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Abstract—In this paper, we investigate flexible power transfer
among electric vehicles (EVs) from a cooperative perspective
in an EV system. First, the concept of cooperative EV-to-
EV (V2V) charging is introduced, which enables active co-
operation via charging/discharging operations between EVs as
energy consumers and EVs as energy providers. Then, based
on the cooperative V2V charging concept, a flexible energy
management protocol with different V2V matching algorithms
is proposed, which can help the EVs achieve more flexible and
smarter charging/discharging behaviors. In the proposed energy
management protocol, we define the utilities of the EVs based
on the cost and profit through cooperative V2V charging and
employ the bipartite graph to model the charging/discharging
cooperation between EVs as energy consumers and EVs as
energy providers. Based on the constructed bipartite graph, a
max-weight V2V matching algorithm is proposed in order to
optimize the network social welfare. Moreover, taking individual
rationality into consideration, we further introduce the stable
matching concepts and propose two stable V2V matching al-
gorithms, which can yield the EV-consumer-optimal and EV-
provider-optimal stable V2V matchings, respectively. Simulation
results verify the efficiency of our proposed cooperative V2V
charging based energy management protocol in improving the
EV utilities and the network social welfare as well as reducing
the energy consumption of the EVs.

Index Terms—Electric vehicles, cooperative V2V charging,
matching theory, energy management.

I. INTRODUCTION

With ever increasing concerns on environmental issues and
clean energy, electric vehicles (EVs) have attracted more and
more attention from governments, industries, and costumers
[2l. EVs are regarded as one of the most effective strategies
to reduce the oil dependence and gas emission, and to increase
the efficiency of energy conversion [3]-[5]. When integrated
with the power grid based on charging and/or discharging
operations, EVs become energy storage units, and can not only
serve as a transportation tool but also act as controllable loads
and distributed sources for the power grid [6], [7].

On the one hand, the fast development of EVs brings a
significant new load on the current power system [8]]. Without
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efficient control strategies, the EV charging process may
overload the power grid at peak hours, especially in residential
communities. On the other hand, EVs can benefit the power
grid as a flexible load through smart charging/discharging
scheduling to reduce the peak load and shape the load profile.
Therefore, in the literature, with the concept of demand
side management (DSM) [9]], many works [10]-[15] have
focused on the charging/discharging scheduling and energy
management protocols to control and optimize the charging
process for EVs integrated with the power grid.

In [10]], the authors investigated a smart charging and
discharging process for multiple EVs parked in a building
garage to optimize the energy consumption profile of the
building. An energy charging and discharging scheduling
game was formulated to control the charging and discharging
behaviors of the EVs in order to minimize the peak load and
the total energy cost. In [[I1]], the authors investigated the
charging and discharging cooperation between the power grid
and the EVs, and formulated and resolved this cooperation in
the framework of a coalitional game to make the EVs have
the incentive to charge in load valley and discharge in load
peak. In [12]], the authors developed a cooperative distributed
algorithm for charging control of EVs through peer-to-peer
coordination of charging stations in a distributed fashion. In
[13]], a price scheme considering both base price and demand
fluctuation in the demand response was proposed and then
a distributed optimization algorithm based on the alternating
direction method of multipliers was developed to optimize
the demand side management problem for the future smart
grid with EVs and renewable distributed generators. In [14],
the authors proposed a centralized charging strategy of EVs
under the battery swapping scenario by considering optimal
charging priority and charging location based on spot electric
price, in order to minimize total charging cost, as well as
to reduce power loss and voltage deviation of the power
systems. In [15], motivated by the demand for an efficient
EV charging model in the bidirectional vehicle-to-grid (V2G)
integration, a convex quadratic programming framework was
developed for the charge pattern optimization of EVs un-
der time-varying electricity price signals. Although various
optimization methods as well as game theory models have
been employed to design different EV charging and energy
management protocols in existing work, the current researches
are still limited to the interactions and power transfer between
EVs and the power grid.

In recent years, Internet of Energy (IoE), as an important
part of Internet of Things, is regarded as a promising concept
for future energy system. In IoE, renewable-energy power
plants, transmission links, electrical meters, appliances, and



the moving EVs will be able to talk to each other in real
time about the electrical loads and energy prices and share
power with each other if demanded [16]]. Just like the infor-
mation Internet forever changed the way information is made,
shared, and stored, IoE will also change the way we produce,
distribute, and store energy. IoE is envisioned as a smart
architecture that enables flexible energy sharing among the
involved units. The mobile and energy storage features make
the EVs play an important role in increasing the flexibility and
possibilities of power transfer in the IoE.

Most recently, some works [17]], [[I18] have proposed to
investigate vehicle-to-vehicle charging strategies, which can
offer more flexible charging plans for gridable EVs in order to
offload the EV charging loads from the electric power systems.
However, designing an effective and efficient online vehicle-
to-vehicle charging strategy remains an open issue. In this
paper, we investigate the flexible power transfer among EVs
from a cooperative perspective in the energy Internet based
EV system. First, we introduce the concept of cooperative
EV-to-EV (V2V) charging, which enables active cooperation
through charging/discharging operations between EVs as en-
ergy consumers and EVs as energy providers. Then, based on
the cooperative V2V charging concept, we propose a flexible
energy management protocol with different V2V matching
algorithms, which can help the EVs achieve more flexible
and smarter charging/discharging behaviors. Simulation results
verify the efficiency of the proposed cooperative V2V charging
based energy management protocol in improving the EV
utilities as well as the network social welfare. Moreover, the
simulation results also indicate that the energy consumption
of the EVs can be reduced effectively with the proposed
cooperative V2V charging based energy management protocol.

The main contributions of this paper can be summarized as
follows.

1. We first provide a developed concept based on the V2V
operation of V2X concept introduced in [[19], termed as
cooperative V2V charging, which describes the power
flow connection among different EVs in a cooperative
charging/discharging manner. Cooperative V2V charing can
enable direct EV-to-EV power transfer through active coop-
eration between EVs as energy consumers and EVs as en-
ergy providers. Through the cooperative V2V charging, the
charging/discharging behaviors of EVs can be performed in
a more flexible and smarter manner.

2. Based on cooperative V2V charging, we propose a novel
and flexible energy management protocol. In the proposed
energy management protocol, EVs as energy consumers
and EVs as energy providers can send their real-time
individual information and energy trading requests to the
data control center via mobile apps or on-board apps under
the support of mobile Internet and intelligent transportation
system (ITS). According to the collected information, the
data control center will make smart charging/discharging
decisions for the involved EVs through effective and effi-
cient V2V matching, which are beneficial to both EVs as
energy consumers and EVs as energy providers.

3. In order to achieve the optimal V2V matching in terms of
network social welfare, we construct a weighted bipartite

Fig. 1. An illustration of our investigated IoE based EV system.

graph, in which EVs as energy consumers and EVs as
energy providers are formulated as two partite sets. Based
on the constructed bipartite graph, we propose a max-
weight V2V matching algorithm, which can obtain the
maximum weight V2V matching with low complexity.

4. Although the proposed max-weight V2V matching algo-
rithm can output an optimized V2V matching in terms of
network social welfare, the obtained V2V matching is not
a stable one, which means the matched EVs may have an
incentive to deviate from the matching. Therefore, taking
the individual rationality of each involved EV into consid-
eration, we further introduce the stable matching concepts
and propose two stable V2V matching algorithms, i.e., the
EV-consumer-oriented stable V2V matching algorithm and
the EV-provider-oriented stable V2V matching algorithm,
which yield the EV-consumer-optimal and EV-provider-
optimal stable V2V matchings, respectively.

The remainder of this paper is organized as follows. In
Section II, the system model is described and the cooperative
V2V charging concept is introduced. In Section III, based on
the cooperative V2V charging concept, we provide a flexible
energy management protocol to achieve effective and smart
charging/discharging cooperation for the EVs. In Section IV,
by employing the matching theory, we construct a bipartite
graph to indicate the relationships between EVs as energy
consumers and EVs as energy providers and further propose
three efficient V2V matching algorithms. Simulations are
provided in Section V and the conclusions are given in Section
VL

II. SYSTEM MODEL
A. System Description

As illustrated in Fig. [, we consider an IoE based EV
system, mainly comprising the EVs, the smart houses, the
charging stations, the power/communication infrastructures,
and a data control center. Each EV is equipped with an
bidirectional charger and thus can perform both charging and
discharging behaviors. The moving EVs in the investigated
system can be divided into three categories: 1) EVs that
demand power act as energy consumers, denoted by EViC,
1 =1,2,...,N; 2) EVs that have extra power act as energy
providers, denoted by EVP, j = 1,2,...,K; 3) EVs that
are not interested to participate in any current energy trading.



For presentation convenience, we denote " = {1,2,... N}
and K £ {1,2,..., K}. The data control center is connected
to all the distributed power and information infrastructures
and can collect the real-time information about the nearby
charging stations, smart houses, parking lots, and the EVs via
5G-enabled IoT [20].

B. Cooperative V2V Charging

In this section, we propose a developed concept based on
the V2V operation of V2X concept [|19]], termed as cooperative
V2V charging, which describes the power flow connection
among different EVs in a cooperative charging/discharging
manner. Cooperative V2V charging can enable direct EV-to-
EV power transfer through active cooperation among EVs at
the energy level. Based on cooperative V2V charging, the
charging/discharging behaviors of EVs can be performed in
a more flexible and smarter manner.

Cooperative V2V charging is beneficial to both EVs as
energy consumers and EVs as energy providers, leading to
a win-win energy trading situation. As for EVs as energy
consumers, currently, most EVs get charged at the charging
stations or after going back home. If a moving EV demands
power before it can arrive at the destination, it will have to
drive to a nearby charging station to get charged first. However,
the current deployment of charging stations is still far from
sufficient. Moreover, the nearby charging station may be in a
different direction deviating from the EV’s original route to
the destination. This causes inconvenience and extra energy
consumption for EVs as energy consumers. As an additional
feasible charging option, cooperative V2V charging can make
the charging behaviors of EVs as energy consumers more
flexible and smarter, and thus reduce the drivers’ anxiety since
their EVs can get charged more easily. As for EVs as energy
providers, the EV drivers can make profits through cooperative
V2V charging based energy trading with their spare time and
surplus power. Especially, with the increasing penetration of
renewable energy resources (RESs) such as solar panels in
residential houses, many households would have surplus power
generated by RESs at a low cost, leading to considerable
incentives and motivations on individual energy trading. Even
taking the potential cost (e.g., the battery lifetime loss) into
consideration, there is still a profit margin for EVs as energy
providers to achieve cooperative V2V charging based energy
trading with their stored low-cost surplus power. Besides,
cooperative V2V charging can also offload the heavy load of
the power grid due to the dramatically increasing penetration
of EVs in daily life.

Currently, a feasible way to realize V2V power transfer
among different EVs is through the V2V framework described
in [19], where an aggregator is employed for coordinated
control of grouping EVs for charging and discharging. The
aggregator behaves as a control device that collects all the
information about the EVs and the grid status and then
executes the V2V power transfer. Since these aggregators do
not need to pull in power from the power grid to operate the
V2V power transfer, they would be much cheaper and more
easily deployed than the charging stations. For instance, such

aggregators can be widely deployed in various communities
or public parking lots. One can also envision that in the
future IoE, the power transfer among EVs may be achieved
via a single charging cable connecting EVs directly or even
in a wireless and mobile manner (i.e., wireless V2V power
transfer). This will make the charging/discharging among EVs
more easily and conveniently. Then, with cooperative V2V
charging, EVs will be able to get charged anytime anywhere
in the future.

III. COOPERATIVE V2V CHARGING BASED ENERGY
MANAGEMENT PROTOCOL

In this section, based on the cooperative V2V charging
concept, we propose a flexible energy management protocol
for the EVs in the investigated system. In the designed
protocol, EVs that demand power can send the charging
requests to the data control center via mobile apps or on-board
apps under the support of 5G-enabled Internet of Vehicles
(IoV) and intelligent transportation system (ITS) [21]-[24].
Meanwhile, EVs that have extra power can also send their
real-time individual information to the data control center and
wait for the energy trading decisions. Then, based on the
collected information, the data control center will make smart
charging/discharging decisions for the involved EVs through
effective and efficient V2V matching, which are beneficial
to both sides (i.e., EVs as energy consumers and EVs as
energy providers). In the following, we will detail the proposed
cooperative V2V charing based energy management protocol
design.

A. EV Utility Definition

First, we need to define the utilities of the EVs as energy
consumers and energy providers based on their cost/profits
through potential energy trading and the corresponding energy
cost for driving to the selected trading spot.

1) EV as an Energy Consumer: The utility of EVZ-C ,iEN
as an energy consumer is defined as

UF (EVY) = —pial — Cost (EVS EVY) (1)

where p; is the unit power trading price, aiC represents the
requested power amount, and EV;-D is the potential paired
energy provider for EViC. In general, the electricity buying
price py, set by the power grid for the EVs to trade their surplus
power is often considerably lower than the electricity selling
price ps for the EVs to get charged [26]. Based on this, the
unit power trading price p; can be set between the electricity
buying and selling prices of the power grid. Therefore, EVs as
energy providers can sell their surplus power at a higher price,
and EVs as energy consumers can also buy their requested
power at a lower price, compared with energy trading through
discharging and charging directly with the power grid. In
practical applications, the unit power trading price p; may
also vary based on the current information collected at the
data control center.

As a preference baseline, we also define the utility of EVZ-c
when getting charged at the charging stations as

UF (CS) = —psal — Cost (EV(,CS) 2)



where CS denotes the nearest charging station for EViC and
ps is the electricity selling price set by the power grid, that is,
the power trading price between the charging station and the
EVs as energy consumers.

Note that Cost (EV{,EVY’) and Cost (EV{’, CS) denote the
energy cost for EV,L»C to drive to the selected parking lot to
achieve power transfer with EVJP and to drive to the nearest
charging station to get charged, respectively, which can be
given as

Cost (EVS,EVY) = p, x B x Dis (EV{,PL)  (3)
and
Cost (EVY,CS) = p, x B¢ x Dis (EVY, CS) 4)

where B¢ is the moving energy cost per km for EViC,
Dis (x,y) represents the driving distance between x and y,
and PL denotes the selected parking lot for EVZ-C to achieve
power transfer with EVf . Note that here the energy cost for
EV,;C to get charged at the charging station is valued by the
electricity selling price ps of the power grid.

2) EV as an Energy Provider: The utility of EVf ,jeK
as an energy provider is defined as

UF (EVY) = pral’ — poal /n — Cost (EVY  EVY)
— Time (EVY,EV{) — @ (EVY,EVY)  (5)

where p; and pg are the current trading price and the original
cost price per unit power, respectively, n represents the V2V
power transfer efficiency, ¢ (EVf , EVZC) represents the amor-
tized cost to value the battery degradation per each V2V power
transfer. Cost (EVf ) EVZC) and Time (EV;-D ) EVzC) denote the
energy cost and the time cost for EV;-D to drive to the selected
parking lot to achieve power transfer with EVZ-C , respectively,
which can be given as

Cost (EVY,EVY) =p, x BI" x Dis (EVY,PL)  (6)
and

Dis (EVY, PL
(v;) +7af /n) (7

Time (EV],EV{) = 67 (
J

where BjP is the energy cost per km for EV;-D , HJP represents
the value of time for EV;-D s ’UJI-D is the velocity of EVf ,and T
denotes the V2V power transfer speed per unit of power. Here
we assume that the current surplus power amount of EVf’ for
energy trading denoted by af” satisfies af’ > af’.

As for the time cost, we would like to point out that how to
value such a time cost objectively is difficult in practical appli-
cations, since the value of time for different people would be
quite different and highly subjective. Similar to Uber drivers,
the EV drivers who send their information to the control center
to act as energy providers may mostly be the ones with some
spare time and willing to make profits with their surplus power
via energy trading. Therefore, in our opinion, the effect of
the time cost should be much smaller than that of the energy
cost. As for the amortized cost due to battery degradation, the
value of ® in practical applications can be calculated based
on the information reported by the EVs and stored in the data

control center. Referring to [27]], the battery degradation cost
model takes both the battery replacement cost and the battery
wear-out via energy processing into consideration, and then
d (EVf ,EV¢ ) can be given as

® (EVY,EVY) = ¢; x D; x af (8)

where ¢; represents the battery replacement cost of EVf , and
D; is the capacity degradation coefficient.

Since the electricity buying price p; set by the power grid
for EVs as energy providers to trade their surplus power is
lower than the power trading price p; via cooperative V2V
charging, EVs as energy providers would prefer to trade with
EVs as energy consumers instead of the power grid, if a
positive utility can be achieved.

B. Flexible Energy Management Protocol Design

Based on the cooperative V2V charging concept, we provide
a flexible energy management protocol for the EVs in this
section. The flow chart of the procedure of the proposed energy
management protocol is given in Fig. The data control
center acts as the central controller for the energy management
process. During the procedure, the data control center collects
and updates the real-time information via mobile Internet
periodically. The collected information at the data control
center includes the real-time location and moving information
from EVs, the location information of the nearby charging
stations, smart houses, and parking lots, the charging request
and demanded power amount from EVs as energy consumers,
the available trading power amount from EVs as energy
providers, and the real-time unit electricity price from the
charging stations. Based on the collected information, the data
control center performs a selected bipartite graph based V2V
matching algorithm to obtain an efficient and effective V2V
matching and help the EVs make smart charging/discharging
decisions.

Different from typical game theory based methods, in
which players always require information on other players’
actions to take their own best responses during the converging
process, matching theory based algorithms can avoid frequent
information exchange among EVs and thus reduce the system
communication overhead. Besides, most game-theoretic solu-
tions only investigate one-sided or unilateral stability notions
[28]], whereas stable matching algorithms can achieve two-
sided stability for both the EVs as energy consumers and
EVs as energy providers based on their respective preferences,
which are more practical and suitable for the formulated
assignment problem between two distinct sets of players.
Therefore, in this paper, we employ matching theory to design
the V2V matching algorithms. In Section IV, we will propose
three bipartite graph based V2V matching algorithms, that
is, the max-weight V2V matching algorithm that can achieve
optimized network social welfare, the EV-consumer-oriented
stable V2V matching algorithm that can achieve EV-consumer-
optimal stable energy trading, and the EV-provider-oriented
stable V2V matching algorithm that can achieve EV-provider-
optimal stable energy trading. The selection of these three
V2V matching algorithms in the proposed energy management
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Fig. 2. Flow chart of the protocol procedure at the data control center.

protocol depends on the current criterion in the EV energy
trading market.

Note that during the V2V matching process, the data control
center will automatically choose a best available parking lot
for each potential paired EV based on the stored parking
lots information. After the V2V matching process, for each
matched EV as energy consumer, the achievable utility through
the cooperative V2V charging will be checked whether to be
larger than the utility when getting charged at a nearby charg-
ing station. If not, the corresponding matched EV pair will be
marked as unmatched and put into the energy trading buffer
again. Similarly, for each matched EV as energy provider, if
the achievable utility through the cooperative V2V charging
is not a positive value, the corresponding matched EV pair
will also be marked as unmatched and put into the energy
trading buffer again. If an EV as an energy consumer fails to
be matched for more than m times, the data control center
will feedback a failure-matched notice, which means it is a
better option for the EV to get charged at the nearby charging
stations. If a cooperative V2V charging deal is finally reached,
the two involved EVs will perform the power transfer at a
nearby parking lot selected by the data control center.

IV. EFFICIENT V2V MATCHING ALGORITHMS

In the proposed cooperative V2V charging based energy
management protocol, V2V matching is the core process,
which determines the efficiency of energy trading between
EVs as energy consumers and EVs as energy providers. In
order to achieve efficient and effective V2V matching, in this
section, we first construct a bipartite graph to indicate the
relationships between EVs as energy consumers and EVs as
energy providers, and then based on the constructed bipartite
graph, we further propose three V2V matching algorithms by

Broadcast the charging/discharging
decisions to the involved EVs

Energy Customer Set

Energy Provider Set

Vertices in Energy Customer Set

Vertices in Energy Provider Set

Fig. 3. An illustration of the constructed bipartite graph.

employing matching theory [28], i.e., the max-weight V2V
matching algorithm, the EV-consumer-oriented stable V2V
matching algorithm, and the EV-provider-oriented stable V2V
matching algorithm.

A. Bipartite Graph Construction

In order to achieve efficient V2V matching between EVs as
energy consumers and EVs as energy providers, we construct
a bipartite graph G = (V, £) according to the EV information
collected in the data control center, as illustrated in Fig. EI,
where V' denotes the vertex set and £ denotes the edge set.
The constructed bipartite graph is a complete, undirected, and
weighted bipartite graph.

In the constructed bipartite graph, vertex set V is divided
into two disjoint sets V¢ and VT, where vertex V. in V¢
denotes EViC as an energy consumer and vertex VjP in V¥
denotes EV;-D as an energy provider, i € A and j € K.

In our proposed cooperative V2V charging based energy



management protocol, through the V2V matching, our main
target is to optimize the network social welfare, which is
defined as the sum utility of all the involved EVs. Therefore,
in the constructed weighted bipartite graph, the edge weight
W, ; for edge E = (VE, VjP ) is defined as the sum utility of
the two connected EVs, i.e.,

W;; =US (EVY) + U (EVY). )

Definition 1: A matching M of a bipartite graph G = (V, £)

is defined as a non-empty edge set that satisfies

1) M is a subset of edge set £, i.e., M C¢&;
2) For any vertex V' € V), at most one edge E € M connects
to V.

Based on the constructed bipartite graph, in the following
sections, we propose three effective and efficient V2V match-
ing algorithms, i.e., the max-weight V2V matching algorithm,
the EV-consumer-oriented stable V2V matching algorithm,
and the EV-provider-oriented stable V2V matching algorithm.

B. Max-Weight V2V Matching Algorithm

In this section, based on the constructed bipartite graph,
we propose a max-weight V2V matching algorithm in order
to obtain the optimal matched EV pairs of energy consumers
and energy providers, which can maximize the network social
welfare (i.e., the sum edge weight of all the matched EV pairs).
Therefore, the optimization problem can be transformed to
the one aiming to find a maximum weight matching in the
constructed weighted bipartite graph.

Before we propose the max-weight V2V matching al-
gorithm, some definitions associated with the constructed
weighted bipartite graph are demanded.

Definition 2: A perfect matching is a matching M that
every vertex is connected to some edge in M.

Definition 3: Vertex V in a bipartite graph is matched if it
is an endpoint of an edge in a matching M; otherwise, V is
free.

Definition 4: A path is alternating if its edges alternate
between matching M and set £ — M. An alternating path is
augmenting if both endpoints of the path are free.

Definition 5: A vertex labeling | in the bipartite graph G =
(V,€) is a function [ : V — R, where R is a real number set.
A vertex labeling [ is feasible such that [ (VC) +1 (VP )
Wi VVE eVl v evr.

Definition 6: A Welghted bipartite graph G = (V, &) is an
equality graph based on a specific vertex labeling /, if / (VC) +

(VP) W, ¥ (VE, VP>€€Z, Ve e Ve, VPGVP

Then, according to the Kuhn-Munkres theorem and Hun-
garian method [29]], we design the max-weight V2V matching
algorithm based on the constructed bipartite graph and the
above definitions. The basic idea of the proposed max-weight
V2V matching algorithm is to start with any feasible labeling
! and a matching M C &, and iteratively increase the size of
M until M becomes a perfect matching. Note that in practical
scenarios, the number of EVs as energy consumers may not
be the same as that of EVs as energy providers in a specific
matching period. In order to guarantee a perfect matching can
be eventually found, during the construction of the bipartite

graph, we can add some virtual EVs into the vertex set (either
V¢ or VF) with smaller number of EVs to make sure that
both vertex sets have the same number of EVs, and set the
edge weight of the edges connected to these virtual vertices
to a sufficiently large negative value. For instance, if N < K,
when constructing the bipartite graph, we will add K — N
virtual vertices into V¢ and set W;;=Ne,i=N+1,--- K,
j=1,--- K, and Ne is a large negative value. Hence, in the
constructed bipartite graph, the number of the vertices in V¢
is guaranteed to be equal to the number of the vertices in V.
For simplicity of descriptions, in the following, we assume
that V = K in the constructed bipartite graph.

The detailed procedure of the proposed max-weight V2V
matching algorithm is given in Algorithm [T} In the proposed
algorithm, given the constructed bipartite graph, we first
initialize the vertex labeling as [ (V,©) = VIII}S\))( W;; and
1 (V}) = 0 that guarantees the initialized vertex labeling
is feasible. Before stepping into the iteration process, we
generate an initial matching M that comprises the edge with
highest weight in the corresponding equality graph. In each
round of the iteration process, we pick up a free vertex V¢
from the energy consumer set and try to add this selected
vertex into the new matching by finding an augmenting path
in which VZ-C is one endpoint. If such an augmenting path P
can be found in the current equality graph, we can update the
matching M by M = MUP — MNP and increase the size
of the current matching M by 1. Otherwise, we will update
the vertex labeling as

= i W) + 1V = w;
= ol (00 2000
(V)—¢&, ifVes
I(V)={ I(V)+&, ifVeT
(v, otherwise

in order to extend the current equality graph but meanwhile
keep the vertex labeling still feasible. Note that every time
we update the vertex labeling, the equality graph needs to be
updated accordingly. The iteration process will terminate until
each vertex in V° and V¥ is covered by M, i.e., M becomes
a perfect matching. The final output matching M indicates the
matched EV pairs.

In addition, we have the following optimality property.

Property 1: Given N = K, the output perfect matching
M of the proposed max-weight V2V matching algorithm is
the optimal matching with maximum weight in the bipartite
graph.

Proof: Let M’ be any perfect matching in the constructed

bipartite graph G = (V,€) and V* is a subset of V.

Since every V € V* is covered exactly once by M’, then
we have

= > W(E)
EeM’
< D> WSV = D> uv) 10
EeM’ Vey*

where W (M) represents the sum edge weight of M.



According to the procedure of the proposed max-weight
V2V matching algorithm, we have

W(M)=> W(E) =Y 1V) (11
EeM Vey*

where W (M) represents the sum edge weight of M.
Therefore, we can obtain that W (M') < W (M), which
means that the output matching M is the optimal matching
with maximum weight in the bipartite graph. [ |
In the proposed max-weight V2V matching algorithm, the
matching size increases by 1 through each phase, and thus
there are at most max(N, K) phases to reach a sub-perfect
matching. Moreover, in each phase, at most max(N, K) ver-
tices can move from S to S with vertex labeling re-calculation
and updating time O(max (N, K)) each time. Therefore, we
can obtain the computational complexity of the proposed max-

weight V2V matching algorithm as O (max(N, K)?).

C. Stable V2V Matching Algorithm

Although the proposed max-weight V2V matching algo-
rithm can achieve an optimized network social welfare with
low computational complexity, the obtained matching is not
a stable one, since the proposed max-weight V2V matching
algorithm is processed in a centralized manner and does not
take each EV’s individual rationality into consideration. How-
ever, in practical applications, each involved EV has its own
preference for energy trading. Ignoring the EVs’ individual
rationality may lead to unstable and deviated behaviors in the
energy trading market.

Therefore, in this section, we investigate the stable V2V
matching by taking each involved EV’s individual rationality
into consideration and propose an optimal stable V2V match-
ing algorithm with two-sided preferences, which can achieve
optimized stable V2V matching also in terms of the network
social welfare.

1) Stable Matching: First, we introduce some basic con-
cepts of the stable matching. As illustrated in Fig. 4} in our
investigated matching problem, EVs as energy consumers and
EVs as energy providers can be regarded as men and women
in the one-to-one marriage model [30], respectively. Each
involved EV on one side (either energy consumer set or energy
provider set) has a complete and transitive preference over
the EVs on the other side, and can be represented by a rank
order list including all the acceptable EVs on the other side.
Note that if an EV (e.g., EVZC) prefers to remain single (i.e.,
unmatched) than being matched to another EV (e.g., EVf ),
then EVf is said to be unacceptable to EVE. We denote the
preferences of EVZ-C and EVf by £¢ and L}D , respectively,
1eN,jek.

In the investigated problem, each EV cares most about its
own utility through the cooperative V2V charging. Therefore,
based on the utilities of EVs as energy consumers and EVs
as energy providers, we define the prefer relation for EVZ»C
and EV;-D (denoted by >EV1.C and >EVf) in Definition 7 and
Definition 8, respectively.

Definition 7: For EVZ-C, it prefers EVf to EV;D,, ie.,
EV] -gye EVj. if US (EV]) > UF (EV)). i € N,
JJ e, G#T

Algorithm 1: Max-Weight V2V Matching Algorithm

Input: Given the constructed bipartite graph G = (V, £).
Initialization: Initialize the feasible labeling [ as

L(VE) = max W,;;, V& eVC
vFevr
L) =0, VP e VP

Step 1: Generate an initial matching M that comprises
the edge with highest weight in equality graph
g=Ww.&).

Repeat

Step 2: Pick a free vertex V,©.

Step 3: Initial set S and set 7 as S = {V,¢} and T = .

Step 4: Define the neighbor set NV;(S) as

NS ={V eVl |VEes (ve vl ea}.

Step 5: if AV;(S) =T then
Step 5.1: Update the vertex labeling [ as

_ . c Py _ 1. .
b= i, w{“” ) +UV") = Wi}
(V)—&, ifVes
I(V)={ I(V)+&, ifVeT

(v, otherwise

Step 5.2: Update the corresponding equality graph
and NV;(S).
end
tep 6: if \V;(S) # T then
Step 6.1: Find a free vertex in N;(S) — 7.
Step 6.2: if A free vertex Vjp can be found then
Step 6.2.1: Obtain an augmenting path
P:‘/;C—%--—)Vjp;
Step 6.2.2: Update the matching M by
M=MUP-MNP;
Step 6.2.3: Go back to Step 2.

»n

end

tep 6.3: else
Step 6.3.1: Pick a vertex V;© € Ni(S) — T
Step 6.3.2: Obtain the vertex Z that is matched
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to VjP :
Step 6.3.3: Update S = SU{Z} and
T=Tu{v}/}h
Step 6.3.4: Go back to Step 5.
end
end
Until M becomes a perfect matching.
Output M.




Energy Consumer Set

Energy Provider Set

(EVF, BV, EVS}

(EV] EVS, EVS}

{Evi. BV . EV{} {EVS BV, EVY}

Fig. 4. A simple example of the one-to-one marriage model. The shown
matching is a stable matching.

Definition 8: For EVf , it prefers EViC to EV? , l.e.,
EVY -gyr EVp, if UF(BVY) > UF(BVY), j € K,
i,i' eN, i #7.

In order to judge whether a matching is a stable one, we
need to introduce the following definitions first.

Definition 9: A matching M is individual rational to all
the EVs, if and only if there does not exist an involved EV
that prefers being unmatched to being matched within M.

Definition 10: A matching M is blocked by a pair of EVs
if they prefer each other than the paired EVs through the
matching M. Such a pair is called a blocking set in general.

Note that if there is a blocking set in the matching, the
EVs involved will have an incentive to break up and form
new marriages. Therefore, the matching is considered to be
unstable.

Definition 11: A matching M is stable if and only if M
is individual rational and is not blocked by any pair of EVs.

According to the above stable matching definitions, we have
that the matching shown in Fig. 4 is a stable matching for the
given preferences of the EVs. It is proved by the classical
deferred acceptance algorithm [31]] that at least one stable
matching exists for every stable marriage problem. Then, the
problem comes to how find a stable matching effectively and
efficiently.

2) EV-Consumer-Oriented and EV-Provider-Oriented V2V
Matching Algorithms: The Gale-Shapley algorithm [32] has
been proposed as an efficient method to find a stable one-to-
one matching between men and women in the stable marriage
problem. Similarly, in our investigated problem, EVs as energy
consumers and EVs as energy providers can be regarded as
men and women, respectively. Then, referring to the Gale-
Shapley algorithm, we design the EV-consumer-oriented and
EV-provider-oriented V2V matching algorithms in order to
obtain the stable matching between EVs as energy consumers
and EVs as energy providers.

The detailed procedure of the EV-consumer-oriented V2V
matching algorithm is given in Algorithm [2] In the proposed
EV-consumer-oriented V2V matching algorithm, at first each
EV as energy consumer proposes to its most preferred EV as
energy provider according to its preference list. For each EV
as energy provider, if more than one acceptable proposals are
received, it will hold the most preferred one and reject all the
others. In each following round, any EV as energy consumer
that is rejected in the previous round updates its preference
list by deleting the first element and makes a new proposal to

its current most preferred partner who has not yet rejected it,
or makes no proposals if no acceptable choices remains. Each
EV as energy provider holds its most preferred offer up to
the current round and rejects all the rest. The iteration process
will terminate until no further proposals can be made, that is,
there is either no EVs as energy consumers still rejected or no
remaining acceptable choices in the preference lists of EVs as
energy consumers being rejected.

The proposed EV-consumer-oriented V2V matching algo-
rithm can be easily transformed into an EV-provider-oriented
one by swapping the roles of EVs as energy consumers and
EVs as energy providers, that is, EVs as energy providers make
proposals to EVs as energy consumers and EVs as energy
consumers decide to hold or reject the received proposals, as
given in Algorithm [3]

According to the procedure of the proposed EV-consumer-
oriented and EV-provider-oriented V2V matching algorithms,
the EV's make proposals or decide to hold or reject the received
proposals in an independent and distributed manner, there-
fore, the computational complexity of both the proposed EV-
consumer-oriented and EV-provider-oriented V2V matching
algorithms is O(N + K).

Note that although the provided EV-consumer-oriented and
EV-provider-oriented V2V matching algorithms can both re-
alize stable matchings, they have significant consequences.
The EV-consumer-oriented algorithm yields an EV-consumer-
optimal stable matching, in which each EV as energy con-
sumer has the best matched partner that it can have in any
stable matching, whereas the EV-provider-oriented algorithm
leads to an EV-consumer-optimal output. This property is
referred to as the polarization of stable matchings [32].

V. SIMULATIONS AND DISCUSSIONS

To evaluate the efficiency of the proposed cooperative V2V
charging based energy management protocol for the EVs in the
investigated system, we conduct the following simulations. As
a performance comparison baseline, we employ the traditional
EV charging protocol, in which the EVs as energy consumers
choose to get charged at the nearest charging station. The
utilities of EVs as energy consumers when getting charged
at the selected charging station are given in (2).

A. Simulation Parameters

In the simulations, we consider a 20 km x 20 km urban
network with 50 EVs driving in it. The EVs are initialized
at random locations with a random driving direction and
we assume that in a specific energy trading task period,
the EVs follow uniform rectilinear motion. There are two
charging stations located at (10 km, 5 km) and (10 km, 15 km),
respectively, and 25 available parking lots located uniformly in
the simulated scenario. We randomly select N EVs as energy
consumers that demand power for further driving towards their
individual destinations and K EVs as energy providers that
have surplus power for energy trading. The detailed simulation
parameters are listed in Table [T}



Algorithm 2: EV-Consumer-Oriented V2V Matching Al-
gorithm

Input: Given the constructed bipartite graph G = (V, E).
Step 1: Set up the preference lists of vertices V. and
V] denoted by L§ and LT, respectively.
Step 2: Initialize U including all the unmatched EVs as
energy consumers, i.e., U = {V;¥ | i € N'}.
Step 3: Initialize H; = ® as the current hold of VjP ,
jek.
Repeat
Step 4: V,C proposes to the vertex that locates first in its
preference list L&, YV.© € U.
Step 5: for j =1,2,--- , K do
if VjP receives a more preferred proposal from VL,C
than the current hold then
V¢ is removed from U and the current hold #;
is added into U;
V! updates H; = |72
end
else
VP rejects the received proposals and continues

J
the current hold.

end
end
tep 6: for i =1,2,--- /N do
if V.C is rejected in this round then
Update the preference list £$ by deleting the
first element in L.

2]

end
end
Until ¢/ is empty or each vertex in ¢/ has an empty
preference list.
Step 7: for j =1,2,--- , K do
if #; # ® then
‘ Add VjP and H; as a matched pair into M.
end
end
Output M.

B. EV Utility Comparison

In Fig. we simulate the utilities of EVs as energy
consumers with the traditional EV charging protocol and the
proposed cooperative V2V charging based energy management
protocol. Here in our proposed energy management proto-
col, the max-weight V2V matching algorithm and the EV-
consumer-oriented stable V2V matching algorithm are selected
to obtain the V2V matching solutions. From Fig. [5] we can
clearly find that with our proposed energy management pro-
tocol, the utilities of EVs as energy consumers are improved
significantly, leading to smarter and more effective charging
behaviors. It can be also found that EVS has the same utility
value with our proposed energy management protocol and the
traditional EV charging protocol. This implies that for EVg.J ,
cooperative V2V charging with other EVs as energy providers
in the network cannot lead to a better utility than to get charged
at the charging station. Therefore, it finally chooses to get

Algorithm 3: EV-Provider-Oriented V2V Matching Algo-
rithm
Input: Given the constructed bipartite graph G = (V, E).
Step 1: Set up the preference lists of vertices V¢ and
VP denoted by £ and LF, respectively.
Step 2: Initialize ¢/ including all the unmatched EVs as
energy providers, i.e., U = {VjP |j ek}
Step 3: Initialize H; = ® as the current hold of Vic,
i€ N.
Repeat
Step 4: Vjp proposes to the vertex that locates first in its
preference list Ef , VVjP eu.
Step 5: for i =1,2,--- | N do
if V. receives a more preferred proposal from Vf
than the current hold then
Vf is removed from U/ and the current hold H;
is added into U;
V€ updates H; = V.

end

else

V¢ rejects the received proposals and continues
the current hold.

end
end
Step 6: for j =1,2,--- , K do
if VjP is rejected in this round then
Update the preference list ,Cf by deleting the
first element in L.
end

end
Until U/ is empty or each vertex in / has an empty
preference list.

Step 6: for i = 1,2, --

if H; # @ then
| Add V¢ and H; as a matched pair into M.

end

end

Output M.

-, N do

charged at the nearest charging station based on the feedback
decisions from the data control center.

In Fig. [l we simulate the utilities of EVs as energy
providers with the proposed cooperative V2V charging based
energy management protocol. All the proposed V2V matching
algorithms are selected for comparison. From Fig. [6] we can
see most EVs as energy providers can achieve a positive
utility value, which makes the EVs that have extra power have
an incentive to participate in the cooperative V2V charging
process as energy providers. It can be found that EV? has
zero utility value, which means EV? doesn’t find an effective
partner for energy trading (i.e., unmatched) with our proposed
energy management protocol. There are two reasons resulting
in this situation. First, EV? cannot achieve a positive utility
based on the V2V matching solutions and thus it prefers to
be unmatched. Second, the matched partner of EVf cannot
achieve a better utility through cooperative V2V charging



TABLE 1

SIMULATION PARAMETERS

Parameters

Value

EV’s Velocity vic and 'u;)

Unit Power Trading Price p¢

Electricity Selling Price ps

The V2V Power Transfer Efficiency 7
The Moving Energy Cost for EVY 8¢
The Moving Energy Cost for EVf BJP
The Required Power Amount aiC
Number of EVs as Energy Consumers [N

Number of EVs as Energy Providers K

Uniform Distribution Between 20 and 60 km/h

15 ¢/kWh [17]

18 ¢/kWh [17)

0.95

Uniform Distribution Between 0.2 and 0.5 kWh/km
Uniform Distribution Between 0.2 and 0.5 kWh/km
Uniform Distribution Between 20 and 40 kWh

[10, 15, 20, 25, 30, 35, 40]

[10, 15, 20, 25, 30, 35, 40]
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Fig. 5. Utility performance comparison for EVs as energy consumers (N =
K =10).
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EVs as Energy Providers

Fig. 6. Utility performance comparison for EVs as energy providers (N =
K =10).

than to get charged at the charging station (e.g., EVé7 in
Fig. B), and thus the matched partner leaves the matched
relation, making EVZY also become unmatched. We can also
find the utilities of EVs as energy providers with the EV-
provider-oriented stable V2V matching algorithm are never
smaller than those with the EV-consumer-oriented stable V2V
matching algorithm. This is because the EV-provider-oriented
stable V2V matching algorithm can always yield the EV-
provider-optimal output. But we should note that the EV-
consumer-optimal and EV-provider-optimal properties are only
guaranteed among all the possible stable matchings not all the
matchings. Hence, there is still a possibility that the utilities
of some EVs as energy consumers/energy providers achieved
by the proposed max-weight V2V matching algorithm are
larger than those with the proposed EV-consumer-oriented/EV-
provider-oriented V2V matching algorithm, as illustrated in
Figs. 5] and

In the simulations, based on the individual and location
information of the randomly initialized EVs, the preference
list of each EV is obtained according to the prefer relation
definitions. The relative location topology between EVs as
energy consumers and EVs as energy providers is the key
factor to determine the preference of the EVs, since either
an EV as energy consumer or an EV as energy provider
prefers to achieve energy trading with a nearby EV at the
nearest parking lot to reduce its energy cost and time cost.
According to the simulation results, the preference lists of EVs
as energy consumers play a more important role in the EV-
consumer-oriented V2V matching algorithm, leading to the
EV-consumer-optimal V2V stable matching solutions, where
the preference of EVs as energy consumers has a higher
priority to be satisfied. Whereas in the EV-provider-oriented
V2V matching algorithm, the preference of EVs as energy
providers is satisfied in a priority order, resulting in the EV-
provider-optimal V2V stable matching solutions.

C. Network Social Welfare Comparison

In Figs. [7h and [Tb, we compare the network social welfare
performance of the traditional EV charging protocol and
the proposed cooperative V2V charging based energy man-
agement protocol with different V2V matching algorithms.
For comparison fairness, the network social welfare with
the traditional EV charging protocol is defined as the sum
utility of the EVs as energy consumers and the charging
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Fig. 7. Network social welfare performance comparison with different
number of EVs.

stations, where the utility of the charging stations is given
by Ucs = Y. psaic. Note that the obtained network social
welfare is aﬁegiferage over 10000 simulations with randomly
initialized EVs in the simulated scenario, and the standard
deviation from the average is small. From Figs. [7h and [7p, we
can see that our proposed energy management protocol can
achieve an obvious improvement compared with the traditional
EV charging protocol in terms of network social welfare. For
the three proposed V2V matching algorithms, the max-weight
V2V matching algorithm can always achieve the highest
network social welfare, but the obtained matching does not
take the individual rationality into consideration and thus is
an unstable matching. We can also find that when the number
of EVs as energy providers is larger than that of EVs as

energy consumers, the EV-consumer-oriented V2V matching
algorithm achieves better network performance compared with
the EV-provider-oriented one. This is because in such a case,
EVs as energy consumers have more available energy trading
candidates (i.e., EVs as energy providers) to select, and the
EV-consumer-oriented V2V matching algorithm always leads
to the EV-consumer-optimal stable V2V matching, which can
more sufficiently utilize the opportunistic selection gain on
the side of EVs as energy consumers to obtain better network
performance. Similarly, when the number of EVs as energy
providers is smaller than that of EVs as energy consumers,
the EV-provider-oriented V2V matching algorithm achieves
better network performance compared with the EV-consumer-
oriented one.

D. Energy Consumption Reduction

In Figs. and [8p, we simulate the energy consumption
reduction of all the involved EVs through the proposed co-
operative V2V charging based energy management protocol
with different V2V matching algorithms, compared with the
traditional EV charging protocol where all the EVs as energy
consumers choose to get charged at the nearest charging sta-
tion. Actually, the energy consumption reduction is calculated
as the network energy cost (i.e., the sum of energy cost of
EVs as energy consumers and EVs as energy providers that
finally participate in energy trading) difference between our
proposed energy management protocol and the traditional EV
charging protocol. From Figs. [8h and [8p, we can clearly find
that the energy consumption of the involved EVs can be
reduced effectively through our proposed energy management
protocol with all the three V2V matching algorithms. This
leads to a more flexible and smarter energy management for
the EV system. The simulated energy consumption reduction
is subject to a limited simulated scenario, but we can envision
that in the fast-developing EV systems here and there, with our
proposed cooperative V2V charging based energy management
protocol, a huge amount of energy can be saved day by day.

E. Computation Time

In Fig. 0] we compare the computation time of the pro-
posed cooperative V2V charging based energy management
protocol with different V2V matching algorithms. Note that
here the computation time is calculated based on 1000 times
realizations with randomly initialized EVs in the simulated
scenario and the y axis in Fig. 0] is set as a log-axis due to
the large computation time difference between the max-weight
V2V matching algorithm and the other two V2V matching
algorithms. From Fig. [0} we can see that the max-weight V2V
matching algorithm has significantly higher computation time
compared with the EV-consumer-oriented and EV-provider-
oriented V2V matching algorithms, which can be regarded as a
cost to achieve the optimal V2V matching in terms of network
social welfare. The EV-consumer-oriented and EV-provider-
oriented V2V matching algorithms have similar computation
time. The obtained computation time results agree with our
theoretical analysis for the computational complexity of the
designed V2V matching algorithms in Subsections IV-B and
IV-C.
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Fig. 8. Energy consumption reduction through the proposed energy man-
agement protocol with different V2V matching algorithms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated flexible energy management
through active power transfer cooperation between EVs as
energy consumers and EVs as energy providers in an energy
Internet based EV system. We first introduced a developed
cooperative V2V charging concept. Then, we proposed a
cooperative V2V charging based energy management protocol
with different V2V matching algorithms, which can help the
EVs achieve flexible and smart charging/discharging behav-
iors. Simulation results indicated that our proposed cooper-
ative V2V charging based energy management protocol with
different V2V matching algorithms can effectively improve the
utilities of the EVs and reduce the network energy consump-
tion. The max-weight V2V matching algorithm can always
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Fig. 9. Computation time comparison of the proposed energy management
protocol with different V2V matching algorithms.

lead to best network performance but it does not take the
individual rationality of the EVs into consideration, which
means the obtained V2V matchings may be not stable if the
EVs can make decisions based on their own utilities. Whereas
the proposed EV-consumer-oriented and EV-provider-oriented
V2V matching algorithms can output EV-consumer-optimal
and EV-provider-optimal stable V2V matchings with very low
computational complexity, respectively.

In our future work, we will extend the investigated scenario
to a more general energy Internet based system, where nearby
charging stations, any available smart houses with distributed
energy resources (DERs), and the EVs can be all involved
in flexible energy management in a cooperative manner. This
will result in more flexible and smarter charging/discharging
behaviors of EVs. Since the charging stations and smart
houses can be open to multiple EVs as energy consumers
simultaneously, we intend to employ many-to-many matching
model to formulate such an energy management problem.
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