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Efficient Compression of Noisy Sparse Sources
Based on Syndrome Encoding

Ahmed Elzanaty, Andrea Giorgetti, and Marco Chiani
DEI, University of Bologna, ITALY

e-mail:{ahmed.elzanaty, andrea.giorgetti, marco.chiani}@unibo.it

Abstract—Signal compression is essential for energy and band-
width efficient communication and storage systems. In this paper,
we provide two practical approaches for source compression
of noisy sparse and non-strictly sparse (compressible) sources.
The proposed schemes are based on channel coding theory
to construct a source encoder that decreases the number of
transmitted bits while preserving the fidelity of the reconstructed
signal at the receiver by exploiting its sparsity. In addition, a
model order selection scheme is proposed to detect the non-
zero elements of sparse vectors embedded in noise, or to find
a nonlinear sparse approximation of compressible signals. As
illustrated by numerical results, our approach provides a lower
distortion-rate function compared to previously known methods.
For example, the proposed schemes achieve a lower distortion,
about 2 orders of magnitude, compared to compressed sensing,
for the same rate.

I. INTRODUCTION

The classic problem of designing efficient lossy compres-
sion schemes for sources is gaining increasing interest, sup-
ported by the tremendous increase of data generated by the
Internet of things (IoT). The data size can be significantly
decreased by exploiting some of their structures. One of
these structures is the sparsity/compressibility, i.e., the abil-
ity to describe/approximate signals with a fewer number of
coefficients compared to their dimension in some domains,
e.g., time, frequency, discrete cosine transform (DCT), and
Wavelet. Most of the signals of interest such as image, audio,
video, and IoT data are compressible [1], [2]. Hence, the
growing challenge is to represent a compressible signal with
a minimum number of bits while limiting the distortion due
to quantization and sparse approximation.

Let us start by considering a signal, x ∈ RN , emitted
by a discrete-time continuous-valued source, the target is to
encode it at the minimum rate which still guarantees that the
distortion does not exceed a predefined limit, provided that at
most k0 elements of x are non-zero, i.e., x is a sparse vector
with sparsity order k0. The first intuitive approach, which we
name address coding (AC), is to separately quantize the k0
non-zero components using a uniform scalar quantizer with b
bits/sample, then encode each of their locations with a fixed
number of bits ⌈log2 N⌉. The total number of required bits is
calculated as

Rt = k0 ⌈log2 N⌉+ k0 b. (1)

This work was supported in part by the European Commission under the
EU-METALIC II project within the framework of Erasmus Mundus Action2
and in part by the European project EuroCPS (grant no. 644090) under the
H2020 framework.

This approach is simple, but it requires the transmission of
both the values and the locations separately, and also there
exist more efficient approaches, in terms of compression gain.

Another approach is based on the well-known signal acqui-
sition technique called compressed sensing (CS), where one
can collect M < N linear observations from x, y = Ax,
through an M × N measurement matrix A. The necessary
condition on the number of measurements needed to guarantee
unique vector representation is M ≥ 2 k0. Then, x can be
reconstructed from y by solving an ℓ0-minimization program.
However, solving the ℓ0 program is not feasible for the ranges
of N usually used in practice. It is proved in [3], [4] that the
solution provided by the ℓ1-minimization is the same as that
of ℓ0, alleviating the computational burden of signal recovery,
at the expense of taking more measurements. In particular,
considering Gaussian measurement matrices, perfect recovery
is guaranteed with high probability, for m ≥ C k0 log(N/k0)
[3]–[6]. The most important advantage of CS is that it does
not require the knowledge about the basis at which the signal
is sparse at the encoder, but only at the decoder. Moreover,
it has been shown to be stable with respect to compressible
(non-strictly sparse) signals. On the other hand, the number
of measurements is still considerably higher than the signal
sparsity and there is no practical scheme to accurately multiply
the random measurement matrix with the signal in the analog
domain, except for Rademacher and Bernoulli matrices [7].

In this paper, we provide two practical approaches for lossy
source compression of noisy sparse and compressible sources.
At first, we derive a blind estimator for the sparsity order based
on a model order selection rule to detect the non-zero elements
of sparse signals embedded in noise, or to obtain a nonlinear
sparse approximation for compressible signals. Unlike, the
conventional method of using a threshold to differentiate
signal entries from noise, requiring perfect knowledge of
noise statistics. Then, we propose two novel schemes based
on exploiting the syndromes associated with channel block
codes, i.e., Reed-Solomon (RS) and Bose, Chaudhuri, and
Hocquenghem (BCH) codes, as lossless source encoders of
quantized sparse signals.1 As confirmed by numerical results,
the proposed approaches achieve a better distortion-rate

1Source encoders based on channel coding have been used for the different
purpose of approaching the Slepian-Wolf/Wyner-Ziv bounds for the problems
of lossless/lossy distributed source coding with side information only at the
receiver [8], [9], and also for the lossy compression of binary symmetric
sources [10].
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Fig. 1. The block diagram of the proposed compression schemes for noisy sparse sources.

performance compared to CS based source encoder.
Throughout this paper, we indicate with ∥ · ∥0 the ℓ0 quasi-

norm of a vector indicating the number of its non-zero entries,
with N (µ,C) the multivariate Gaussian distribution with
mean µ and covariance matrix C, with IN the N -dimensional
identity matrix, and with Fq the Galois field of order q.

II. SIGNAL MODEL

Let us consider a sparse source model, which fits images,
sounds, medical data, and sensor signals in appropriate trans-
form domains, called sparse-land Gaussian model [11], [12].
In this model the source emits a sparse vector s ∈ RN with
sparsity order ∥s∥0 = k0 ≪ N . The signal support is chosen

at random from all possible
(
N
k0

)
cardinalities. A variant to this

model considers the sparsity order, K0, as a random variable
(r.v.) uniformly distributed within the set {0, 1, · · · , kmax}.
Clearly, the entropy associated to the location of the non-zero
elements of s is

H = log2

kmax∑

i=0

(
N

i

)
(2)

which provides a lower bound on the number of bits needed to
encode the signal support [13]. Let us further assume that the
values of the non-zero elements, for both models, are drawn
from a Gaussian distribution with zero mean and variance σ2

s .
The acquisition device may induce noise to the input signal,

thus the noisy sparse signal at the output of the sampler can
be represented as

x = s+ ϵ (3)

where ϵ ∼ N (0,σ2
n IN ) represents the noise. This model fits

also the case of compressible sources, where the signal is not
exactly sparse, and the Gaussian vector ϵ accounts for the
insignificant components [14].

III. THE PROPOSED COMPRESSION SCHEMES BASED ON

SYNDROME ENCODING

In this section, we describe the two novel schemes for
efficient lossy compression shown in Fig. 1. At first, the signal
is quantized and the samples are stored in a register of size N .
At the same time, the signal support is estimated using model
order selection, then the insignificant elements in the register
are set to zero accordingly. Finally, the data is compressed by
calculating the syndromes using the parity-check matrix of a
RS or BCH code. In the following, we will separately illustrate
each part of the proposed scheme.

A. Signal Support Estimation by Model Order Selection

We will derive a novel estimator for the number and the
locations of the non-zero elements in the noisy sparse signal,
based on model order selection theory [15].

At first, the vector x is sorted in descending order, according
to the absolute values of its entries, |xi|, such that

|xπ1
| ≥ |xπ2

| ≥ · · · ≥ |xπN
|

where π = (π1,π2, · · · ,πN ) is the permutation vector. We
denote by x̃ ! (xπ1

, xπ2
, · · · , xπN

) the ordered vector.2

When the signal-to-noise ratio (SNR) is high, the vector
x̃ can be represented as a concatenation of two vectors
(x̃1:k0

, ϵ̃k0+1:N ), where the first one, x̃1:k0
, contains signal-

plus-noise elements and the remaining one, ϵ̃k0+1:N , contains
noise-only terms. Hence, the estimated signal support is in-
dicated by the indexes I = {π1,π2, · · · ,πk0

}. Therefore, de-
tecting the location of the non-zero elements of s is equivalent
to estimate k0, i.e., the signal sparsity. To pursue this goal, we
propose to reformulate the detection problem as a model order
selection problem where the order of the model to be estimated

2We do not consider the effects of quantization in this step.



can be related with the unknown signal sparsity. A powerful
solution to model order estimation is based on information-
theoretic criteria, where the model order is estimated by
minimizing a penalized likelihood [15], [16]. In this work we
consider, in particular, the generalized information criterion
(GIC) because of its versatility in controlling the estimation
accuracy [17], [18].

Considering that the sparse signal is unknown and deter-
ministic, from (3) its likelihood function can be expressed as

f(x̃) =
1

(2π σ2
n )

N

2

exp

(

−

∑N
i=1(x̃i − s̃i)2

2 σ2
n

)

(4)

where s̃ ! (sπ1
, sπ2

, · · · , sπN
) is the permutation of the

noiseless signal.

Let us define a family of models to fit the measured data
with the kth model representing the case where the last signal-
plus-noise sample is the kth one, i.e., s̃k+1:N = 0. The
likelihood function in (4) depends on some parameters such as
the noise variance, σ2

n , and the sparse signal, s̃1:k, denoted by
Θ(k) ! (σ2

n , s̃1, s̃2, · · · , s̃k). As a consequence, the number
of degrees of freedom (the model order) in the kth model is
φ(k) = k + 1.

As the sparsity estimator is blind, we consider the noise
variance and the sparse signal unknown. Hence, for the kth
hypothesis, the vector Θ(k) needs to be estimated. The condi-
tional likelihood function based on the estimated parameters,
Θ̂(k) ! (σ̂2

(k),
ˆ̃s1, ˆ̃s2, · · · , ˆ̃sk), is then

f
(
x̃; Θ̂(k)

)
=
(
2π σ̂2

(k)

)−N

2

exp

⎛

⎜⎝−

∑N
i=1

(
x̃i− ˆ̃si

)2

2 σ̂2
(k)

⎞

⎟⎠ . (5)

In the kth hypothesis, the maximum likelihood (ML) estimate
of the signal amplitudes are

ˆ̃s1:k = x̃1:k (6)

while the remaining components are set to zero, i.e.,

ˆ̃sk+1:N = 0k+1:N . (7)

For the noise variance, the ML estimate results in

σ̂2
(k) = argmax

σ2
n >0

log f(x̃;σ2
n ) =

1

N

N∑

i=k+1

x̃2
i . (8)

Then, the log-likelihood function (LLF) of the kth model can
be written by substituting (6), (7), and (8), in (5) as

log f
(
x̃; Θ̂(k)

)
= −

N

2
log

(
2π

N

N∑

i=k+1

x̃2
i

)

+
N

2

from which the GIC takes the form

k̂0 = argmin
k∈[0,k̄]

{

N log

(
2π

N

N∑

i=k+1

x̃2
i

)

+N + ν (k + 1)

}

where k̄ ≤ N − 1 is an upper bound on the sparsity order and
ν is a penalty factor that will be investigated in Section IV.3

The estimator can be further simplified by omitting all terms
that do not depend on k, resulting in

k̂0 = arg min
k∈[0,k̄]

{

N log

(
N∑

i=k+1

x̃2
i

)

+ ν k

}

. (9)

The estimated support can now be identified as
Î = {π1,π2, · · · ,πk̂0

}, and the corresponding filtered
sparse signal becomes

x∗
i =

{
xi i ∈ Î,
0 otherwise.

B. Scalar Uniform Quantizer

Due to the large number of zero elements in x∗, we consider
a scalar mid-tread uniform quantizer [19], whose zero-valued
reconstruction level prevents the introduction of additional
quantization noise out of the signal support. This quantizer
maps each element x∗

i of x∗ to a discrete quantization index

Q : R → {0, 1, · · · , q − 2}

where q ! 2b.4 In this quantizer the range [−A,A] is
uniformly partitioned into L = q − 1 levels, with a step
size ∆ = 2A

L . Note that for the Gaussian source, we choose
A = 4σs [19]. The index vector of the quantized signal is then

Γ ! Q(x∗) = (Q(x∗
1), Q(x∗

2), · · · , Q(x∗
N )) ∈ F

N
q .

C. Syndrome Based Source Encoder

We propose a source encoder for quantized sparse vectors
in FN

q based on the syndrome vector of a RS code. Firstly, let
us consider the dual channel coding problem, assuming that
the transmitter sends a codeword, c ∈ FN

q , from the RS code
with minimum distance 2k0 + 1. If the channel changes at
most k0 symbols, then the received vector can be represented
as r = c+ Γ, where Γ ∈ FN

q is the error vector with a
maximum sparsity order k0, and the summation is in Fq.
Hence, the receiver can estimate the error vector, which is the
sparsest vector satisfying the computed syndrome. Regarding
the source coding problem, Γ is compressed by calculating
its syndrome vector through the parity check matrix of the
k0-error-correcting RS code at the encoder. Consequently,
the receiver can perfectly reconstruct Γ from the syndromes,
provided that its sparsity order is at most k0.

More precisely, the syndrome z ∈ F2k̂0

q is computed by the
source encoder as

z = ΓHT (10)

where all the operations are performed in Fq, k̂0 is the
estimated sparsity from model order selection, (9), and

3The encoder may have prior information about the maximum sparsity
order, e.g., k0 ≤ k̄ = 0.5N , in the absence of this information k̄ = N − 1.

4Note that the number of quantization levels is odd in mid-tread uniform
quantizers.
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H =

⎡

⎢⎢⎢⎣

1 α α2 · · · αN−1

1 α2 (α2)2 · · · (α2)N−1

...
...

...
...

...

1 α2k̂0 (α2k̂0)2 · · · (α2k̂0)N−1

⎤

⎥⎥⎥⎦
(11)

is the 2 k̂0×N parity-check matrix for the k̂0-error-correcting
RS code with N = q − 1, while α is a primitive element in
Fq [21]. The syndrome symbols can also be computed using
efficient hardware [22].

The resulting total number of bits required to encode the
sparse vector using RS syndrome coding is

Rt = 2k̂0 b = 2k̂0 log2(N + 1). (12)

A further compression gain can be achieved by separately
sending the k̂0 quantized non-zero elements, then compressing
the binary vector which determines their locations using the
syndrome of a BCH code, see Fig.1(b).5 In fact, since for BCH
code the number of parity check bits m ≤ k̂0 log2(N + 1),
the required number of bits is

Rt = m+ k̂0 b ≤ k̂0 log2(N + 1) + k̂0 b (13)

where m is calculated from the design table of the BCH code,
for a given sparsity order (i.e., error correcting capability) and
dimension [22, Appendix C]. Clearly, form (12) and (13),
the rate of this scheme is upper-bounded by the RS based
approach, but the non-zero values and the syndrome vector
should be transmitted separately.

In the following the proposed schemes will be referred as
RS based source coding (RSSC) (Fig. 1(a)) and BCH based
source coding (BCHSC) (Fig.1(b)).

D. Source Decoder

Regarding the RSSC approach, the locations and the values
of the non-zero elements can be estimated at the receiver from
the syndrome vector z using Berlekamp’s iterative algorithm.
Due to the minimum distance properties of the RS code and the
maximum sparsity order of Γ, the vector of the quantization
indexes Γ is exactly recovered at the receiver.

Finally, the mapper

Q−1 : {0, 1, · · · , q − 2} → {i∆}
⌊L−1

2
⌋

i=−⌊L−1

2
⌋

reconstructs the quantized signal from its indexes, and the
reconstructed signal x̂ is then

x̂ = Q−1(Γ) !
(
Q−1(Γ1), Q

−1(Γ2), · · · , Q
−1(ΓN )

)
. (14)

5Note that the ones in the N -bit location vector indicates the locations of
the non-zero elements.
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The proposed RSSC scheme requires only 2 k̂0 words (2 k̂0 b
bits). Hence, it can achieve a compression gain of N

2 k̂0

over the

non-compressed version. Moreover, the complexity for both
the transmitter and the receiver are low, as there are efficient
devices for coding and decoding the signal, and the location
vector is implicitly embedded in the data.

Considering the BCHSC approach, the binary location vec-
tor can be recovered using the Berlekamp’s algorithm, and
the quantized non-zero entries are reconstructed from the
quantization indexes as usual.

IV. NUMERICAL RESULTS

In this section, we compare the compression performance
of the proposed schemes with source entropy, AC, and CS.
We adopt the rate-distortion function usually considered as
the performance metric for lossy source encoders, where the
distortion between the noiseless and the reconstructed signals
is defined as

D !
1

N
E

{
(x̂− s) (x̂− s)T

}

while the rate is the expected number of transmitted bits per
sample. The SNR is defined as SNR ! E

{
s sT

}
/E
{
ϵ ϵ

T
}
.

As a benchmark for performance we choose the CS
scheme employed in [20] (see Fig. 2), where the signal
is first quantized then digitally multiplied by the measure-
ment matrix generated from a Rademacher distribution with
P{Ai,j = 1} = P{Ai,j = −1)} = 1

2 . The additional overload
bits, bov, resulting from the binary multiplication and sum-
mation required to compute y, should be considered for
calculating the rate [20]. The number of measurements is
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selected to minimize the rate-distortion function and the signal
is recovered using the Basis Pursuit Denoising (BPDN) mini-
mization program through YALL1 Matlab package, assuming
a perfect knowledge of noise statistics.

Firstly, we illustrate the lossless compression performance
for the source, indicating the locations of the non-zero ele-
ments. In particular, the number of bits per dimension needed
to encode the signal support for N = 255 and kmax ∈
{1, 2, · · · , 38} using the syndromes of the BCH code, AC,
and the lower bound indicated by the source entropy (2) is
shown in Fig. 3. We can see that the BCH scheme approaches
the source entropy, especially at lower sparsity ratios, and its
rate is upper bounded by the AC, hence achieving a higher
compression gain (more than 30% compared to AC for higher
kmax/N ).

Secondly, the lossless compression for discrete-valued
discrete-time sources is emphasized. Let us consider a quan-
tized source S emitting a vector of length N with at most
kmax non-zero elements chosen at random from the possible 2b

levels. The signal support is generated as in Section II. Since
all source realizations are equiprobable, the source entropy is
calculated as

H = log2

kmax∑

i=0

2b i
(
N

i

)
. (15)

In Fig. 4, we report the number of bits per sample needed
to encode S using AC (1), RSSC (12), BCHSC (13), and
Shannon’s lower bound (15) as a function of the maximum
sparsity order kmax ∈ {1, 2, · · · , 38}, for b = 8 bits/sample
and N = 2b−1 = 255. It is noticed that the rates indicated by
both RSSC and AC are coincident, while the BCHSC method
achieves a higher compression gain (up to 15% compared to
RSSC).

To illustrate the performance of the lossy compression
schemes for sparse noisy sources, Fig. 5 shows the rate-
distortion function of the proposed RSSC and BCHSC
schemes in Fig.1, along with the CS encoder in Fig. 2. The sig-
nal is generated according to the sparse-land Gaussian model
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Fig. 5. The rate-distortion for lossy source compression of sparse noisy
sources, with kmax = ⌈0.14N⌉, b ∈ {5, 6, 7, 8, 9, 10}, and N = 2b − 1.

presented in Section II, with N = 2b−1, and sparsity order K0

uniformly distributed within {0, 1, . . . , ⌈0.14N⌉}. Then, the
signal is quantized with b ∈ {5, 6, 7, 8, 9, 10} bits/sample. The
signal sparsity order and support are estimated by the derived
GIC (9) with penalty ν = 10, and ν = 18, for SNR = 20 dB,
and SNR = 40 dB, respectively. Moreover, the rate-distortion
function using syndrome encoding with perfect knowledge of
the sparse signal support at the encoder is also presented as
an oracle approach.

It can be noted that the syndrome encoding based approach
achieves a reduction of around 2 orders of magnitude in distor-
tion compared to CS, despite the latter requires knowledge of
the noise statistics and optimization over all possible numbers
of measurements. This gap is due to the denoising effect
resulted from estimating the signal support using model order
selection and discarding the insignificant elements attributed
to the noise. Additionally, for the same distortion, the BCHSC
suggests a reduced rate, about 10%, compared to the RSSC.
Interestingly, model order selection based schemes are almost
coincident with the oracle based approach.
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On this point, the performance of the GIC estimator for
the sparsity order k0 is examined, where the probability mass

function of the sparsity estimation error, k̂0−k0

k0
, is presented in

Fig. 6. As can be seen, for SNR = 20 dB, the probability that
the estimation error is within 20% of the correct order is more
than 75%, while for SNR = 40 dB, the proposed estimator
correctly detects the sparsity order with high probability,
more than 90%. We also note that unlike the conventional
estimators with large number of realizations, here we are
able to efficiently estimate the sparsity order from only one
snapshot of x. Hence, model order selection can be used to
detect the non-zero elements, and obtain a non-linear sparse
approximation for compressible signals, efficiently.6

V. CONCLUSION

This paper proposed two novel schemes for efficient en-
coding of noisy sparse sources. These approaches are based
on exploiting the duality between the source coding of sparse

6Since the noise at the input of the transmitter is introduced by the
acquisition device, the SNR is quite large [20].

sources and the channel coding. At first, the source sparsity
and support are determined through the GIC, and the sparse
signal is quantized using a uniform scalar quantizer. Then,
the compression is achieved by sending the syndromes of
the quantized/location vector computed from the parity check
matrix of a RS/BCH code. The decoder perfectly recovers the
quantized/location vector from only the received syndromes
using conventional RS/BCH decoder. As illustrated by numeri-
cal results, the proposed approaches provide a lower distortion-
rate compared to the previously known methods such as CS.
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