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Constant Envelope Pilot-Based Low-Complexity
CFO Estimation in Massive MU-MIMO Systems

Sudarshan Mukherjee and Saif Khan Mohammed

Abstract—In this paper we consider a constant envelope pilot
signal based carrier frequency offset (CFO) estimation in massive
multiple-input multiple-output (MIMO) systems. The propo sed
algorithm performs spatial averaging on the periodogram ofthe
received pilots across the base station (BS) antennas. Our study
reveals that the proposed algorithm has complexity only linear
in M (the number of BS antennas). Further our analysis and
numerical simulations also reveal that with fixed number of users
and a fixed pilot length, the minimum required transmit pilot
power decreases as 1√

M
with increasing M , while maintaining a

fixed desired mean squared error (MSE) of CFO estimation.

I. I NTRODUCTION

Massive multiple-input multiple-output (MIMO)/large scale
antenna systems (LSAS) has been envisaged as one of the
key next generation wireless technologies for developing in-
tegrated5G communication networks with high energy and
spectral efficiency and low latency [1], [2]. Massive MIMO
is a form of multi-user (MU)-MIMO, where the base station
(BS) is equipped with a large antenna array (of the order of
hundreds) serving only a few tens of user terminals (UTs) in
the same time-frequency resource [3]. Increasing the number
of BS antennas opens up more available degrees of freedom,
resulting in suppression of the multi-user interference (MUI),
and providing large array gain [4], [5]. These results are
however valid only for coherent multi-user detection. There-
fore estimation and compensation of carrier frequency offsets
(CFOs) of different UTs at the BS is important for practical
implementation of massive MIMO systems.

Over the past decade, substantial amount of work has
already been done on CFO estimation in conventional small
scale MIMO systems [6]–[10]. These existing results however
are not suitable for implementation in massive MIMO systems
due to prohibitive increase in their complexity with increasing
number of UTs and also with increasing number of BS anten-
nas. Recently in [11], the authors studied CFO estimation in
massive MIMO systems and have proposed an approximation
to the joint maximum likelihood (ML) estimation for the
CFOs of all UTs. However this approximation proposed in
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[11] requires a multi-dimensional grid search, which has high
complexity for large number of UTs (as is the case for multi-
user massive MIMO systems). Further [11] only addresses
CFO estimation in frequency-flat fading channel. Subsequently
in [12], the authors propose a low-complexity correlation-
based CFO estimator for massive MIMO frequency-selective
channel. However the CFO estimator proposed in [12] relies on
pilot signals having high peak-to-average-power ratio (PAPR).
In practice, high PAPR signals tend to get distorted due to
channel non-linearity (e.g. non-linear power amplifiers inthe
transmitter) and therefore it is desirable that the pilots used
for CFO estimation have low-PAPR. To this end, in this paper,
we propose a low-complexity technique for CFO estimation,
that uses constant envelope pilots.

CONTRIBUTIONS: In this paper, we propose a spatially
averaged periodogram based method for CFO estimation in
a massive MU-MIMO frequency-selective channel. The con-
tributions of our work presented in this paper are as follows:
(i) we propose a special set of constant envelope (CE) uplink
pilots and devise an algorithm for CFO estimation at the BS,
using spatially averaged periodogram1; (ii) analysis of the
proposed algorithm shows that the complexity of the proposed
CFO estimator increases only linearly with increasing number
of BS antennas,M . Also the complexity of the proposed esti-
mator increases only linearly with increasing number of UTs
(K), which is a significant improvement over the exponential
complexity of the joint ML estimator in [11]; (iii) our analysis
and numerical simulations also show that with fixed pilot
length and fixedK, the minimum required pilot transmission
power to achieve a fixed desired mean squared error (MSE)
of CFO estimation can be reduced approximately by1.5 dB
with every doubling inM (whenM is sufficiently large). Note
that this 1√

M
decrease is also observed in the CFO estimator

in [12], except the fact that the CFO estimator in [12] requires
high PAPR pilots, while the proposed CFO estimator requires
low PAPR CE pilots, which are more practical. Further it is
also observed that the CFO estimator proposed in this paper
is more energy efficient than the CFO estimator presented in
[12]. [Notations: E denotes the expectation operator and(.)∗

denotes the complex conjugate operator.]

1Periodogram of the received pilot signal is computed at eachBS antenna,
which are then averaged across all BS antennas.
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Fig. 1 The communication strategy: CFO Estimation and Compensa-
tion and Data Communication. HereNc is the duration of coherence
interval and the UL slot for data communication isNu channel
uses long. The downlink slot for data communication is therefore
of (Nc −Nu) channel uses.

II. SYSTEM MODEL

Let us consider a single-cell time division duplexed (TDD)
massive MIMO BS, equipped withM antennas, servingK
single-antenna UTs in the same time-frequency resource. Since
the uplink data transmitted by the UTs are coherently detected
at the BS, synchronization of the carrier frequency betweenthe
BS and the UTs is required for coherent detection. To this end,
we propose to perform CFO estimation at the BS in a special
coherence slot ofNc channel uses (uplink (UL) plus downlink
(DL)) prior to the UL data communication (see Fig. 1). In this
special slot, the UTs transmit pilots, which are used by the BS
to perform CFO estimation. After the special coherence slot
for CFO estimation, we have the data communication phase
wherein the UTs transmit channel estimation pilots followed
by the UL data. During this data transmission phase, the
BS performs CFO compensation based on the acquired CFO
estimates in the previous special coherence slot, followedby
channel estimation and coherent multi-user detection. Thespe-
cial CFO estimation slot can be repeated every few coherence
intervals, depending on how fast the CFOs change.

In [12] the proposed CFO estimation technique required
temporally separated high PAPR pilot sequences. Since high
PAPR sequences are susceptible to channel distortions (e.g.
non-linearity of the power amplifiers), thus resulting in de-
graded performance of the CFO estimator, it is desired to use
a low PAPR sequence for CFO estimation in massive MIMO
systems. In this paper, we propose constant envelope (CE) low-
PAPR pilots, which are not separated in time. Specifically with
K UTs, thek-th UT transmits the CE pilotpk[t] = ej

2π
K

(k−1)t,
k = 1, 2, . . . ,K andt = 0, 1, 2, . . . , N − 1, whereN ≤ Nc is
the length of the pilot sequence. Assuming the channel from
each UT to the BS to be frequency-selective withL memory
taps, the pilot signal received at them-th BS antenna at time
t is given by2

2A copy of the last(L−1) pilot symbols, i.e.,{pk[N−L+1], · · · , pk[N−
1]} is transmitted before{pk[0], pk[1], · · · , pk[N − 1]}.

rm[t] =
√
pu

K∑

q=1

L−1∑

l=0

hmq[l] e
j[ 2π

K
(q−1)(t−l)+ωqt] + nm[t]

=
√
pu

K∑

q=1

Hmq e
j[ 2π

K
(q−1)+ωq ]t + nm[t], (1)

whereHmq
∆
=

L−1∑
l=0

hmq[l] e
−j 2π

K
(q−1)l andt = 0, 1, 2, . . . , N−

1. Herehmk[l] ∼ CN (0, σ2
hkl) is the channel gain coefficient

from the single-antenna of thek-th UT to them-th antenna
of the BS at thel-th channel tap.{σ2

hkl}, (l = 0, 1, . . . , L −
1; k = 1, 2, . . . ,K) model the power delay profile (PDP) of
the channel which is perfectly known at the BS. Alsopu is
the average power transmitted by each UT. Note thatωq is the
CFO corresponding to theq-th UT andnm[t] ∼ CN (0, σ2) is
the complex baseband circular symmetric AWGN at the BS.
Therefore from (1) it is clear that the signal received at the
BS is simply a sum of complex sinusoids with additive noise.
Specifically the frequency of the sinusoid received from the
k-th UT is 2π

K (k − 1) + ωk.

A. Low-complexity CFO Estimation using Spatially Averaged
Periodogram

An intuitive appealing solution to the CFO estimation
problem for the above mentioned received pilots is to first
obtain an estimate of the frequency of the sinusoid received
at the BS from each UT. Since the true frequency of this
received sinusoid from thek-th UT is 2π

K (k − 1) + ωk (see
(1)), an estimate of the CFO of thek-th UT (i.e. ω̂k) is
simply the difference between the estimate of the received
sinusoid frequency from thek-th UT and 2π

K (k − 1). It is
known that the non-linear least squares (NLS) method is
the maximum likelihood joint estimator of theK received
frequencies. However it has prohibitive complexity since the
objective likelihood function has to be numerically maximized
using multi-dimensional grid search in aK-dimensional space
(see equation (12) in [11]).

An attractive low-complexity alternative to the NLS is the
periodogram method, where we simply compute the peri-
odogram of the received signal and choose the location of the
largestK peaks as the estimate of theK frequencies received
at the BS from theK UTs (this reduces the search space
from K-dimension to single dimension). However since the
received signal power at each BS antenna is expected to be
small, we firstly perform spatial averaging of the periodogram
computed at each of theM BS antennas.

If all the CFOs are guaranteed to lie in the range
[−∆max,∆max] (where∆max is the maximum possible CFO
for any UT), then the range of the received sinusoid frequency
from the k-th UT would lie in the interval[ 2πK (k − 1) −



∆max,
2π
K (k − 1) + ∆max]. Since∆max ≪ π

K in practice3,
these intervals are non-overlapping. Hence instead of comput-
ing the periodogram over a fine grid in the entire interval
[−π, π], we compute the periodogram only in the interval
[ 2πK (k − 1)−∆max,

2π
K (k − 1) + ∆max], ∀ k = 1, 2, . . . ,K.

For the k-th UT, the spatially averaged periodogram in the
interval [ 2πK (k − 1)−∆max,

2π
K (k − 1) + ∆max] is given by

Φk(Ω) =
1

MN

M∑

m=1

∣∣∣
N−1∑

t=0

rm[t] e−j[ 2π
K

(k−1)+Ω]t
∣∣∣
2

, (2)

whereΩ ∈ [−∆max,∆max]. The CFO estimate for thek-th UT
is then given by

ω̂k,0
∆
= arg max

Ω∈[−∆max,∆max]
Φk(Ω). (3)

In (3), the interval [−∆max,∆max] is not discrete and
therefore in practice, we divide the range ofΩ into a set
of discrete frequencies and compute the periodogram only
at those specific frequencies. The proposed set of discrete
frequencies is given byΞ

∆
= {Ω(i)

∆
= 2π

Nα i
∣∣ |i| ≤ T0},

whereT0
∆
= ⌈∆max

2π Nα⌉. Since the periodogram has aO(1/N)
resolution, we must haveα > 1. Therefore the proposed
discrete CFO estimator for thek-th UT is given by

ω̂k = arg max
Ω(i)∈Ξ

Φk(Ω(i)). (4)

The above proposed algorithm for CFO estimation is sum-
marized in Algorithm 1 at the bottom of the page.

3 For a massive MIMO system with carrier frequencyfc = 2 GHz, commu-
nication bandwidth1 MHz and maximum frequency offset0.1 PPM offc [13],
[14], the maximum CFO is given by2π×2×109×0.1×10−6/106 = π

2500
.

Since in massive MIMO system, the number of UTsK is only of the order
of tens, we have π

2500
≪ π

K
. (A detailed discussion on the range and values

of CFOs in massive MIMO system is provided in Remark 1 in [12].)

Algorithm 1: CFO Estimation for thek-th UT Using
Spatially Averaged Periodogram

INPUT: rm[t], t = 0, 1, . . . , N − 1 andm = 1, 2, . . . ,M ;
Ξ = {Ω(i) = 2π

Nα i
∣∣ |i| ≤ T0}, where

T0 = ⌈∆max
2π Nα⌉.

OUTPUT: ω̂k (CFO Estimate of thek-th UT).

ω̂k = arg max
Ω(i)∈Ξ

Φk(Ω(i)), (5)

where

Φk(Ω(i)) =
1

MN

M∑

m=1

∣∣∣
N−1∑

t=0

rm[t] e−j[ 2π
K

(k−1)+Ω(i)]t
∣∣∣
2

. (6)

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10
−7

α →

M
S
E

o
f
C

F
O

E
s
t
im

a
t
io

n

 

 

N = 1000

N = 800

Fig. 2 Plot of the variation in MSE of CFO estimation withα for
a fixedM = 80, K = 10 and γ = −10 dB, with N = 800, 1000
respectively.

Remark 1. (Optimal value of α) From (5) and (6) it is clear
that asα increases, the resolution of the values ofΩ(i) would
also increase, which in turn would improve the accuracy of
the CFO estimate. However it is known that even with the
NLS method only anO(1/N3/2) accuracy can be achieved [6].
Therefore it is expected that the improvement in the proposed
CFO estimate with increasingα would become negligible
whenα ≥ 3/2.

The above conclusion is verified from Fig. 2. In Fig. 2
we plot the achievable ergodic MSE (numerically computed)
versusα for a fixed SNRγ

∆
= pu

σ2 = −10 dB, M = 80,
K = 10 andN = 800, 1000 respectively. The study shows that
in the regionα < 3/2, the MSE performance improves rapidly
with increasingα. However whenα ≥ 3/2, the decrease in
the MSE becomes negligible irrespective of the value ofN .
Since the complexity would increase with increasingα (see
Algorithm 1), it therefore appears thatα = 3/2 achieves a
good trade-off between the MSE performance and complexity
of the proposed CFO estimator.

Remark 2. (Computational Complexity) From (6) we note that
the total number of operations required to computeΦk(Ω(i))
is O(MN). From (5) it is clear that for each user we need
to computeΦk(Ω(i)) for i = −T0,−T0 + 1, . . . , T0, where
T0 = ⌈∆max

2π N3/2⌉. Hence the total complexity of the proposed
CFO estimator isO(NKMN3/2), i.e., a per-channel use
complexity of O(KMN3/2). Note that the proposed CFO
estimator has a complexity only linear inM , i.e., the computa-
tional complexity increases linearly withM which is same as
the complexity of the low-complexity high-PAPR pilot-based
CFO estimator presented in [12]. Further we also observe
that the complexity of the proposed estimator increases only
linearly with K, which is significantly better compared to the
exponential increase in complexity observed in the maximum
likelihood joint CFO estimator in [11].



III. I MPACT OF THE NUMBER OFBS ANTENNAS ON THE

CFO ESTIMATION ERROR

In the following we analyze the impact of the number of BS
antennas,M , on the CFO estimation error for a fixed number
of UTs, K and a fixed length of pilot sequenceN . We start
with studying the expression in the R.H.S. of (6) :

1

pu
Φk(Ω(i)) =

1

MNpu

M∑

m=1

∣∣∣
N−1∑

t=0

rm[t] e−j[ 2π
K

(k−1)+Ω(i)] t
∣∣∣
2

(a)
=

1

MNpu

M∑

m=1

∣∣∣
N−1∑

t=0

( K∑

q=1

√
puHmqe

jωqki t + ñmki[t]
)∣∣∣

2

, (7)

where ωqki
∆
= 2π

K (q − k) + (ωq − Ω(i)). Here step(a)

follows from the expression ofrm[t] in (1). Also ñmki[t]
∆
=

nm[t]e−j[ 2π
K

(k−1)+Ω(i)] t ∼ CN (0, σ2), sincenm[t] is circular
symmetric. Expanding the expression in the R.H.S. of (7), we
further have

1

pu
Φk(Ω(i))

(a)
=

1

Mpu

M∑

m=1

∣∣∣
√
pu

K∑

q=1

HmqAk(ωq, Ω(i)) + wmki

∣∣∣
2

=
1

M

M∑

m=1

|wmki|2
pu

︸ ︷︷ ︸
∆
=T1

+
2

M
ℜ
[ M∑

m=1

w∗
mki√
pu

K∑

q=1

HmqAk(ωq, Ω(i))
]

︸ ︷︷ ︸
∆
=T2

+
1

M

M∑

m=1

K∑

q1=1

K∑

q2=1

Hmq1H
∗
mq2

Ak(ωq1 , Ω(i))A∗
k(ωq2 , Ω(i))

︸ ︷︷ ︸
∆
=T3

, (8)

where in step(a) we havewmki
∆
= 1√

N

N−1∑
t=0

ñmki[t] ∼
CN (0, σ2) (from the central limit theorem)

and Ak(ωq, Ω(i))
∆
= 1√

N

N−1∑
t=0

ejωqkit =

1√
N

sin(Nωqki/2)
sin(ωqki/2)

e−j
(

N−1

2

)
ωqki . It is expected that the

mean squared error (MSE) of CFO estimation, defined as
E[(ω̂k − ωk)

2] would depend on the variance ofΦk(Ω(i)),
which is nothing but the sum of the variances of the terms
T1, T2 and T3 in (8) (sinceTi − E[Ti], i = 1, 2, 3 are all
uncorrelated). The mean and variances of the termsT1, T2

and T3 are summarized in Table I. Using the expressions
in Table I we now study the impact of the number of BS
antennas,M on the MSE of CFO estimation.

Remark 3. (Impact of the Number of BS Antennas) From
Table I note that the variances of all three terms,T1, T2

andT3 decrease with the increasing number of BS antennas,
M , provided all other system parameters (the pilot lengthN ,
number of UTsK and transmit SNRγ) are fixed. From (8) it
is also clear that this reduction in MSE is due to the spatial
averaging of the periodogram. At the same time, decreasingγ
(fixedM , N , K) would however increase the MSE. Therefore

we are interested in finding the rate at whichγ can be reduced
with increasingM (fixedN andK) while maintaining a fixed
desired MSE of the proposed CFO estimator. From Table I
it is clear that the variance ofT1 is proportional to 1

Mγ2 and
the variance ofT2 is ∝ 1

Mγ (fixed N andK). Note that the
variance ofT3 does not depend onγ. Therefore it appears that
with increasingM and (fixedN , K) and a fixed desired MSE
of CFO estimation we can reduceγ no faster than 1√

M
, i.e.,

for every doubling inM , γ can be reduced approximately by
1.5 dB whenM is sufficiently large. This conjecture has been
verified through exhaustive simulations (see Fig. 3).

IV. N UMERICAL ANALYSIS AND DISCUSSIONS

In this section through Monte-Carlo simulations, we present
a comparative study of the performance of the proposed low-
PAPR (constant envelope) pilot based CFO estimator with the
high-PAPR pilot-based CFO estimation technique presentedin
[12]. For both estimators, we have used the following values
for system parameters: operating carrier frequencyfc = 2
GHz, communication bandwidthBw = 1 MHz, maximum
delay spread of the channelTd = 5µs and the channel
coherence timeTc = 1 ms. The maximum CFO is taken to
be 0.1 PPM of fc (see also footnote 3). Therefore we have
∆max = 2π × 0.1 × 10−6 × fc

Bw
= π

2500 . The CFO from each
UT is modelled as a uniformly distributed random variable in
the interval [−∆max,∆max]. Also, duration of the coherence
intervalNc = TcBw = 1000, L = TdBw = 5, number of UTs
K = 10 and the length of the pilot sequenceN ≤ Nc. Further
the PDP is assumed to be the same for each UT and is given
by σ2

hkl = 1/L (l = 0, 1, . . . , L− 1 andk = 1, 2, . . . ,K).
In Fig. 3, we plot the variation of the minimum required

transmit SNR,γ for pilot transmission versus the number of
BS antennas,M with fixed K = 10 and N = 800, 1000
respectively for a fixed desired MSE of CFO estimation
E[(ω̂k − ωk)

2] = 10−8. From the figure it is clear that for
sufficiently largeM , the requiredγ to achieve MSE= 10−8

decreases roughly by1.5 dB with every doubling inM (note
the reduction inγ from M = 160 to M = 320 for both
N = 800, 1000 scenarios). This supports our conclusion on
theO(

√
M) gain in SNR with increasingM (see Remark 3).

TABLE I L IST OF VARIANCE AND MEAN OF Ti , i = 1, 2, 3.

Component Variance

T1 E[T1] =
1

γ
, var(T1) =

1

Mγ2

T2 E[T2] = 0, var(T2) =
2

MNγ

K
∑

q=1
βq

sin2(N
2
ωqki)

sin2( 1

2
ωqki)

,

whereβq =
L−1
∑

l=0
σ2
hql

.

T3 E[T3] =
1
N

K
∑

q=1
βqsin2

(

N

2
ωqki

)

/sin2
(

1

2
ωqki

)

,

var(T3)=
K∑

q1=1

K∑

q2=1

βq1
βq2

MN2

sin
2
(

N
2

ωq1ki

)

sin
2
(

N
2

ωq2ki

)

sin2

(

1
2
ωq1ki

)

sin2

(

1
2
ωq2ki

)
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Periodogram-based CFO Estimation with N = 1000

Periodogram-based CFO Estimation, N = 800

CFO Estimation from [12], N = 1000

CFO Estimation from [12], N = 800

Fig. 3 Plot of the minimum required SNR to achieve a fixed desired
MSE of CFO estimationE[(ω̂k − ωk)

2] = 10−8 with increasing
number of BS antennasM , for the following fixed parameters:K =
10, L = 5, Nc = 1000 andN = 800, 1000.

Note that this 1√
M

decrease in the required SNR for a fixed
MSE is also achievable in the CFO estimator proposed in
[12], except the fact that [12] uses high-PAPR pilots, which
are susceptible to distortion in non-linear channels. In Fig. 3
it is also observed that the proposed CFO estimator requires
less SNR than the CFO estimator presented in [12], i.e., the
proposed CFO estimator is more energy efficient. Also, note
that with fixed M and K, the required SNR to achieve a
fixed desired MSE, decreases with increasing length of pilot
sequence (N ). This is due to the fact that the variances of
termsT2 andT3 decrease with increasingN (see Table I) and
that the resolution of the periodogram isO(1/N).

V. CONCLUSION

In this paper we propose a low-complexity spatially aver-
aged periodogram-based algorithm for CFO estimation in mas-
sive MIMO systems. Contrary to the existing low-complexity
algorithm for CFO estimation in [12], the proposed CFO
estimator uses low-PAPR constant envelope pilots and is more
energy efficient. Also the computational complexity of the
proposed CFO estimator is only linear with increasing number
of BS antennas,M , (same as the complexity of the high-
PAPR pilot based CFO estimator in [12]) and also linear in the
number of UTs, which is a significant improvement compared
to the complexity of the joint ML estimator presented in
[11] (which is exponential in the number of UTs). Study of
the performance of the proposed algorithm reveals that for a
fixed desired MSE of CFO estimation and for fixed number
of UTs and fixed pilot length, the minimum required pilot
transmission power of the transmitted pilots decreases as1√

M
with increasingM .
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