6.14

7.64

9.38

10.48

♦�✁✂.✄☎

13.72 13.66 14.05

15.19

4.67

6.16

7.73

9.11

10.57

16.03

13.78 13.58
14.08

14.94

0

5

10

15

20

1 30 90 120

L
a
te

n
c
y
 (

u
s)

RT=1,q=0

RT=1,✆=10

RT=10,q=0

RT=10,✆=10

✝0

Sampling interval (time slots)

Figure 6. Latency vs. sampling interval for various values of β and RT.

We next show the latency for different SI, β, and RT values in

Fig. 6. For this and subsequent figures, we simulate 100 million

packet arrivals, and show 95% confidence intervals from 30

trials for each data point. Fig. 6 shows that when RT = 1,

small SI and β give the best latency performance. Intuitively,

when RT is small, there is minimal penalty for reconfiguring the

network (which is facilitated by small values of SI and β) and

optimizing the topology helps boost performance significantly.

Further, when RT = 10, as the SI increases, the latency first

decreases and then increases. As the SI increases, the frequency

of reconfiguration decreases, and as Fig. 5 illustrates, some

reconfigurations are not useful at all when SI is small. Thus,

when SI increases from 1 to 60, the penalty from suspension

of packet transmissions decreases and the number of useless

reconfigurations decreases. However, when SI increases from

60 to 120, the benefit from reconfigurations also decreases

and the latency increases. Eventually, as SI approaches infin-

ity, reconfiguration is rarely triggered, and the latency would

approach that for the no reconfiguration case. Fig. 6 also

illustrates how β affects the packet latency. A large β implies

a reluctance to reconfigure the network, and this is particularly

useful when SI is small, e.g., 1. It can be seen that a large β

tremendously decreases the packet latency in this case.

13.72 13.78

12.75
12.38

12.78
13.26

0

2

4

6

8

10

12

14

16

0 10 15 20 25 30

La
te

n
cy

 (
u

s)

Threshold

♦�=1

♦�=10

6.14 6.16
6.87

7.97

8.98

9.78

Figure 7. Latency vs. threshold for various values of RT

Fig. 7 presents packet latency for different values of the

threshold β, for SI = 30. When RT = 1, as β increases, the

latency always increases. When RT = 10, as β increases, the

latency first decreases and then increases, as explained above.

Fig. 7 shows that once an SI is chosen, we can tune the β

to get the smallest latency. Even though both SI and β affect

the latency, they are introduced for different purposes. Recall

that SI is a measure of how frequently the virtual buffers are

sampled.2 This frequency places a load on the controller, with

smaller SI values requiring more frequent control messages for

gathering the occupancy information on the virtual buffers. The

actual overhead due to such messages is not modeled in this

paper, and is left for future work. In contrast to SI, β is an

algorithm parameter for controlling the latency for a given SI.

V. CONCLUSIONS

In this paper, we present a scalable and flexible reconfig-

urable architecture called RODCA. RODCA is built on and

augments PODCA-L with a flexible intra-cluster optical net-

work. With the reconfigurable intra-cluster network, racks with

2We have also looked into averaging the sampled values over a time window,
and found it to be not very useful.

mutually large traffic can be located within the same cluster,

and share the large bandwidth of the intra-cluster network. We

present an algorithm for DCN topology reconfiguration, and

present simulation results to demonstrate the effectiveness of

reconfiguration. Our results show that packet latencies around

10-12 µs are achievable with judicious topology reconfiguration

in response to dynamic traffic changes, while latencies could be

an order of magnitude larger if the topology is not reconfigured.

VI. ACKNOWLEDGMENTS

This work was supported in part by NSF award # 1618487.

REFERENCES

[1] M. Xu, C. Liu, and S. Subramaniam, “PODCA: A passive optical
data center architecture,” in 2016 IEEE International Conference on

Communications (ICC). IEEE, 2016, pp. 1–6.
[2] X. Ye, Y. Yin, S. B. Yoo, P. Mejia, R. Proietti, and V. Akella, “DOS:

A scalable optical switch for datacenters,” in Proceedings of the 6th

ACM/IEEE Symposium on Architectures for Networking and Communi-

cations Systems, 2010, p. 24.
[3] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: a

topology malleable data center network,” in Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, 2010.
[4] K. Xia, Y.-H. Kaob, M. Yangb, and H. Chao, “Petabit optical switch for

data center networks,” Polytechnic Institute of New York University, New

York, Tech. Rep, 2010.
[5] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center

networks,” in Proceedings of HotNets, 2009.
[6] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in Proc. ACM SIGCOMM, 2008, pp. 63–74.
[7] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient

topology for high-radix networks,” ACM SIGARCH Computer Architec-

ture News, vol. 35, no. 2, pp. 126–137, 2007.
[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data
center network,” in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[9] C. Kachris and I. Tomkos, “A survey on optical interconnects for data
centers,” IEEE Comm. Surveys & Tutorials, vol. 14, no. 4, pp. 1021–1036,
2012.

[10] J. Chen, Y. Gong, M. Fiorani, and S. Aleksic, “Optical interconnects at the
top of the rack for energy-efficient data centers,” IEEE Communications

Magazine, vol. 53, no. 8, pp. 140–148, 2015.
[11] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,

M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp.
327–338, 2011.

[12] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical
switch architecture for modular data centers,” in Proc. ACM SIGCOMM,
2011, pp. 339–350.

[13] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing,
Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit
switching into the data center,” in Proc. ACM SIGCOMM, 2013, pp.
447–458.

[14] Z. Guo and Y. Yang, “Augmenting data center networks with a fast
reconfigurable optical multistage interconnect,” in Proceedings of IEEE

Globecom, 2014, pp. 2198–2204.
[15] A. Pal and K. Kant, “RODA: A reconfigurable optical data center network

architecture,” in Proc. IEEE LCN, 2015, pp. 561–569.
[16] K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, and Q. Dong,

“Wavecube: A scalable, fault-tolerant, high-performance optical data
center architecture,” in Proc. IEEE INFOCOM, 2015, pp. 1903–1911.

[17] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proceedings

of the 9th ACM SIGCOMM Conference on Internet Measurement Con-

ference. ACM, pp. 202–208.

	I Introduction
	I-A Related Work
	I-B Our Approach and Contributions

	II Background
	III RODCA Architecture and Reconfiguration
	III-A RODCA Design
	III-B Reconfiguration Algorithm

	IV Performance Evaluation
	V Conclusions
	VI Acknowledgments
	References

