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Abstract—In this paper q-ary Raptor codes under ML de-
coding are considered. An upper bound on the probability of
decoding failure is derived using the weight enumerator of the
outer code, or its expected weight enumerator if the outer code
is drawn randomly from some ensemble of codes. The bound is
shown to be tight by means of simulations. This bound provides
a new insight into Raptor codes since it shows how Raptor
codes can be analyzed similarly to a classical fixed-rate serial
concatenation.

I. INTRODUCTION

Fountain codes [1] are a class of erasure codes that have the
property of being rateless. Thus, they are potentially able to
generate an endless amount of encoded (or output) symbols.
This property makes them suitable for application in situations
where the channel erasure rate is not a priori known. The first
class of practical fountain codes, Luby Transform (LT) codes,
was introduced in [2] together with an iterative decoding
algorithm that achieves a good performance when the number
of input symbols k is large. In [2] it was shown how in order
to achieve a low probability of decoding error, the encoding
and iterative decoding cost per output symbol is O (ln(k)).

Raptor codes were introduced in [3] and outperform LT
codes in many aspects. They consist of a serial concatenation
of an outer code C (or precode) with an inner LT code.
On erasure channels, this construction allows relaxing the
design of the LT code, requiring only the recovery of a
fraction 1 − γ of the input symbols with γ small. This can
be achieved with linear encoding complexity and also linear
decoding complexity using iterative decoding. The outer code
is responsible for recovering the remaining fraction of input
symbols, γ. If the outer code C is linear-time encodable
and decodable then the Raptor code has linear encoding and
iterative decoding complexity over erasure channels.

Most of the existing works on LT and Raptor codes consider
iterative decoding and assume large input block lengths (k at
least in the order of a few tens of thousands). However, in
practice, smaller values of k are more commonly used. For
example, for the binary Raptor codes standardized in [4] and
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[5] the recommended values of k range from 1024 to 8192.
For these input block lengths, iterative decoding performance
degrades considerably. In this context, a different decoding
algorithm is adopted that is an efficient maximum likelihood
(ML) decoder, in the form of inactivation decoding [6].

An inactivation decoder solves a system of equations in
several stages. First a set of variables is declared inactive. Next
a system of equations involving the set of inactive variables
needs to be solved, for example using Gaussian elimination.
Finally, once the value of the inactive variables is known, all
other variables are recovered using iterative decoding.

Recently there have been several works addressing the
complexity of inactivation decoding for Raptor and LT codes
[7]–[10]. The probability of decoding failure of LT and Raptor
codes under ML decoding has also been subject of study
in several works. In [11] upper and lower bounds to the
intermediate symbol erasure rate were derived for LT codes
and Raptor codes with outer codes in which every element
of the parity check matrix is independent and identically
distributed (i.i.d.) Bernoulli random variables with parameter
p. This work was extended in [12], where lower an upper
bounds to the performance of LT codes under ML decoding
were derived. A further extension was presented in [13], where
an approximation to the performance of Raptor codes under
ML decoding is derived under the assumption that the number
of erasures correctable by the outer code is small. Hence,
this approximation holds only if the rate of the outer code is
sufficiently high. In [14] it was shown by means of simulations
how the error probability of q-ary Raptor codes is very close to
that of linear random fountain codes. In [15] upper and lower
bounds to the probability of decoding failure of Raptor codes
were derived. The outer codes considered in [15] are binary
linear random codes with a systematic encoder. Recently,
ensembles of Raptor codes with linear random outer codes
were also studied in a fixed-rate setting in [16], [17]. Although
a number of works has studied the probability of decoding
failure of Raptor codes, to the best of the knowledge of the
authors, up to now the results hold only for specific binary
outer codes (see [11], [15]–[17]).

In this paper an upper bound on the probability of decoding
failure of Raptor codes is derived, based on the weight enumer-
ator of their outer codes. The bound is extended to ensembles
of Raptor codes where the outer code is drawn randomly from
an ensemble. In this case, it is necessary to know the average



weight enumerator for the outer code ensemble. By means of
simulations, the derived bound is shown to be tight, specially
in the error floor region, for Raptor codes with Hamming and
linear random outer codes. In contrast to [11], [15]–[17] not
only binary Raptor codes are considered, but also q-ary Raptor
codes. The bounds presented in this paper can be seen as an
extension of the upper bound in [12] to Raptor codes.

The rest of the paper is organized as follows. In Section II
some preliminary definitions are presented. Section III presents
the upper bounds on the probability of decoding failure for the
case in which the outer code is deterministic. In Section IV
these bounds are extended to the case in which the outer code
is drawn from a linear parity-check based ensemble. Numerical
results are presented in Section V. Section VI presents the
conclusions of our work.

II. PRELIMINARIES

We consider Raptor codes constructed over Fq with
an (h, k) outer linear block code C. We shall denote
the k input (or source) symbols of a Raptor code as
u = (u1, u2, . . . , uk). The elements of u belong to Fq . Out
of the k input symbols, the outer code generates a vector of
h intermediate symbols v = (v1, v2, . . . , vh) ∈ C. Denoting
by Go the employed generator matrix of the outer code, of
dimension (k × h) and with elements in Fq , the intermediate
symbols can be expressed as

v = uGo.

These intermediate symbols serve as input to an LT encoder,
which can generate an unlimited number of output symbols,
c = (c1, c2, . . . , cn), where n can grow unbounded. Again, the
elements of c belong to Fq . For any n the output symbols can
be expressed as

c = vGLT = uGoGLT

where GLT is an (h × n) matrix whose elements belong
to Fq . Each column of GLT is associated with ci. More
specifically, each column of GLT is generated by first se-
lecting an output degree d according to the degree distribu-
tion Ω = (Ω1,Ω2, . . . ,Ωdmax), and then selecting d different
indexes uniformly at random between 1 and h. Finally, the
elements of the column corresponding to these indexes are
drawn independently and uniformly at random from Fq\{0},
while all other elements of the column are set to zero.

The output symbols c are transmitted over a q-ary erasure
channel (q-EC) at the output of which each transmitted symbol
is either correctly received or erased.1 We denote by m
the number of output symbols collected by the receiver of
interest, and we express it as m = k + δ. Let us denote by
y = (y1, y2, . . . , ym) the m received output symbols. Denot-
ing by I = {i1, i2, . . . , im} the set of indices corresponding
to the m non-erased symbols, we have

yj = cij .

1The results developed in this paper remain valid regardless the statistic of
the erasures introduced by the channel.

An ML decoder (for example, an inactivation decoder) pro-
ceeds by solving the linear system of equations

y = uG̃

where

G̃ = GoG̃LT (1)

with G̃LT given by the m columns of GLT with indices in I.
Given a block code C of length h we shall denote its weight

enumerator as A = {A0, A1 . . . Ah}, where Ai denotes the
multiplicity of codewords of weight i. Similarly, given an en-
semble of block codes, all with the same length h, along with
a probability distribution on the codes in the ensmble, we shall
denote its average weight enumerator as A = {A0,A1 . . .Ah},
where Ai denotes the expected multiplicity of codewords of
weight i of a code drawn randomly from the ensemble.

III. UPPER BOUNDS ON THE ERROR PROBABILITY

The following theorem establishes an upper bound on the
probability of decoding failure PF under ML decoding of a
Raptor code constructed over Fq as a function of the receiver
overhead δ.

Theorem 1. Consider a Raptor code constructed over Fq with
an (h, k) outer code C characterized by a weight enumerator
A, and an inner LT code with output degree distribution Ω.
The probability of decoding failure under optimum erasure
decoding given that m = k + δ output symbols have been
collected by the receiver can be upper bounded as

PF ≤
h∑
l=1

Alπ
k+δ
l

where πl is the probability that a generic output symbol is
equal to 0 given that the vector v of intermediate symbols has
Hamming weight l. The expression of πl is [12]

πl =
1

q
+
q − 1

q

dmax∑
j=1

Ωj
Kj(l;h, q)
Kj(0;h, q)

(2)

where Kj(l;h, q) is the Krawtchouk polynomial of degree j
with parameters h and q.2

Proof. An optimum (e.g. inactivation) decoder solves the
linear system of equations in (1). Decoding fails whenever the
system does not admit a unique solution, that is, if and only
if rank(G̃) < k, i.e. if ∃u ∈ Fkq\{0} s.t. uG̃ = 0. Consider
two vectors u ∈ Fkq ,v ∈ Fhq . Let us define Eu as the
event uGoG̃LT = 0. Similarly, we define Ev as the event
vG̃LT = 0. We have

PF = Pr

 ⋃
u∈Fk

q\{0}

Eu

 = Pr

 ⋃
v∈C\{0}

Ev

 (3)

2The Krawtchouk polynomial of degree j with parameters n and q is
defined as [18]

Kk(x;n, q) =

k∑
j=0

(−1)j
(x
j

)(n− x

k − j

)
(q − 1)k−j .



where we made use of the fact that due to linearity, the all
zero intermediate word is only generated by the all zero input
vector.

Developing (3) we have

PF = Pr

{
h⋃
l=1

⋃
v∈Cl

Ev

}
(4)

where, by definition

Cl = {v ∈ C : wH(v) = l}

is the set of codewords in C of Hamming weight l.
Let L be a discrete random variable representing the

Hamming weight of vector v ∈ C. Moreover, let J and
I be discrete random variables representing the number of
intermediate symbols which are linearly combined to generate
the generic output symbol y, and the number of non-zero such
intermediate symbols, respectively. Note that I ≤ L. We can
upper bound (4) as

PF ≤
h∑
l=1

Pr

{ ⋃
v∈Cl

Ev

}
≤

h∑
l=1

Al Pr {Ev|L = l} . (5)

Observing that the output symbols are independent of each
other, we have

Pr {Ev|L = l} = πk+δl

where πl = Pr{y = 0|L = l}. An expression for πl may be
obtained observing that

πl =

dmax∑
j=1

Pr{y = 0|L = l, J = j}Pr{J = j|L = l}

(a)
=

dmax∑
j=1

Ωj Pr{y = 0|L = l, J = j}

(b)
=

dmax∑
j=1

Ωj

min{j,l}∑
i=0

Pr{y = 0|I = i}Pr{I = i|L = l, J = j}

where equality ‘(a)’ is due to Pr{J = j|L = l} = Pr{J = j}
= Ωj and equality ‘(b)’ to Pr{y = 0|L = l, J = j, I = i} =
Pr{y = 0|I = i}. Letting ϑi,l,j = Pr{I = i|L = l, J = j},
since the j intermediate symbols are chosen uniformly at
random by the LT encoder we have

ϑi,l,j =

(
l
i

)(
h−l
j−i
)(

h
j

) . (6)

Let us denote Pr{y = 0|I = i} by ϕi and let us observe that,
due to the elements of G̃ being i.i.d. and uniformly drawn in
Fq \ {0}, on invoking Lemma 1 in the Appendix3 we have

ϕi =
1

q

(
1 +

(−1)i

(q − 1)i−1

)
. (7)

3The proof in the Appendix is only valid for fields with characteristic 2,
the case of most interest for practical purposes. The proof of the general case
is a trivial extension of Lemma 1 in the Appendix.

We conclude that πl is given by

πl =

dmax∑
j=1

Ωj

min{j,l}∑
i=0

ϑi,l,j ϕi

where ϑi,l,j and ϕi are given by (6) and (7), respectively.
Expanding this expression and rewriting it using

Krawtchouk polynomials and making use of the Chu-
Vandermonde identity, one obtains (2). This completes the
proof.

The following theorem makes the bound in Theorem 1
tighter for q > 2. It is equivalent to Theorem 1 for q = 2.

Theorem 2. Consider a Raptor code constructed over Fq with
an (h, k) outer code C characterized by a weight enumerator
A, and an inner LT with output degree distribution Ω. The
probability of decoding failure under optimum erasure decod-
ing given that m = k + δ output symbols have been collected
by the receiver can be upper bounded as

PF ≤
h∑
l=1

Al
q − 1

πk+δl

Proof. The bound (5) can be tightened by a factor q − 1 ex-
ploiting the fact that for a linear block code C constructed over
Fq , if c is a codeword, αc is also a codeword, ∀α ∈ Fq\{0}
[19].

The upper bound in Theorem 2 also applies to LT codes.
In that case, Al is simply the total number of sequences of
Hamming weight l and length k,

Al =

(
k

l

)
(q − 1)l−1.

The upper bound obtained for LT codes coincides with the
bound in [12] (Theorem 1).

IV. CASE OF RANDOM OUTER CODES FROM LINEAR
PARITY-CHECK BASED ENSEMBLES

Both Theorem 1 and Theorem 2 apply to the case of a
specific outer code. Next we extend these results to the case
of a random outer code drawn from an ensemble of codes.
Specifically, we consider a parity-check based ensemble of
outer codes, denoted by C o, defined by a random matrix of
size (h− k)×h whose elements belong to Fq . A linear block
code of length h belongs to C o if and only if at least one
of the instances of the random matrix is a valid parity-check
matrix for it. Moreover, the probability measure of each code
in the ensemble is the sum of the probabilities of all instances
of the random matrix which are valid parity-check matrices
for that code. Note that all codes in C o are linear, have length
h, and have dimension kC ≥ k. In the following we use the
expression “Raptor code ensemble” to refer to the set of Raptor
codes obtained by concatenating an outer code belonging to
the ensemble C o with an LT encoder having distribution Ω.
We shall denote this ensemble as (C o,Ω).

Theorem 3. Consider a Raptor code ensemble (C o,Ω) and
let A = {A0,A1, . . . ,Ah} be the expected weight enumerator



of a code C that is randomly drawn from C o, i.e., let
Al = EC o [Al(C)] for all l ∈ {0, 1, . . . , h}. Let

P̄F = EC o [PF(C)]

be the average probability of decoding failure of the Raptor
code obtained by concatenating an instance of C with the
LT encoder, under optimum erasure decoding and given that
m = k + δ output symbols have been collected by the receiver.
Then

P̄F ≤
h∑
l=1

Al
q − 1

πk+δl .

Proof. Due to Theorem 2 we may write

P̄F ≤ EC o

[
h∑
l=1

Al(C)
q − 1

πkC+δl

]
. (8)

For all outer codes C ∈ C o we have kC ≥ k. Since πl ≤ 1
we can write

πkC+δl ≤ πk+δl

which allows us to upper bound (8) as

P̄F ≤ EC o

[
h∑
l=1

Al(C)
q − 1

πk+δl

]
=

h∑
l=1

Al
q − 1

πk+δl

where the last equality follows from linearity of expectation.

V. NUMERICAL RESULTS

All results presented in this section use the LT output degree
distribution employed by standard R10 Raptor codes, [4], [5],

Ω(x) =

dmax∑
j=1

Ωjx
j

= 0.0098x + 0.4590x2 + 0.2110x3 + 0.1134x4

+ 0.1113x10 + 0.0799x11 + 0.0156x40. (9)

A. Binary Raptor Codes with Hamming Outer Codes

In this section we consider binary Raptor codes with
(deterministically known) Hamming outer codes. The weight
enumerator of a binary Hamming code of length h = 2t − 1
and dimension k = h − t can be derived easily using the
recursion

(i+ 1)Ai+1 +Ai + (h− i+ 1)Ai−1 =

(
h

i

)
with A0 = 1 and A1 = 0 [18]. The weight distribution ob-
tained from this recursion can then incorporated in Theorem 1
to derive the corresponding upper bound on the probability of
Raptor decoding failure under optimum decoding.

Figure 1 shows the decoding failure rate for a binary Raptor
code using a (63, 57) binary Hamming outer code as a function
of the absolute overhead, δ. The upper bound established in
Theorem 1 is also shown. In order to obtain the values of
failure rate, for each δ value Monte Carlo simulations were run
until 200 errors were collected using inactivation decoding. It
can be observed how the upper bound is tight.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
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100

δ

P F

simulation
upper bound

Fig. 1. Probability of decoding failure PF versus the absolute overhead for
a binary Raptor code with a (63, 57) Hamming outer code. The solid line
denotes the upper bound on the probability of decoding failure expressed by
Theorem 1. The markers denote simulation results.

B. Linear Random Outer Code

In this subsection, we consider a (C o,Ω) Raptor code
ensemble constructed over Fq , where the LT distribution Ω
is the one defined in (9) and where C o is the uniform parity-
check ensemble, with parity-check matrix of size (h− k)× h
and characterized by i.i.d. entries with uniform distribution in
Fq . The expected multiplicity of codewords of weight l for an
outer code drawn randomly in C o according to the described
procedure is known to be

Al =

(
h

l

)
q−(h−k)(q − 1)l.

In order to obtain the experimental values of decoding
failure rate, 6000 different outer codes were generated. For
each outer code and for each overhead value 103 inactivation
decoding attempts were carried out. The average failure rate
was calculated by averaging the failure rates of the individual
Raptor codes. In order to select the outer code an (h− k)×h
parity check matrix was selected at random by generating each
of its elements according to a uniform distribution in Fq .

In Figure 2 we show simulation results for k = 64 and
h = 70. Two different (C o,Ω) Raptor code ensembles were
considered, one constructed over F2 and one constructed over
F4. We can observe how in both cases the bounds hold and
are tight except for very small values of δ.

VI. CONCLUSIONS

In this paper we have consider Raptor codes under ML
decoding. We have derived an upper bound on the probability
of decoding failure of Raptor codes with generic q-ary outer
codes. This bound is general and only requires the knowledge
of the weight enumerator of the outer code. The bound also
applies to ensembles of Raptor codes where the outer code is
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Fig. 2. Expected probability of decoding failure P̄F vs absolute overhead
for Raptor code ensembles where the outer code is drawn randomly from
the uniform parity-check ensemble. The solid and dashed lines denote the
upper bounds on the average probability of decoding failure for the ensembles
constructed over F2 and F4 respectively. The markers denote simulation
results.

randomly selected from an ensemble. The bound is shown to
be tight, specially in the error floor, by means of simulations.

APPENDIX

The following lemma is used in the proof of Theorem 1.

Lemma 1. Let X1, X2 ... Xl be discrete i.i.d random variables
uniformly distributed over F2m\{0}. Then

Pr{X1 +X2 + . . .+Xl = 0} =
1

q

(
1 +

(−1)i

(q − 1)i−1

)
where q = 2m.

Proof. Observe that the additive group of F2m is isomorphic
to the vector space Zm2 . Thus, we may let X1, X2 ... Xl be
i.i.d random variables with uniform probability mass function
over the vector space Zm2 \{0}.

Let us introduce the auxiliary random variable

W := X1 +X2 + . . .+Xl

and let us denote by PW (w) and by PX(x) the probability
mass functions of W and Xi, respectively, where

PX(x) =

{
0 if x = 0
1
q−1 otherwise.

Due to independence we have

PW = PX ∗ PX ∗ . . . ∗ PX

which, taking the m-dimensional two-points discrete Fourier
transform (DFT) J {·} of both sides, yields

J {PW (w)} = (J {PX(x)})l .

Next, since

P̂X(t) := J {PX(x)} =

{
1 if t = 0
−1
q−1 otherwise

we have

P̂W (t) := J {PW (w)} =

{
1 if t = 0
(−1)l
(q−1)l otherwise.

We are interested in PW (0) whose expression corresponds to

PW (0) =
1

q

∑
t

P̂W (t) =
1

q
+

1

q
(q − 1)

(−1)l

(q − 1)l

from which the statement follows.

The result in this lemma appears in [12]. However, the proof
in [12] uses a different approach based on a known result on
the number of closed walks of length l in a complete graph
of size q from a fixed but arbitrary vertex back to itself.
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