
DiffFlow: Differentiating Short and Long Flows for
Load Balancing in Data Center Networks

Francisco Carpio, Anna Engelmann and Admela Jukan
Technische Universität Braunschweig, Germany
Email:{f.carpio, a.engelmann, a.jukan}@tu-bs.de

Abstract—In current Data Center Networks (DCNs), Equal-
Cost MultiPath (ECMP) is used as the de-facto routing protocol.
However, ECMP does not differentiate between short and long
flows, the two main categories of flows depending on their
duration (lifetime). This issue causes hot-spots in the network,
affecting negatively the Flow Completion Time (FCT) and the
throughput, the two key performance metrics in data center
networks. Previous work on load balancing proposed solutions
such as splitting long flows into short flows, using per-packet
forwarding approaches, and isolating the paths of short and long
flows. We propose DiffFlow, a new load balancing solution which
detects long flows and forwards packets using Random Packet
Spraying (RPS) with help of SDN, whereas the flows with small
duration are forwarded with ECMP by default. The use of ECMP
for short flows is reasonable, as it does not create the out-of-order
problem; at the same time, RPS for long flows can efficiently
help to load balancing the entire network, given that long flows
represent most of the traffic in DCNs. The results show that
our DiffFlow solution outperforms both the individual usage of
either RPS or ECMP, while the overall throughput achieved is
maintained at the level comparable to RPS.

I. INTRODUCTION

In recent years, the number of Internet applications hosted
in Data Centers has been fast growing, making the Data Center
Network (DCN) operation ever more complex. Generally,
two different categories of traffic can be found in DCN: (1)
those associated with user tasks, e.g., web browsing or search
queries, and, (2) those generated by virtual machine migration,
data backup, or MapReduce operations. The first category,
referred to as short flows, includes flows generated by user
tasks that have short duration and need to be transmitted
before the so-called Flow Completion Time (FCT), specified
in the Service Level Agreement (SLA) with users. The second
category of flows, referred to as long flows, are generated
by applications with long duration and typically require an
adequate throughput, i.e., higher than the minimum acceptable,
however without stringent temporal constraints.

Mixing these two types of flows over the same network
with their contradictory requirements for fast FCT and high
throughput has already been identified as a challenge. Tradi-
tionally, Equal Cost Multi Path (ECMP) is used as default
routing algorithm in data centers, where an individual flow
between a pair of servers is routed over one possible shortest
path, which is selected calculating the hash value of the 5-tuple
header fields. With ECMP, two long flows can end up being
routed over the same path causing hot-spots in the network,
as illustrated in Fig. 1a. As a consequence, the throughput
decreases and the path latency traversing the congested link
increases, increasing the FCT. This in turn affects the user

experience when short flows associated to user tasks are
routed over congested paths. Previous work has proposed three
general categories of solutions: (1) sacrificing one of the two
constraints to optimize the other, (2) increasing the complexity
of traffic engineering with priority scheduling, and (3) modify-
ing the current DCN architectures, e.g., modifications of TCP
stack, using OpenFlow switches.

In this paper, we present a new, hybrid category of solutions
for mixed short and long flows in data center networks called
DiffFlow, capable of achieving the desired trade-off between
low latency (fast FCT) and high throughput. In our approach,
we propose to use traditional ECMP for short flows, minimiz-
ing the FCT with a negligible out-of-order problem typically
present in per-packet basis approaches, while for long flows,
we propose to use Random Packet Switching (RPS), capable
of load balancing without affecting the path latencies of short
flows, as shown in Fig. 1b. Since long flows typically constitute
80-90% of total DCN traffic, while 80% of all flows are short,
and smaller than 10KB in size [1], this means, that with our
method, 80% of flows are routed with ECMP by default, while
the remaining 20% of flows with a long duration use RPS.
For our idea to work, we propose the use of packet sampling
technique on OpenFlow switches to detect long flows and the
SDN controller to advertise about the presence of long flows
and apply RPS rules on the switches. We show analytically
and with simulations, that the proposed method can effectively
load balance the network, while keeping FCT and throughput
within the pre-defined ranges.

The remainder of this paper is organized as follows. Section
II presents related work. Section III presents the design of
our hybrid method. In Section IV, the theoretical analysis is
presented. In Section V, we discuss the performance evaluation,
and finally in Section VI we present the conclusions.

II. RELATED WORK

The general classification of different requirements and
solutions for short and long flows in DCN has been discussed
in [2]. Here, we provide an overview of solutions related
specifically to multipath forwarding schemes in DCNs.

One of the first solutions proposed to address the long
flow problem was Hedera [3]. Proposed was the use of a
centralized flow scheduling, using OpenFlow switches, to
relocate long flows for load balancing. Because of the use
of central controller, the algorithm takes some time for the
reallocation of flows which was shown to make Hedera slow
reacting dynamically to changes in traffic patterns.

MPTCP, an extension of TCP for DCN, has been analyzed
in [4]. In this scheme, the end hosts are responsible to split

ar
X

iv
:1

60
4.

05
10

7v
1

 [
cs

.N
I]

 1
8

A
pr

 2
01

6

S1 S2 S3 S4 S5 S6 S7 S8

T1 T2 T3 T4

A1 A2 A3 A4

C1 C2

Pod 1 Pod 2

Short flow
Long flow 1
Long flow 2

(a) ECMP bottleneck problem
S1 S2 S3 S4 S5 S6 S7 S8

T1 T2 T3 T4

A1 A2 A3 A4

C1 C2

Pod 1 Pod 2

Short flow
Long flow 1
Long flow 2

(b) DiffFlow operation

Fig. 1: Comparison of ECMP and DiffFlow

flows into sub-flows and send them over different paths.
However, the modification of the TCP/IP stack is a practi-
cal challenge. To avoid modification of TCP, the authors of
CONGA [5] proposed a distributed, congestion-aware and load
balancing scheme for DCNs. CONGA splits flows in flowlets
and depending on the estimation of path congestions based on
feedbacks from the switches, choose the optimum path. For
this scheme to work, however, the custom switching ASICs
are required to maintain the congestion tables in the switches.
Another approach that does not require TCP modification
is RepFlow [6], which uses replication of short flows. This
scheme uses two independent TCP connections differentiated
by different port numbers, whereby the hashing performed
by ECMP provides two different paths, one for original short
flow and another for the replication. Since the amount of data
carried by short flows is insignificant compared to long flows,
the overhead produced by this solution is negligible. However,
since this approach is not a congestion control scheme, the
collision of long flows can still occur, which was addressed
by FreeWay [7]. Here, the paths are differentiated between the
low latency paths and high throughput paths. Short flows are
transmitted over low latency paths using ECMP and FreeWay
allocates long flows over different high throughput paths. In
this way, they achieve isolation between short and long flows
avoiding conflicts and optimizing latency and throughput.

Our solution was motivated by TinyFlow [8] and RPS
[9], [10]. The former (TinyFlow) splits long flows into short
flows, and forwards them randomly by making use of ECMP.
In order to detect long flows, OpenFlow switches perform
sampling periodically. When two samples of the same flow are
detected, the dynamic random re-routing algorithm changes
the egress port of the switch. The latter method, i.e., RPS,
uses random packet spraying technique to forward packets
through multiple shortest paths. Unlike ECMP, RPS forwards
each packet individually (”spraying”) to the egress ports at the
DCN switches. (Although this feature is not enabled by default,
commodity switches can perform it.) The main drawback of
this method is the out-of-order problem for TCP. As the authors
prove, however, under the symmetry assumption in fat tree
topologies and traffic patterns, this problem can be minimized,
and even neglected. Also, custom queue management scheme
can be applied to minimize the differences on path latencies.

In spite of the ideas presented in these works, current

data centers are slow to adopting new schemes, especially
when they require modification of legacy network elements,
or transport protocols. For that reason, our focus is on the
solution deploying SDN, which is well-adopted in data centers.
In our proposal, OpenFlow switches are essential to differ-
entiate the flows. In our model, we use the packet sampling
technique, also widely adopted in practice, such as sFlow [11].
The main advantage of this method compared to others is
that the sampling of packets is only realized locally in the
TORs OpenFlow switches. Therefore, the SDN controller is
not responsible for this task, assuring a high scalability for
bigger networks, which is addressing an important concern of
centralized SDN controllers. Packet sampling is however not
the only detection technique that can be used, and our solution
is open to other methods, for instance, per-flow statistics as in
Hedera [3], or end-host based monitoring as in Mahout [12].
On the other hand, it is important to underline that DiffFlow
can coexist with traditional TCP protocol or newer versions,
since its procedure is transparent to upper layer protocols.

III. SYSTEM DESIGN

In this Section, we show the operation of DiffFlow, and
define the performance metrics used in our solution.

A. Operation

Fig. 2 shows a typical DCN type of topology, where at
lowest level there are 8 servers (S1-S8) connected in pairs to
the TORs switches (T1-T4), forming two independent pods
jointly with the aggregation switches (A1-A4). At the highest
level, all aggregation switches connect to all core switches (C1,
C2).

Let us now illustrate the DiffFlow operation in four basic
steps. We start with network system where there are only short
flows at first. The switches forward of flows by the default
routing protocol, i.e., ECMP, and without the intervention
of the SDN controller. At the same time, however, TORs
switches are sampling the packets every certain pre-defined
period of time, in order to detect when a long flow enters to
the network. Based on the length of the sampling period, the
flow duration can be labeled as short or long. For instance,
if we set a sampling period with a small value, flows with
shorter duration will be marked as long flows. Let us now
assume that after a series of short flows, long flow is to be

1 Packet sampling on TOR switches

• Detection of long flow2
• Informing to the SDN controller

4 Starting RPS on the edge switch

3 Setting OpenFlow rules in switches

• OpenFlow rule for long flows:

• OpenFlow of rule for short flows:

Switch port MAC src MAC dst Eth type Vlan ID IP Dst IP Src TCP Dst TCP Src Action

Port 0/2 00:11:22:
01:23:45

00:11:22:
01:23:46

0x8100 10 172.16.1.2 172.16.2.1 6543 1234 Random
egress port

Switch port MAC src MAC dst Eth type Vlan ID IP Dst IP Src TCP Dst TCP Src Action

Port 0/2 00:11:22:
01:23:45

00:11:22:
01:23:46

0x8100 10 172.16.1.2 172.16.2.1 6542 1233 Port 0/2

Long flow
Control plane
communication

S1 S2 S3 S4 S5 S6 S7 S8

T1 T2 T3 T4

A1 A2 A3 A4

C1 C2

SDN
controller

3

2

1 1 1 1

44

3 3 3

3 3

2

Pod 1 Pod 2

Fig. 2: DiffFlow operation

detected, between the servers S4 and S5. Here, the switch T2
starts forwarding the first packets of the flow as if they were
from a short flow, while the packet sampling process is running
in the background (Step 1). When the packet sampling process
detects two packets belonging to the same flow, indicating a
potential congestion, T2 informs the SDN controller about the
detection of a long flow, sending the MAC and IP addresses,
as well as the TCP ports that are read from the packets (Step
2). The SDN controller saves this information and advertises it
to all aggregation and core switches (A1-A4, C1, C2) sending
the corresponding OpenFlow rules (Step 3).

Let us look into more detail how OpenFlow sets the rules
on the example of switch A2. The first rule (long flows)
specifies that all the packets received at port 0/2, with source
MAC 00:11:22:01:23:45 belonging to one interface of S4,
destination MAC 00:11:22:01:23:46 belonging to one inter-
face of S5, source IP address 172.16.1.2 associated to server
S4, destination IP address 172.16.2.1 associated to server S5,
source TCP port 6543 associated to the long flow connection
of the sender S4 and destination TCP port 1234 of the receiver
S5, have to be forwarded towards a random egress port (Action
field). On the other hand, other packets that do not match with
this rule will follow other automatically generated rules (by
hashing of 5-tuple header fields), such as in the next example
of the rules (short flows). In the latter case (short flows), the
rule is set up to forward packets in a short flow also between
S4 and S5. The MAC and IP addresses are hence the same
as previously, but the different TCP ports specify that it is
another TCP connection. Here, the action field specifies a
concrete egress port, since this rule applies to a short flow
and therefore all the packets have to follow the same path.
Once the rules are established in all intermediate switches, the
SDN signals to T2 to start applying RPS in the long flow (Step
4). From this point on, when an intermediate switch receives
packets, specific rules (automatically generated, or specified
by the controller) apply the required action to all the packets
of the said TCP connection.

As it is well known that using optimal path computation in
a centralized controller is not scalable in DCNs due to the high
quantity of requests, it should be noted that our solution does
not have this problem. This is because the SDN controller is
only responsible for the advertisement of the long flows to the

switches. Furthermore, the communication with the controller
only takes place for long flows, which makes our solution
scalable even for large topologies, since long flows are only
about 10% of all flows in DCN [1] .

B. Performance metrics

The performance of our model is measured by two main
metrics, the Flow Completion Time (FCT) and throughput.
Both metrics are used for all flows, however the goal is to
minimize FCT for short flows, while maintaining an acceptable
throughput for long flows.

The FCT of a flow is defined as the difference between two
time stamps, the first time stamp when the first packet of a flow
leaves a source server, and the second time stamp when the last
packet of the same flow arrives at the destination server. If we
assume that the network is empty (no queues at the switches),
the FCT between two servers is the best achievable (”ideal”),
where only the service times of the intermediate nodes and the
transmission time of the packets are considered. We use the
normalized value of this metric, defined as the ratio between
the measured value when there are no ideal conditions, i.e., in
case of queuing time affecting the FCT, and the ideal FCT.

The throughput of a flow is calculated by counting the
percentage of packets dropped in the queues. In order to
simplify this calculation, we model a path used by a flow as a
M/D/1/K system with λ packets per second and µ service time.
Therefore, the ideal case is when there are no packets dropped
due to blocking on intermediate switches, matching the load of
a flow with the maximum achieved throughput. Knowing the
load as an input parameter, we only need to count the number
of dropped packets to calculate the blocking probability and
compute the measured throughput. Also here, we normalize
the the measured throughput with the ideal throughput.

IV. ANALYSIS

In this Section, we analyze the mean FCT values when,
given a certain flow, all packets follow the same randomly
chosen path (i.e. ECMP) and when every packet is randomly
sprayed over all possible paths (i.e. RPS). Then the results of
our analysis, in Section V, will show the behavior of ECMP
and RPS in comparison with our DiffFlow proposal, which

S1 S5

T1 T3

A1 A2 A3 A4

C1 C2

(a) ECMP

S1 S5

T1 T3

A1 A2 A3 A4

C1 C2

(b) RPS

Fig. 3: Forwarding from source to a destination at different pod

TABLE I: Notation

Parameter Meaning
s, d source and destination node
Ein(v) set of incoming links of node v
Eout(v) set of outgoing links of node v
#»p = {p0, p1, ..., pN−1} set of all paths between s and d
#»

P = {P0, P1, ..., PN−1} set of path probabilities of #»p
#»τ = {τ0, τ1, ..., τN−1} set of end-to-end delays of #»p

yl number of fwd nodes on path pl

combines both schemes. All the possible paths that a certain
flow can choose in the ECMP case are shown in Fig. 3a, while
all the possible paths that a packet of a flow can choose in the
RPS case are shown in Fig. 3b. The notation for the analysis
is provided in Table I.

In our model, we assume that all links have the same
capacity and all N existing paths between a pair of servers,
i.e., source s and destination d, are known. Here, an end-to-
end delay τl from #»τ and the corresponding path occurrence
probability Pl from

#»

P describe path pl, l = 0, ..., N − 1,
between s and d. The delay vector #»τ is sorted in the ascending
order, i.e., τl+1 ≥ τl, for any path pl+1 and pl. Generally,
each packet sent over path pl between s and d, traverses yl
intermediate (forwarding) nodes vq ∈ pl, 1 ≤ q ≤ yl. Thus,
an ideal mean FCT t′ over all existing paths is defined as

tideal =

N−1∑
l=0

(yl + 1)
Lflow
c
· P

u
l

PU
(1)

, where Lflow and c are flow length in bits and link bit
rate, respectively, while probability Pul that path pl is utilized,
depending on the scheme. To assess how frequently a path pl
is utilized in comparison to other paths, the path utilization
probability Pul is normalized by probability PU that at least
one out of N paths is utilized:

PU =

N−1∑
l=0

Pul (2)

In case of ECMP, one random path is selected for the
transmission of a flow. Thus, the probability, that an arbitrary
path pl is utilized, is defined as:

Pul =
1

N
(3)

Thus, the ideal mean FCT τ̄ECMP for ECMP is a function of
path utilization probability Pul , end-to-end delay τl and FCT
tideal:

τ̄ECMP = tideal +

∑N−1
l=0 Pul · τl
PU

(4)

In case of RPS, each node v sends packets using |Eout(v)|
equally probable outgoing links. As a result, the packets of
a certain flow are randomly spread over all N existing paths
towards destination. Thus, all N paths are always utilized, i.e,
with the same equal probability Pul = Pl = 1. As a result, the
ideal mean FCT τ̄RPS for RPS is defined as:

τ̄RPS = t′ + τN−1 (5)

, where τN−1 is the end-to-end delay of the longest utilized
path pN−1. Without loss of generality, each forwarding node
v can forward y incoming packets without queuing delay over
set of |Eout(v)| ≥ y outgoing links. That is feasible when
the number of input links of node v is less or equal to the
number of available output links, i.e. y ≤ |Ein(v)| ≤ |Eout(v)|.
However, network can contain intermediate node v, where the
number of available input ports is larger than the number of
available output ports, i.e. |Ein(v)| ≥ |Eout(v)|. When a for-
warding node v receives y packets, |Eout(v)| < y ≤ |Ein(v)|,
y − |Eout(v)| ≥ 0 packets cannot be forwarded immediately
and thus must be buffered with probability PB(v).

Generally, the source s and an intermediate node v
are connected by maximal Nsv paths, which can deliver
at most y = |Ein(v)| packets from at most |Ein(v)|
out of Nsv paths simultaneously. Thus, there are a′′ =∑|Ein(v)|−|Eout(v)|
i=1

(
Nsv

|Eout(v)|+i
)

paths combinations, which
lead to queuing of y − |Eout(v)| packets in v. Next, let’s set
Aα be a set of y out of Nsv existing paths from collection
Ψsv and a set Bα = Ψsv\Aα = {pl|(pl ∈ Ψsv) ∧ (pl /∈ Aα)}
a set of paths, which are not delivering packets at the con-
sidered time point. The probability P ′′(α, y,Nsv), y = |Aα|,
1 ≤ y ≤ |Ein(v)|, that paths from Aα and not from Bα deliver
y packets simultaneously is defined as follow

P ′′(α, y,N) =

y∏
i=1

Pl,i

N−y∏
j=1

(1− Pl,j) (6)

TABLE II: Simulation parameters

Parameter Value
Service time (core/aggre. switches) 12 µs - 3 µs

Sending rate for each interface 1 Gbps
Queue length 1.5 MBytes
Packet size 1500 Bytes

Short flow sizes [1.5 , 15] KBytes
Long flow size [15, 1500] KBytes

, where Pl,i and Pl,j are path occurrence probabilities from
#»

P collected in set Aα and Bα and indexed by i and j,
respectively. The resulting queuing probability in an arbitrary
forwarding node v can be derived by considering all a′′

blocking path combinations as

PB(v) =

a′′∑
α=1

P ′′(α, |Aα|, Nsv) (7)

As a result, when more than one packet claims the same
link at the same time in an intermediate node vq ∈ pl, 1 ≤ q ≤
yl, on path pl, and, thus, need to be buffered, each packet can
be delayed with probability PB(vq) for %q time units. Thus,
the resulting mean FCT τ̄Q over all N existing paths is

τ̄Q = τ̄ +

N−1∑
l=0

yl∑
q=1,
vq∈pl

PB(vq) · %q (8)

, where τ̄ := τ̄ECMP and τ̄ := τ̄RPS for ECMP and RPS,
respectively. We assume that queuing delay %q in each node
and the probability Ploss, that a sent packet is dropped due
to buffer overflow in intermediate node and, thus, needs to be
retransmitted, can be measured. When considered data flow
consists of H packets, the probability Pr that at least one
packet of this flow is dropped and retransmitted is defined as

Pr = 1− (1− Ploss)H (9)

The need for retransmission increases resulting FCT τ̄∑ as
τ̄∑ = (1− Pr)τ̄Q + Pr τ̄Q · γ (10)

, where γ > 1 is a proportion how much FCT is increased as
compared to τ̄Q. In the next section, we compare the expected
values of τ̄∑ (FCT) for the three schemes in order to verify
the correctness of our solution.

V. PERFORMANCE EVALUATION

In this section, using a simulator implemented in JAVA,
we evaluate and compare DiffFlow with traditional ECMP
and RPS schemes. Since our solution is open to any transport
protocol and for simplicity reasons in the analysis and sim-
ulations, we obviate the use of TCP and we only retransmit
a lost packet after RTT time. Therefore, we focus on packet
routing depending whether, given a certain flow, all the packets
follow the same randomly chosen path (i.e. ECMP) or every
packet is randomly sprayed over all possible paths (i.e. RPS).
On the other hand, our simulator use two independent queues
for each kind of flow, one for short flows and another for long
flows. Using TCP or any other transport protocol will vary the
results in relation with our simulations, but still our solution
maintains valid, since it is working in layer 2-3.

In the analyzed topology (see Fig. 1b), each server has
8, 2 or 1 possible paths depending if it wants to connect
to a server at a different pod, at a different TOR but in the
same pod or directly connected to the same TOR, respectively.
The determination of the flow lengths follows two independent
Poisson processes with mean values 10 and 1000 KBytes for
short and long flows respectively. However, the size of short
flows is constrained between 1.5 KBytes and 15 KBytes, while
the size of long flows goes from 16.5 KBytes to 1500 KBytes.
With a fixed packet size of 1500 Bytes, short flows can have
a length between 1 and 10 packets, while long flows have a
length between 11 and 1000 packets, with mean values of 6 and
666 packets, respectively. On the other hand, the 90% of the
incoming flows are short flows, while the remaining 10% are
long flows. The generation of incoming flow requests follows
a Poisson Process with load varying from 0.1 to 0.8 and the
service time of switches is fixed to a deterministic value. The
rest of parameters can be found in Table II.

Following, we compare the simulations results for FCT
with the values obtained from analysis in Section IV, for each
kind of flow separately. Generally, the measured values from
simulations follow the analysis, except a deviation occurred
due to the chosen value of γ, γ = 5 for short flows and
γ = 1.2 for long flows, which is related with how much the
retransmission time affect the FCT. However, with the same γ
value for the three methods, we can see that the behavior is
similar and the simulation results are close to analysis.

A. Overall Performance

As we described in Section III-B, the goal of our perfor-
mance is to minimize the FCT for short flows, maximizing the
throughput. The presented figures show the normalized results.

In Fig 4a, we show how our solution improves to RPS
and ECMP in terms of FCT for all flows. While, ECMP is
affected when the network load is high due to the creation
of hot-spots, RPS and DiffFlow maintain a reasonable FCT,
corroborating our expectation, with small variations. Although,
RPS is a better solution than ECMP especially for a high traffic
load (0.8), the proposed DiffFlow improves RPS by around
7%, whereby there is no out-of-order problem for short flows.

In terms of throughput, the Fig. 4b shows the averaged
results for the three schemes for all flows. Since in this
case, the percentage of traffic associated to short flows is
negligible in comparison to long flows, we can not appreciate
improvements of throughput by DiffFlow in comparison with
RPS. Both methods result in decrease of throughput from
99.9% to 87%, when the traffic load increases from 0.1 to
0.8 Erlang, respectively. In contrast, throughput of ECMP
decreases up to 58% for load 0.8.

B. Performance of Short Flows

Fig. 5a shows the comparison of methods regarding FCT
for short flows. Here, RPS improves ECMP up to 20%, while
proposed DiffFlow improves RPS by around 15% when the
network load is higher than 0.3. That is due to the fact, that, in
case of RPS, packets of all flows are randomly spread over all
existing paths, therefore, packets of short flows are perceiving
different path latencies depending on the chosen path, and this
directly affects the FCT. However, short flows in DiffFlow are

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

O
V

ER
A

LL
 F

C
T

LOAD

ECMP
ECMP - Analysis
RPS
RPS - Analysis
DiffFlow
DiffFlow - Analysis

(a) Mean FCT

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

TH
R
O
U
G
H
P
U
T

LOAD

ECMP

RPS

DiffFlow

(b) Throughput
Fig. 4: Overall performance

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

FC
T

(S
H

O
R

T
FL

O
W

S)

LOAD

ECMP
ECMP - Analysis
RPS
RPS - Analysis
DiffFlow
DiffFlow - Analysis

(a) Short flows

1

1.5

2

2.5

3

3.5

4

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

FC
T

(L
O

N
G

 F
LO

W
S)

LOAD

ECMP
ECMP - Analysis
RPS
RPS - Analysis
DiffFlow
DiffFlow - Analysis

(b) Long flows
Fig. 5: Mean Flow Completion Time

using ECMP, avoiding this problem, and long flows are not
creating bottlenecks in the network, as compared to ECMP
for all flows. Therefore, we demonstrate that the use of RPS
for short flows is not as efficient as DiffFlow, and even the
out-of-order problem is presented in the RPS case.

C. Performance of Long Flows

In Fig. 5b, the FCT of long flows for all discussed
transmission methods is presented. However, RPS has a lot
of benefits in comparison with traditional ECMP due to the
efficient load balancing method. Here, we can see that the FCT
for ECMP increases quickly from 1.2 up to 3.5 with increasing
network load, while RPS and DiffFlow increase slightly from
1 to 1.5. The out-of-order problem, present in both RPS and
DiffFlow, is not an important aspect for long flows, since they
do not have temporal requirements. Moreover, newer versions
of TCP, with DSACK and timestamps options, are more robust
to packet reordering, minimizing this problem.

VI. CONCLUSION

We presented a new multipath routing scheme for DCNs
that differentiates between the routing method used for short
and for long flows. Making use of SDN and packet sampling
technologies, our approach can detect and forward long flows
using random packet spraying, while short flows are forwarded
using ECMP. As we demonstrate, DiffFlow improves the FCT
for short flows and throughput for long flows in comparison
with traditional ECMP. However, the need to use a centralized
controller for the advertisement of long flows, makes that our
solution cannot be applied in current DCNs, but we encourage
to follow researching on the future SDN architecture.

REFERENCES

[1] T. Benson, A. Akella, and D. a. Maltz, “Network traffic characteristics
of data centers in the wild,” Proceedings of the 10th annual conference
on Internet measurement - IMC ’10, p. 267, 2010.

[2] R. Rojas-Cessa, Y. Kaymak, and Z. Dong, “Schemes for Fast Trans-
mission of Flows in Data Center Networks,” IEEE Communications
Surveys and Tutorials, vol. 17, no. 3, pp. 1391–1422, 2015.

[3] M. Al-Fares, S. Radhakrishnan, and B. Raghavan, “Hedera: Dynamic
Flow Scheduling for Data Center Networks.” Nsdi, p. 19, 2010.

[4] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” The ACM SIGCOMM Conference, pp. 266–277, 2011.

[5] M. Alizadeh, N. Yadav, G. Varghese, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, and R. Pan,
“Conga,” Proceedings - ACM SIGCOMM, 2014.

[6] H. Xu and B. Li, “RepFlow: Minimizing flow completion times with
replicated flows in data centers,” Proceedings - IEEE INFOCOM, 2014.

[7] W. Wang, Y. Sun, K. Salamatian, and Z. Li, “Adaptive Path Isolation for
Elephant and Mice Flows by Exploiting Path Diversity in Datacenters,”
IEEE Transactions on Network and Service Management, 2016.

[8] H. Xu and B. Li, “TinyFlow : Breaking Elephants Down Into Mice in
Data Center Networks,” in in Proc. IEEE LANMAN, 2014.

[9] A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the impact of packet
spraying in data center networks,” Proc.- IEEE INFOCOM, 2013.

[10] Y. Kaymak and R. Rojas-Cessa, “Per-packet load balancing in data
center networks,” in 2015 36th IEEE Sarnoff Symposium, sep 2015.

[11] P. Phaal, S. Panchen, and N. McKee, “InMon Corporation’s sFlow:
A Method for Monitoring Traffic in Switched and Routed Networks,”
p. 31, 2001. [Online]. Available: https://www.ietf.org/rfc/rfc3176.txt

[12] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in 2011 Proceedings IEEE INFOCOM. IEEE, apr 2011, pp. 1629–
1637.

https://www.ietf.org/rfc/rfc3176.txt

	I Introduction
	II Related work
	III System Design
	III-A Operation
	III-B Performance metrics

	IV Analysis
	V Performance evaluation
	V-A Overall Performance
	V-B Performance of Short Flows
	V-C Performance of Long Flows

	VI Conclusion
	References

