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Abstract—Locally repairable codes (LRC) for distribute stor-
age allow two approaches to locally repair multiple failed nodes:
1) parallel approach, by which each newcomer access a set of
r live nodes (r is the repair locality) to download data and
recover the lost packet; and 2) sequential approach, by which the
newcomers are properly ordered and each newcomer access a set
of r other nodes, which can be either a live node or a newcomer
ordered before it. An [n, k] linear code with locality r and allows
local repair for up to t failed nodes by sequential approach is
called an (n, k, r, t)-exact locally repairable code (ELRC).

In this paper, we present a family of binary codes which is
equivalent to the direct product of m copies of the[r+1, r] single-
parity-check code. We prove that such codes are(n, k, r, t)-ELRC
with n = (r + 1)m, k = rm and t = 2m − 1, which implies that
they permit local repair for up to 2m − 1 erasures by sequential
approach. Our result shows that the sequential approach has
much bigger advantage than parallel approach.

I. I NTRODUCTION

In a distributed storage system (DSS), data is stored through
a large, distributed network of storage nodes. To maintain the
data reliability in the presence of node failures, the system
should have the ability ofnode repair. That is, when some
of the storage nodes fail, each failed node is replaced by a
newcomerwhere the lost packet is recovered and stored again.

Various coding techniques are employed by modern DSS to
improve system performance, among which locally repairable
codes (LRC) aim to minimize the repair locality, i.e. the num-
ber of disk accesses required for single node repair [1]−[4].

Theith coordinate of an[n, k] linear codeC (also called the
ith code symbol ofC) is said to havelocality r, if its value
is computable from the values of a set of at mostr other
coordinates ofC (called a repair set ofi). Codes with all code
symbols having localityr (r < k) are called locally repairable
codes. In a DSS with an LRCC as the storage code, the data
packet stored in each storage node is a code symbol ofC and
any single failed node can be “locally and exactly repaired”
in the sense that the newcomer can recover the lost data by
accessing at mostr other nodes, wherer is the locality ofC.

To handle the problem of local repair for multiple failed
nodes, some special subclasses of LRCs are investigated, such
as: a) Codes with all-symbol locality(r, t + 1), also called
(r, t+1)a codes, in which each code symbol is contained in a
local code of length at mostr+t and minimum distance at least
t+1 [6]; b) Codes with all-symbol localityr and availabilityt,
in which each code symbol hast pairwise disjoint repair sets

with locality r [7], [8]; c) Codes with(r, t)-locality, in which
each subset oft code symbols can be cooperatively repaired
from at mostr other code symbols [9](For convenience, in
the following, we will call such codes as(r, t)-CLRC.); d)
Codes with overall local repair tolerancet, in which for any
E ⊆ [n] of size t and anyi ∈ E, the ith code symbol has a
repair set contained in[n]\E and with localityr [5]. Clearly,
these four subclasses of LRC permit local repair for up to
t failed nodes byparallel approach— each newcomer can
accessr live nodes to recover the corresponding lost packet.
We also callt as the erasure tolerance of such codes.

For (r, δ)a codes and(r, t)-CLRC, the code rate satisfies
(e.g., see [13] and [9]):

k

n
≤

r

r + t
. (1)

For codes with localityr and availabilityt, it was proved in
[10] that the code rate satisfies:

k

n
≤

1
∏t

j=1(1 +
1
jr
)
. (2)

However, for t ≥ 2, it is not known whether the code rate
bound (2) is achievable. Recent work by Wang et al. [11]
shows that for any positive integersr andt, there exist codes
with locality r and availability t over the binary field with
code rate r

r+t
. Unfortunately, such codes do not achieve the

bound (2) fort ≥ 2. The problem of constructing codes with
locality r and availabilityt ≥ 2 that achieve the optimal code
rate is still an open problem.

A more general way to locally repairt (t ≥ 2) failed nodes
is thesequential approach, by which thet newcomers can be
properly ordered in a sequence and, to recover the lost packet,
each newcomer can accessr other nodes, each of which can be
a live node or a newcomer ordered before it [14], [15]. In [15],
an [n, k] linear code that has localityr and permit local repair
for up to t failed nodes by sequential approach is called an
(n, k, r, t)-exact locally repairable code(ELRC). Clearly, the
four subclasses of LRC, i.e.,(r, δ)a codes,(r, t)-CLRC, codes
with locality r and availabilityt, and codes with overall local
repair tolerancet, are all (n, k, r, t)-ELRC. Potentially, the
sequential approach allows us to design codes with improved
parameter properties than the parallel approach.
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x1 x2 x3

x4 x5 = x1 + x2 x6 = x3 + x4

x7 = x1 + x3 x8 = x2 + x4 x9 =
∑4

i=1 xi

Fig 1. A (9, 4, 2, 3)-ELRC.

Example 1:As an example of sequential approach, consider
the code illustrated in Fig. 1, wherex1, · · · , x4 are information
symbols andx5, · · · , x9 are parity symbols. We can check that
x1 = x2 + x5 = x3 + x7. So {x2, x5} and{x3, x7} are two
disjoint repair sets ofx1. Similarly, we can find two disjoint
repair sets for each ofx2, · · · , x9. The repair set of each code
symbol is illustrated in Fig. 2. So this code has locality2
and availability2. Hence, it permits local repair for up to2
erasures by the parallel approach.

x1 x2

x3 x4

x5

x6

x7 x8 x9

Fig 2. Repair relation of code symbols of the code in Fig. 1: Each line
(red line or green line) contains3 symbols and any symbol on a line can be
computed from the other symbols on the same line. Note that each symbol
belongs to two lines — a red line and a green line, hence has tworepair sets.

However, we can check that this code is a(9, 4, 2, 3)-
ELRC — it permits local repair for up to3 failed nodes by
sequential approach. For example, ifx1, x5, x7 are lost, then
we can repair them by the following sequence of equations:
x5 = x6 + x9, x7 = x8 + x9 andx1 = x2 + x5. During the
repair process,x5 is repaired beforex1. Oncex5 is repaired, it
can be used to repairx1. Hence, the repair process is feasible.
Note thatx1, x5, x7 can’t be repaired by parallel approach
because both the two repair sets ofx1 contain a lost symbol.

Most existing works about LRC focus on parallel repair
approach [5]−[13]. In the field of(n, k, r, t)-ELRC (i.e., LRC
with sequential repair approach), only for t ∈ {2, 3} is
investigated [14], [15].

For (n, k, r, t = 2)-ELRC, the code rate satisfies [14]:

k

n
≤

r

r + 2
. (3)

An upper bound for the minimum distance of such codes and a
construction of codes achieving the minimum distance bound
were also given in [14].

For (n, k, r, t = 3)-ELRC, it was proved in [15] that the
code lengthn satisfies:

n ≥ k +

⌈

2k + ⌈k
r
⌉

r

⌉

(4)

and there exist codes with code length meet this bound.
However, fort ≥ 3, no result is known about the minimum
distance bound, and fort ≥ 4, no result is known about the
code rate bound. Construction of(n, k, r, t ≥ 4)-ELRC is not
seen in literature either.

In this paper, we prove that for any given positive integers
r (r ≥ 2) andm, the direct product ofm copies of the[r+1, r]
single-parity-check code is an(n, k, r, t = 2m− 1)-ELRC. So
such code permits local repair for up tot = 2m−1 erasures by
sequential approach. The code rate of such codes is shown to
be much larger than(r, δ)a codes and(r, t)-CLRC. Moreover,
it was pointed out in [10] that such code has localityr and
availabilitym, which implies that it permits local repair for up
to onlym failed nodes by parallel approach. Hence, our result
shows that sequential approach has much bigger advantage
than parallel approach for such codes.

The rest of this paper is organized as follows. In Section II,
we state the formal definition of(n, k, r, t)-ELRC. In section
III, we give a method to construct codes that are equivalent
to the direct product codes and present our main theorem. We
prove the main theorem in Section IV and conclude the paper
in Section V.

II. PRELIMINARY

For any setA, we use|A| to denote the size(i.e., the number
of elements) of A. A setB is called anr-subset ofA if B ⊆ A
and |B| = r. For any positive integern, we denote

[n] := {1, 2, · · · , n}.

An [n, k] linear code over the finite fieldF is a k-
dimensional subspace of the vector spaceF

n, wheren, k are
positive integers andk ≤ n.

In this section, we present the formal definition of
(n, k, r, t)-exact locally repairable code (ELRC). More details
can be found in [15].

Let C be an[n, k] linear code over the fieldF. If there is
no confusion in the context, we will omit the base fieldF
and only say thatC is an [n, k] linear code. Ak-subsetS
of [n] is called aninformation setof C if for all codeword
x = (x1, x2, · · · , xn) ∈ C and all i ∈ [n], xi =

∑

j∈S ai,jxj ,
where allai,j ∈ F and are independent ofx. The code symbols
in {xj , j ∈ S} are calledinformation symbolof C. In contrast,
code symbols in{xi, i ∈ [n]\S} are calledparity symbolof
C. An [n, k] linear code has at least one information set.

Definition 2: Let i ∈ [n] andR ⊆ [n]\{i}. The subsetR is
called an(r, C)-repair setof i if |R| ≤ r andxi =

∑

j∈R ajxj

for all x = (x1, x2, · · · , xn) ∈ C, where allaj ∈ F and are
independent ofx.

Definition 3: Let E be a t-subset of[n] andE = [n]\E.
The codeC is said to be(E, r)-repairable if there exists an
index ofE, sayE = {i1, · · · , it}, and a collection of subsets

{Rℓ ⊆ E ∪ {i1, · · · , iℓ−1}; |Rℓ| ≤ r, ℓ ∈ [t]}

such that for eachℓ ∈ [t], Rℓ is an (r, C)-repair set ofiℓ.



Definition 4: An (n, k, r, t)-exact locally repairable code
(ELRC) is an [n, k] linear codeC such that for eachE ⊆ [n]
of size |E| ≤ t, C is (E, r)-repairable.

By Definition 3 and 4, if a DSS uses an(n, k, r, t)-ELRC
as the storage code, then anyt′ (t′ ≤ t) failed nodes can be
locally repaired by sequential approach.

The following lemma gives a seemingly simpler character-
ization for (n, k, r, t)-ELRC.

Lemma 5 ([15], Lemma 6):An [n, k] linear codeC is an
(n, k, r, t)-ELRC if and only if for anyE ⊆ [n] of size 0 <
|E| ≤ t, there exists ani ∈ E such thati has an(r, C)-repair
set contained in[n]\E.

In the following, if R is an (r, C)-repair set ofi, we will
omit the prefix(r, C) and only say thatR is a repair set ofi.

III. C ODE CONSTRUCTION

Let r,m be two positive integers such thatr ≥ 2. Let n =
(r+1)m andk = rm. We will construct a binary[n, k] linear
code that is equivalent to the direct product ofm copies of
the [r+1, r] single-parity-check code. Moreover, we will show
that such code is an(n, k, r, t)-ELRC, wheret = 2m − 1.

In the following, we will denote

Zr = {0, 1, · · · , r − 1}

and
Z
m
r = {(λ1, · · · , λm);λ1, · · · , λm ∈ Zr}.

That is, Zm
r is the Cartesian product ofm copies ofZr.

Similarly, we denote

Zr+1 = {0, 1, · · · , r}

and

Z
m
r+1 = {(λ1, · · · , λm);λ1, · · · , λm ∈ Zr+1}.

ThenZr ⊆ Zr+1 andZ
m
r ⊆ Z

m
r+1. To describe the code

construction method, we need the following two notations:
For eachα = (λ1, · · · , λm) ∈ Z

m
r+1\Z

m
r , denote

T (α) = {j ∈ [m];λj ∈ Zr} (5)

and

L(α) = {(µ1, · · · , µm) ∈ Z
m
r ;µj = λj , ∀j ∈ T (α)}. (6)

For example, letr = 2, m = 6. For α = (0, 1, 2, 0, 2, 2) ∈
Z
6
3, we haveT (α) = {1, 2, 4} and

L(α) = {(0, 1, λ3, 0, λ5, λ6);λ3, λ5, λ6 ∈ Z2}.

Clearly, for eachα = (λ1, · · · , λm) ∈ Z
m
r+1\Z

m
r , T (α) is a

proper subset of[m] andL(α) is a non-empty subset ofZm
r .

Moreover, if α = (r, · · · , r), thenT (α) = T (r, · · · , r) = ∅
andL(α) = L(r, · · · , r) = Z

m
r .

Let n = (r + 1)m and k = rm. Let H = (hα,β) be an
(n−k)×n binary matrix whose rows are indexed byZm

r+1\Z
m
r

and columns are indexed byZm
r+1 such that

hα,β =

{

1, if β ∈ L(α) ∪ {α};

0, Otherwise.
(7)

Clearly, the submatrixH1 formed by the columns ofH that
are indexed byZm

r+1\Z
m
r is a permutation matrix of order

n− k. So rank(H) = n− k.
Let C be the binary code with a parity check matrixH . Then

C is an[n, k] linear code. Clearly,C is just the[r+1, r] single-
parity-check code form = 1 and the square code constructed
in [7] for m = 2. In general, it is not difficult to prove that
the codeC is equivalent to the direct product ofm copies of
the [r+1, r] single-parity-check code. Moreover, we have the
following theorem.

Theorem 6:The codeC which has a parity check matrixH
is an (n, k, r, t)-ELRC, wheret = 2m − 1.

It is easy to see that the code rate of(n, k, r, t)-ELRC
obtained by the above construction is much larger than the
bound (1). Comparison of code length of(n, k, r, t)-ELRC
with (r, t + 1)a codes and(r, t)-CLRC for r = 2 and
m ∈ {2, 3, 4, 5} is given in Table 1, from which we can see
that the code rate of(n, k, r, t)-ELRC is much larger than
(r, t+ 1)a codes and(r, t)-CLRC for the samer and t.

Moreover, it was pointed out in [10] that the direct product
of m copies of the[r + 1, r] single-parity-check code has
locality r and availabilitym, which implies thatC permits
local repair for up tom erasures by parallel approach. Note
that Theorem 6 shows thatC permits locally repair for up to
2m − 1 erasures by the sequential approach, which is much
larger thanm for m ≥ 2. Hence, our result shows that
sequential approach has much bigger advantage than parallel
approach for LRC. Table 2 is the comparison of erasure
tolerance of the constructed code for sequential approach and
parallel approach, where we assumer = 2.

m t k Code length
of (r, t)-
ELRC

Code length
of (r, t+1)a
codes

Code length
of (r, t)-
CLRC

2 3 4 9 ≥ 10 ≥ 10

3 7 8 27 ≥ 36 ≥ 36

4 15 16 81 ≥ 136 ≥ 136

5 31 32 243 ≥ 528 ≥ 528

Table 1. Comparison of code length of three subclasses of LRCs for r = 2.

m k n Erasure tolerance
by sequential re-
pair approach

Erasure tolerance
by parallel repair
approach

2 4 9 3 2

3 8 27 7 3

4 16 81 15 4

5 32 243 31 5

Table 2. Comparison of erasure tolerance of the constructedcode with
r = 2: sequential approach and parallel approach.

The proof of Theorem 6 will be given in the next section.
We now give an example of the above construction.

Example 7:Let r = 2 andm = 3. Thenk = 8 andn = 27.
We can construct a matrixH and a binary[27, 8] linear code
C by the above method. Similar to Fig. 2, we can illustrate the
repair set of each code symbol ofC by Fig. 3. More details can



x000 x100

x001 x101

x010 x110

x011 x111

x200

x201

x210

x211

x020 x120

x021 x121

x002 x102

x012 x112

x202

x212

x220

x221

x022 x122 x222

Fig 3. Repair relation of code symbols of the code in Example 7. We useZ3
3

to index the coordinates and, to simplify notation, usexλ1,λ2,λ3
to denote

the code symbolx(λ1,λ2,λ3) for each(λ1, λ2, λ3) ∈ Z
3
3.

be seen in Lemma 8. We will show thatC is an(n, k, r, t = 7)-
ELRC. That is, anyt′ ≤ 7 code symbols ofC can be locally
repaired by other code symbols ofC. For example, suppose
E = {(020), (120), (010), (110), (021), (121), (011)}. Then
the code symbols inE can be locally repaired by the following
sequence of equation:x011 = x111+x211, x121 = x111+x101,
x021 = x121 + x221, x020 = x021 + x022, x120 = x121 + x122,
x010 = x011 + x012 andx110 = x111 + x112. In general, this
claim can be checked as follows.

We partition the index setZ3
r+1 = Z

3
3 into three subsets

Ij = {(λ1, λ2, λ3);λ1, λ2 ∈ Zr+1 andλ3 = j}, j = 0, 1, 2.

For example,I0 = {(000), (010), (020), (100), (110), (120),
(200), (210), (220)}. For eachj ∈ {0, 1, 2}, from Fig. 3, the
repair relation of code symbols inIj is the same as code
symbols in Fig. 2. So anyt′ ≤ 3 code symbols inIj can be
locally repaired by other code symbols inIj . Now, suppose
E ⊆ Z

3
3 of size |E| ≤ 7. Then there exist at most onej ∈

{0, 1, 2} such that|E∩Ij | > 3. For thosej such that|E∩Ij | ≤
3, code symbols inE ∩ Ij can be locally repaired by other
code symbols inE ∩ Ij . Finally, if there exist aj0 such that
|E ∩ Ij0 | > 3. Then each code symbol inE ∩ Ij0 can be
locally repaired by code symbols inIj1∪Ij2 , where{j1, j2} =
{1, 2, 3}\{j0}. Hence, all code symbols inE can be locally
repaired by sequential approach.

IV. PROOF OFTHEOREM 6

In this section, we prove Theorem 6. The basic idea of the
proof is the same as in Example 7.

Before proving Theorem 6, we first need to prove a lemma.
For eachα = (λ1, · · · , λm) ∈ Z

m
r+1 and eachi ∈ [m], denote

L(i)
α = {(µ1, · · · , µm) ∈ Z

m
r+1;µj = λj , ∀j ∈ [m]\{i}}. (8)

Then we have the following lemma.

Lemma 8:For eachα = (λ1, · · · , λm) ∈ Z
m
r+1 and i ∈

[m], the subsetL(i)
α \{α} is a repair set ofα.

Proof: To simplify notation, we assumei = 1. Then by
assumption of this lemma, we have

L(1)
α = {(λ′

1, λ2, · · · , λm) ∈ Z
m
r+1;λ

′
1 ∈ Zr+1}.

For eachλ′
1 ∈ Zr+1, denoteαλ′

1
= (λ′

1, λ2, · · · , λm). Then

L
(1)
α = {α0, α1, · · · , αr} andα = αλ1 ∈ L

(1)
α . Hence,

|L(1)
α | = r + 1. (9)

For each fixedλ′
1 ∈ Zr = {0, 1, · · · , r − 1}, by (5), we have

T (αλ′

1
) = T (αr) ∪ {1}.

So by (6), we have

L(αλ′

1
)

= {(µ1, · · · , µm) ∈ Z
m
r ;µ1 = λ′

1 andµj = λj , ∀j ∈ T (αr)}.
(10)

Moreover, by (6), we have

L(αr) = {(µ1, · · · , µm) ∈ Z
m
r ;µj = λj , ∀j ∈ T (αr)}. (11)

Combining (10) and (11), we have

L(αr) =

r−1
⋃

λ′

1=0

L(αλ′

1
). (12)

By construction ofH and C, for all codeword(x1, · · · , xn)
of C, we have

xαr
=

∑

β∈L(αr)

xβ (13)

and for eachλ′
1 ∈ Zr = {0, 1, · · · , r − 1}, we have

xα
λ′

1
=

∑

β∈L(α
λ′

1
)

xβ . (14)

By (10),L(α0),L(α1), · · · ,L(αr−1) are mutually disjoint. So
by combining (12), (13) and (14), we have

xαr
=

∑

β∈L(αr)

xβ

=
∑

β∈
⋃

r−1

λ′

1=0
L(α

λ′

1
)

xβ

=

r−1
∑

λ′

1=0







∑

β∈L(α
λ′

1
)

xβ







=

r−1
∑

λ′

1=0

xα
λ′

1
(15)

Note thatL(1)
α = {α0, α1, · · · , αr} andα = αλ1 ∈ L

(1)
α . Then

by (15), we have

xα =
∑

α′∈L
(1)
α \{α′}

xα′ .



Hence,L(1)
α \{α} is a repair set ofα.

For anyi ∈ [m], by the same discussion, we can prove that
L
(i)
α \{α} is a repair set ofα.
We give an example as below to show the arguments in the

proof of Lemma 8.
Example 9:Let r = 2, m = 6, α = (0, 1, 2, 0, 2, 2) and

i = 4. Then we have

L(i)(α) = {α0, α1, α2},

whereα0 = (0, 1, 2, 0, 2, 2), α1 = (0, 1, 2, 1, 2, 2) andα2 =
(0, 1, 2, 2, 2, 2)}. By (6), we have

T (α0) = T (α1) = {1, 2, 4} andT (α2) = {1, 2}

Moreover, by (6), we have

L(α0) = {(0, 1, λ3, 0, λ5, λ6);λ3, λ5, λ6 ∈ Z2},

L(α1) = {(0, 1, λ3, 1, λ5, λ6);λ3, λ5, λ6 ∈ Z2}

and

L(α2) = {(0, 1, λ3, λ4, λ5, λ6);λ3, λ4, λ5, λ6 ∈ Z2}.

SoL(α0) ∩ L(α1) = ∅ andL(α0) ∪ L(α1) = L(α2).
Let H be constructed by (7) andC be the code with parity

check matrixH . Then for all(x1, · · · , xn) ∈ C, we have

xα2 =
∑

β∈L(α2)

xβ

=
∑

β∈L(α0)∪L(α1)

xβ

=
∑

β∈L(α0)

xβ +
∑

β∈L(α1)

xβ

= xα0 + xα1 .

So {α0, α1} is a repair set ofα2. Similarly, {α1, α2} is a
repair set ofα0, and{α0, α2} is a repair set ofα1.

Now, we can prove Theorem 6.
Proof of Theorem 6:Note that then coordinates of code-

words ofC can be indexed byZm
r+1. By Lemma 5, we need to

prove that for anyE ⊆ Z
m
r+1 of size0 < |E| ≤ 2m − 1, there

exists anα ∈ E such thatα has a repair setR ⊆ Z
m
r+1\E.

Further, by Lemma 8, it is sufficient to prove that there exists
an i ∈ [m] and anα ∈ E such thatL(i)

α \{α} ⊆ Z
m
r+1\E. We

can prove this claim by induction onm.
Clearly, the claim is true form = 1. To prove the claim

for m ≥ 2, by induction, we can assume that the claim is
true for m − 1. That is, for any subsetE′ ⊆ Z

m−1
r+1 of size

0 < |E′| ≤ 2m−1 − 1, there exist ani ∈ [m − 1] and an
α′ = (λ1, · · · , λi, · · · , λm−1) ∈ E′ such thatL(i)

α′ \{α′} ⊆
Z
m−1
r+1 \E′, i.e., (λ1, · · · , λ′

i, · · · , λm−1) /∈ E′ for all λ′
i ∈

Zr+1\{λi}. Then we can prove the claim form as follows.
For each fixedλ ∈ Zr+1, denote

Eλ = {(µ1, · · · , µm−1, µm) ∈ E;µm = λ}.

Clearly, the subsetsE0, E1, · · · , Er are mutually disjoint and
⋃r

j=0 Ej = E. We have the following two cases:

Case 1:0 < |Eλ| ≤ 2m−1 − 1 for someλ ∈ Zr+1. Let

E′ = (µ1, · · · , µm−1) ∈ Z
m−1
r+1 ; (µ1, · · · , µm−1, λ) ∈ Eλ}.

Then 0 < |E′| = |Eλ| ≤ 2m−1 − 1. By in-
duction assumption, there exist ani ∈ [m − 1]
and an α′ = (λ1, · · · , λi, · · · , λm−1) ∈ E′ such
that (λ1, · · · , λ′

i, · · · , λm−1) /∈ E′ for all λ′
i ∈

Zr+1\{λi}. So (λ1, · · · , λ′
i, · · · , λm−1, λ) /∈ Eλ. Note that

E0, E1, · · · , Er are mutually disjoint and
⋃r

j=0 Ej = E. Then
(λ1, · · · , λ′

i, · · · , λm−1, λ) /∈ E for all λ′
i ∈ Zr+1\{λi}. Let

α = (λ1, · · · , λi, · · ·λm−1, λ). Then α ∈ E and we have
L
(i)
α \{α} ⊆ Z

m
r+1\E.

Case 2:|Eλ| ≥ 2m−1 or |Eλ| = 0 for all λ ∈ Zr+1.
Since 0 < |E| ≤ 2m − 1, there exist aλm ∈ Zr+1

such that |Eλm
| ≥ 2m−1 and |Eλ| = 0 for all λ ∈

Zr+1\{λm}. Hence,E ⊆ Eλm
and E = Eλm

. Now, let
i = m and pick anα = (λ1, · · · , λm−1, λm) ∈ Eλm

. Then
(λ1, · · · , λm−1, λ

′
m) /∈ Eλm

= E for all λ′
m ∈ Zr+1\{λm}.

So we haveL(m)
α \{α} ⊆ Z

m
r+1\E.

In both cases, there exists ani ∈ [m] and anα ∈ E such
thatL(i)

α \{α} ⊆ Z
m
r+1\E.

Thus, by induction, we proved that for anyE ⊆ Z
m
r+1 of

size0 < |E| ≤ 2m − 1, there exists ani ∈ [m] and anα ∈ E

such thatL(i)
α \{α} ⊆ Z

m
r+1\E. By Lemma 8,R = L

(i)
α \{α}

is a repair set ofα. Hence, by Lemma 5,C is an (n, k, r, t =
2m − 1)-ELRC, which completes the proof.

V. CONCLUSIONS

The class of (n, k, r, t)-exact locally repairable codes
(ELRC), which permit local repair for up tot erasures by
the sequential approach, is the most general setting of LRCs
with exact repair. Several subclasses of LRCs that are reported
in the literature, such as codes with localityr and availability
t, permit local repair for up tot erasures by parallel approach
and are contained in the class(n, k, r, t)-ELRC.

The direct product ofm copies of the[r + 1, r] single-
parity-check code is a family of codes that has localityr and
availability m. In this paper, we prove that such codes are in
fact an (n, k, r, t)-ELRC with t =

∑m

i=1 i. We believe that
such codes are optimal in term of code rate.

There still remains much work to be done for(n, k, r, t)-
ELRC, such as the code rate bound fort ≥ 4 and the minimum
distance bound fort ≥ 3. Also, constructing(n, k, r, t)-ELRC
with sufficiently large code rate (or minimum distance) is an
interesting problem.

REFERENCES

[1] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
in Information Theory Proceedings (ISIT), 2012 IEEE International
Symposium on, pp. 2771-2775, IEEE, 2012.

[2] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On thelocality of
codeword symbols,”IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925-
6934, Nov. 2012.

[3] F. Oggier and A. Datta, “Self-repairing homomorphic codes for dis-
tributed storage systems,” inINFOCOM, 2011 Proceedings IEEE, pp.
1215-1223, IEEE, 2011.

[4] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, andJ. Li, “Simple
regenerating codes: Network coding for cloud storage,” inINFOCOM,
2012 Proceedings IEEE, pp. 2801-2805, IEEE, 2012.



[5] L. Pamies-Juarez, H. D. L. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” inProc. IEEE Int. Symp. Inf.
Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 892-896.

[6] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal
linear codes with a local-error-correction property,” inInformation Theory
Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 2776-
2780, IEEE, 2012.

[7] A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,”
IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979-6987, Nov. 2014.

[8] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and Availability in Distributed Storage,” inProc. IEEE Int.
Symp. Inf. Theory (ISIT), Honolulu, HI, USA, June. 2014, pp. 681-685.

[9] A. S. Rawat, A. Mazumdar, and S. Vishwanath, “Cooperative Local
Repair in Distributed Storage,” http://arxiv.org/abs/1409.3900, 2015

[10] I. Tamo, A. Barg, “Bounds on locally recoverable codes with multiple
recovering sets,” inProc. IEEE Int. Symp. Inform. Theory (ISIT), Hon-
olulu, HI, USA, June. 2014, pp. 691-695.

[11] A. Wang, Z. Zhang, and M. Liu, “Achieving Arbitrary Locality and
Availability in Binary Codes,”in arXiv preprint arXiv: 1501.04264, 2015.

[12] I. Tamo, A. Barg, “A family of optimal locally recoverable codes,”IEEE
Trans. Inf. Theory, vol. 60, no. 80, pp. 4661-4676, Aug. 2014.

[13] W. Song, S. H. Dau, C. Yuen, and T. J. Li, “Optimal locallyrepairable
linear codes,”IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 1019-1036,
May 2014.

[14] N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with locality for two
erasures,” inProc. IEEE Int. Symp. Inform. Theory (ISIT), Honolulu, HI,
USA, June. 2014, pp. 1962-1966.

[15] W. Song and C. Yuen, “Locally Repairable Codes with Functional Repair
and Multiple Erasure Tolerance,” http://arxiv.org/abs/1507.02796, 2015

http://arxiv.org/abs/1409.3900
http://arxiv.org/abs/1507.02796

	I Introduction
	II Preliminary
	III Code Construction
	IV Proof of Theorem ??
	V Conclusions
	References

