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Abstract

This paper generalizes the piggybacking constructions fordistributed storage systems by considering

various protected instances and piggybacked instances. Analysis demonstrates that the proportion of

protected instances determines the average repair bandwidth for a systematic node. By optimizing the

proportion of protected instances, the repair ratio of generalized piggybacking codes approaches zero

instead of 50% as the number of parity check nodes tends to infinity. Furthermore, the computational

complexity for repairing a single systematic node cost by generalized piggybacking codes is less than

that of the existing piggybacking designs.
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I. INTRODUCTION

Nowadays, distributed storage systems (DSSs) are being increasingly employed by network

applications. Data in DSSs is deployed over multiple storage devices. However, these discrete

devices are prone to failure because of malfunctions or maintenance. In order to ensure the

reliability of the stored data even in the occurrence of nodeunavailability, DSSs are supposed

to introduce redundancy to resist storage node failures. Replication is the simplest redundant

fashion, and has been adopted to improve the reliability by many DSSs, such as the Google

File System [1] and the Hadoop Distributed File System (HDFS) [2]. With the rapid growth

of amount of storage data, erasure coding has become a betterchoice for DSSs. Compared

with replication, it is able to provide orders of magnitude reliability increasing for same storage

resource consumption [3]. As a result, several large-scalesystems, such as OceanStore [4], Total

Recall [5], Windows Azure Storage [6], and Google Colossus(GFS2) [7], have employed erasure

coding techniques to improve their storage efficiency.

Maximum distance separable (MDS) codes as one kind of erasure codes have been introduced

into many DSSs for their optimal storage efficiency. MDS property can be used to recover missing

data in a DSS. Consider ann-node DSS deployed with an(n, k) MDS code. If one node of

this storage system is failed, data stored ink nodes is required to reconstruct the missing data

in this failure node.k times amount of stored data is needed to recover the missing data. Thus,

the usage of network and disk is significantly high, i.e., therepair efficiency is very low. To

address this repair issue, many codes have been constructedto reduce the transmission data for

repairing failure node.

As the statement in [8], there are three types of node repair:exact repair, functional repair and

exact repair of the systematic part. However, exact repair is the most considered from in practical
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DSSs. In [9], Dimakis et al. defined the amount of transmission data during repairing one single

failed node asrepair bandwidth. The authors derived an optimal tradeoff between storage and

repair bandwidth (theoretic cut-set bound), and proposedregenerating codes which lie on the

tradeoff curve. In [10], [11], [12], [13], [14], the existence and the construction of regenerating

codes have been studied. However, the optimal tradeoff provided by regenerating codes was only

derived for functional repair. Almost all the interior points on the storage-bandwidth tradeoff are

not achievable under exact repair [15].

MDS array codes are another important class of erasure codesused in DDSs. They have the

advantage of simple encoding and decoding procedures, so that they can be easily implemented

in hardware devices. Many designs of MDS array codes, such asEVENODD [16], B-code [17],

X-code [18], RDP [19], STAR [20] and Zigzag codes [21], have been presented for storage

and communication applications. However, the repair bandwidth of MDS array codes can not

achieve the theoretic cut-set bound.

In 2011, Rashmi et al. proposed a new kind of distributed storage codes calledpiggybacking

codes to reduce the data amount read and downloaded for node repair[22]. The key idea of

piggybacking codes is taking several instances of an existing base code, and attaching linear

combinations of symbols in some protected instances to other non-protected instances. Hence,

the missing symbols in protected instances are able to be recovered by solving these linear

equations instead of MDS decoding. Piggybacking is a simpleand useful construction to improve

the repair efficiency of missing nodes. Several designs of piggybacking codes were presented in

[22] and [23]. These designs are able to save25% to 50% repair bandwidth for one failed node

on average. Facebook Warehouse Cluster and the new Hadoop Distributed File System (HDFS)

have employed piggybacking codes to improve their repair efficiency [24].

Although piggybacking codes are practical and easy to implementation, the reduction of repair

bandwidth of the proposed piggybacking designs still has a gap to the theoretic cut-set bound of

regenerating codes. In [23], Rashmi, Shah, and Ramchandrangave three specific piggybacking
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constructions. The second one we represent with RSR-II is the most efficient construction in

terms of repair bandwidth. The description in [23] shows that RSR-II codes are able to save

up to 50% of repair bandwidth. This paper investigates the mechanismin reduction of repair

bandwidth by using piggybacking codes. From the recovery methods of the systematic symbols,

we distinguish instances of piggybacking codes with protected stripes and non-protected stripes.

An analysis of a lower bound on the repair bandwidth of RSR-IIcodes implies that the proportion

of protected instances determines the repair efficiency of piggybacking constructions.

This paper firstly presents a generalized piggybacking design with various protected and non-

protected stripes in order to obtain various proportion of protected stripes. Second, a lower bound

and an upper bound on the repair bandwidth of generalized piggybacking codes are introduced.

The analysis of the two bounds indicates that by optimizing the proportion of protected stripes,

the repair ratio ( defined as average repair bandwidth as a fraction of the amount of original

messages) of a generalized piggybacking code approaches zero instead of50% as the number

of parity check nodes tends to infinity. It is closer to that ofminimum storage regenerating

(MSR) codes which has the theoretical lower bound. At last, the computational complexity for

the repair of a single failed systematic node is analyzed. The results show that the generalized

piggybacking codes are able to provide more efficient repairwith little complexity overhead.

The remainder of this paper is organized as follows. SectionII briefly introduces the piggy-

backing framework and RSR-II codes. Section III performs ananalysis of the repair efficiency

of RSR-II codes. Our generalized piggybacking codes are presented in Section IV. Finally, the

conclusion is given in Section V.

II. BACKGROUND

A. Maximum distance separable codes

Consider an(n, k, d) linear block codeC, wheren is its code length,k is its dimension, and

d represents the minimum Hamming distance. CodeC is called an MDS code, if its minimum

October 14, 2018 DRAFT



IEEE TRANSACTIONS ON COMMUNICATIONS 5

Hamming distanced meets the Singleton bound, i.e.,

d = n− k + 1. (1)

MDS codes are an important class of linear block codes. For given parametersn andk, the

minimum distanced reaches the maximum possible value. Thus, MDS codes are ableto correct

as many as(n− k) erasures for givenn andk.

MDS codes have been extensively applied in many DSSs. In ann-node storage system, initially

the original message is divided intok information packets. Subsequently, thek packets are

encoded inton packets and stored in then nodes respectively. With the MDS property, messages

from anyk out of n nodes could reconstruct the original message. Thus, the system is able to

tolerate the failures of any(n− k) storage nodes.

B. Piggybacking framework

In this subsection, we introduce the piggybacking framework which is the basis of construct-

ing piggybacking codes. Piggybacking framework guarantees that DSSs are able to employ

piggybacking codes without extra cost of storage. Moreover, the decoding properties of the

error-correction codes adopted by original DSSs, such as the minimum distance or the MDS

property, are not ruined by piggybacking reconstruction.

In general, the piggybacking framework operates on multiple instances of an existing base

code and adds several designed functions of the data in some instances onto other instances.

The base code of piggybacking framework can be arbitrary. Infact, it is a very attractive feature

in practice. Under the piggybacking framework, the DSSs enjoy a repair bandwidth reduction

with only small modification based on their existing error-correction codes.

Consider a linear block codeC1 represented byn encoding functions{fi}ni=1. Supposeu is

the original message ofC1. Then encoded symbols are{fi(u)}ni=1. For ann-node system, using

C1 as the base code, the piggybacking framework, which hasα instances ofC1, is illustrated in

Fig.1.
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stripe1 stripe2 stripe3 · · · stripeα

node1 f1(u1) f1(u2) + g2,1(u1) f1(u3) + g3,1(u1,u2) · · · f1(uα) + gα,1(u1, · · · ,uα−1)

node2 f2(u1) f2(u2) + g2,2(u1) f2(u3) + g3,2(u1,u2) · · · f2(uα) + gα,2(u1, · · · ,uα−1)

...
...

...
...

. . .
...

noden fn(u1) fn(u2) + g2,n(u1) fn(u3) + g3,n(u1,u2) · · · fn(uα) + gα,n(u1, · · · ,uα−1)

Fig. 1. Piggybacking framework

As shown in Fig.1, then rows correspond to then storage nodes, theα columns are calledα

stripes, {ui}αi=1 areα independent original messages and{gi,j}α,ni=2,j=1 are piggyback functions.

It is a very important consideration that the piggyback functions added on thei-th stripe(i ∈

{2, 3, · · · , α}) can only be linear combinations of original messages of stripes{1, 2, · · · , (i−1)}.

This principle guarantees that all the stripes of this piggybacking framework are decodable

through a recursion process: In stripe 1, no piggyback functions are added, so the original

messageu1 can be directly recovered by using the decoding procedure ofC1. For stripe 2,

with the decodedu1, it is easy to compute the added piggyback functions{g2,j(u1)}nj=1 and

subtract them from the stored symbols. Then,u2 is decodable. In a similar way, after the

decoding procedures of stripes{1, 2, · · · , (i − 1)} are finished,u1,u2, · · · ,ui−1 are available

to the piggyback functions{gi,j(u1, · · · ,ui−1)}nj=1. The base code of this stripe is obtained after

subtracting these piggybacking functions, so thatui can be recovered.

As the statement above, theα symbols stored in one node are independent. Sometimes, an

invertible linear transformation is performed to simplifythe computation. Such a transformation

still retains the decoding properties of the piggybacking framework.

C. RSR-II codes

Under the piggybacking framework described in Section.II-B, Rashmi et al. have presented

three designs of piggybacking codes for different considerations. The second design RSR-II is
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constructed for the purpose of pursuing high efficiency of repair. As the statement in [23], RSR-II

codes can save up to50% repair bandwidth of a systematic node.

For the sake of simple description, an(n, k) MDS code in systematic form is chosen as the base

code. Denoter = n−k as the number of parity check nodes. RSR-II codes consist of(2r−3) in-

stances of the base code. Represent the(2r−3) associated original messages asa1, a2, · · · , a2r−3,

whereai (i ∈ {1, 2, · · · , 2r − 3}) is a vector of lengthk, andai = [ai,1, ai,2, · · · , ai,k]. Then,

the (2r − 3) stripes are shown in the following form:

node1 a1,1 a2,1 · · · a2r−3,1

...
...

...
. . .

...

nodek a1,k a2,k · · · a2r−3,k

nodek+1 pT
1 a1 pT

1 a2 · · · pT
1 a2r−3

...
...

...
. . .

...

nodek+r pT
r a1 pT

r a2 · · · pT
r a2r−3

wherep1,p2, · · · ,pr arer encoding vectors corresponding to ther parity check symbols of the

base code.

The piggyback functions of RSR-II codes are(r − 1)2 linear combinations of the systematic

symbols of the first(r− 1) stripes, and they are added on the last(r− 1) parity check symbols

of the last(r− 1) stripes. The construction of these piggyback functions is taken in three steps.

First, thek systematic nodes are split into(r − 1) node sets{Si}r−1
i=1 as evenly as possible.

Without loss of generality, we supposek is not a multiple of(r− 1), and define three variables

as follows,

tl =
⌊ k

r − 1

⌋

, th =
⌈ k

r − 1

⌉

, t = k − (r − 1)tl. (2)

Hence, the firstt node sets{Si}ti=1 are of sizeth, and the remaining{Si}r−1
i=t+1 are of sizetl.
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pT
i a1 · · · pT

i ar−2

pT
i ar−1+ pT

i ar+
· · ·

pT
i ar+i−3+ pT

i ar+i−2+
· · ·

pT
i a2r−3+

∑r−1

j=1,j 6=i−1
qT
i,j v̂i qT

i,1vi qT
i,i−2vi qT

i,ivi qT
i,r−1vi

(a) node(k+i) with piggyback functions

pT
i a1 · · · pT

i ar−2

qT
i,i−1ar−1− pT

i ar+
· · ·

pT
i ar+i−3+ pT

i ar+i−2+
· · ·

pT
i a2r−3+

∑2r−3

j=r pT
i aj qT

i,1vi qT
i,i−2vi qT

i,ivi qT
i,r−1vi

(b) node(k+i) with an invertible linear transform

Fig. 2. Stored symbols in piggybacked node(k+i)

Second, define two sets of vectors of lengthk {vi}ri=2 and{v̂i}ri=2 with

vi = ar−1 + iar−2 + i2ar−3 + · · ·+ ir−2a1, (3)

v̂i = vi − ar−1 = iar−2 + i2ar−3 + · · ·+ ir−2a1. (4)

Then, introduce(r − 1)2 selection vectors{qi,j}r,r−1
i=2,j=1 to separate thek tuples in each vector

of {vi}ri=2, {v̂i}ri=2 into (r − 1) segments. And the selection vectors are defined as follows

qi,j = Mjpi, (5)

where{Mj}r−1
j=1’s are diagonal matrices of size(k×k). On the diagonal ofMj , only the positions

corresponding to the systematic nodes inSj are “1”. Therefore,
r−1
∑

j=1

qi,j = pi, ∀i ∈ {2, · · · , r}. (6)

Finally, add the piggyback functions of{vi}ri=2, {v̂i}ri=2 and{qi.j}r,r−1
i=2,j=1 into the parity check

symbols in the last(r− 1) nodes. Hence, node(k+i), i ∈ {2, 3, · · · , r}, has the following form

as shown in Fig.2(a). An invertible linear transformation is introduced to reduce the complexity

for node repair. Finally, symbols in node(k+i) are illustrated in Fig.2(b).

D. Repair bandwidth of RSR-II codes

We userepair ratio γ to represent the measure of repair efficiency of a distributed storage

code. Repair ratio is defined as the average amount of transfer data needed for repairing one
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failure node as a fraction of original messages. In this subsection, we recall the repair procedure

of one systematic node by RSR-II codes. Then, the repair ratio of RSR-II γsys
1 is computed.

Consider ann-node DSS deployed with an(n, k) RSR-II code. For the sake of simple

description, we represent the first(r− 1) stripes asprotected stripes, whose systematic symbols

are involved in the piggyback functions and defined asprotected symbols. Meanwhile, the last

(r − 2) stripes are represented asnon-protected stripes, whose systematic symbols are named

with non-protected symbols. If the l-th systematic node fails, repair procedure of this node

is to recover the missing protected symbols{ai,l}r−1
i=1 and the missing non-protected symbols

{ai,l}2r−3
i=r . Assume nodel belongs toSj which is one of the(r − 1) node sets described in

Section.II-C. The repair procedure is described in Algorithm 1.

Algorithm 1 The repair algorithm of RSR-II codes

1 Recovering the missing non-protected symbols{ai,l}2r−3
i=r ;

The base code of this RSR-II code is in systematic MDS form. According to MDS property,

ai,l can be directly recovered withai,1, · · · , ai,l−1, ai,l+1, · · · , ai,k,pT
1 ai.

2 Getting the piggyback functions involved with the missingprotected systems{ai,l}r−1
i=1 ;

As statement in II-C, there are(r−1) piggyback functions containingqi,j ’s (i = [2, · · · , r]).

These piggyback functions are linear combinations of the protected symbols inSj. Download

the (r − 1) parity check symbols containing the(r − 1) piggyback functions, and subtract

the items about{aj}2r−3
j=r . Then, the(r−1) piggyback functions involved with{ai,l}r−1

i=1 are

left.

3 Recovering the missing protected symbols{ai,l}r−1
i=1 ;

Including {ai,l}r−1
i=1 , the other surviving protected symbols inSj\l are also involved with

the (r−1) piggyback functions obtained in step 2. Download these surviving symbols, and

subtract them out from the(r−1) piggyback functions. Then,{ai,l}r−1
i=1 can be reconstructed

by solving the left(r − 1) linear combinations.
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From Algorithm 1, (r − 2)k symbols are needed to be downloaded in step 1, and(r − 1)

symbols are needed in step 2. In step 3, if the size ofSj is th, the number of downloaded symbols

is (r−1)(th−1). Otherwise, if the size istl, (r−1)(tl−1) symbols are downloaded. We denote

the average repair bandwidth of one systematic node asB
sys
1 . The number of systematic nodes

in the node sets of sizeth is t · th, and the number of those systematic nodes in the node set of

size tl is (r − 1− t)tl. Thus

B
sys
1 =

1

k
[tth((r − 2)k + (r − 1)th)

+(r − 1− t)tl((r − 2)k + (r − 1)tl)]. (7)

Thus, the repair ratioγsys
1 is

γ
sys
1 =

B
sys
1

k(2r − 3)

=
1

k2(2r − 3)
[tth((r − 2)k + (r − 1)th) +

(r − 1− t)tl((r − 2)k + (r − 1)tl)]

=
1

k2(2r − 3)
[k2(r − 2) +

(tt2h + (r − 1− t)t2l )(r − 1)]. (8)

III. EFFICIENCY ANALYSIS FOR RSR-II CODES

In this section, a further analysis on the repair efficiency of RSR-II is performed.

Here, we introduce a notationstripe-repair ratio η to measure the repair efficiency of one

stripe

η ,
repair bandwidth for a systematic symbol

the amount of original message of this stripe
.

Consider a piggybacking code withβ stripes. Assume the stripe-repair ratios of these stripes are

{ηi}βi=1. Denote the proportions of these stripes as{pi}βi=1. Thus, the repair ratio for systematic

nodes of this piggybacking codeγsys has the following form,

γsys =

β
∑

i=1

piηi. (9)

October 14, 2018 DRAFT



IEEE TRANSACTIONS ON COMMUNICATIONS 11

Recall the RSR-II codes described in Section II-D. The repair procedure deals with the missing

protected and non-protected symbols in two different measures: MDS decoding is adopted for

the recovery of non-protected symbols, and the amount of downloading for repairing one missing

non-protected symbol isk symbols. As regard to the missing protected symbols, solving linear

combinations is employed, and the average bandwidth isth or tl, which depends on the size of

node set containing the failure node. Denoteηp and ηnp as the stripe-repair ratios of protected

and non-protected stripes, respectively. The amount of original message of one stripe equals to

the k symbols stored in the systematic nodes. Hence,

ηp ≈ th or tl
k

≈ 1

r − 1
(10)

ηnp = 1. (11)

Although only an approximate value ofηp is given by Equation (10), it is obvious thatηp < ηnp,

i.e., repair procedure for protected stripes requires lessdownloaded symbols compared with non-

protected stripes. This is the mechanism in reduction of repair bandwidth by using piggybacking

codes.

In the remainder of this section, we explore the critical factors influencing the repair efficiency

through an analysis ofγsys
1 . Represent the proportion of protected stripes withpp. Thus, the

proportion of non-protected stripes is(1− pp). Rewriteγsys
1 as the form of Equation (9). Then,

γ
sys
1 =

r − 2

2r − 3
· k

2

k2
+

r − 1

2r − 3
· tt

2
h + (r − 1− t)t2l

k2

= (1− pp) · ηnp + pp · ηp, (12)

wherepp = r−1
2r−3

, ηnp = 1 and ηp =
tt2

h
+(r−1−t)t2

l

k2
. The inequality of quadratic and arithmetic

means tells that forx nonnegative integersn1, n2, · · · , nx, they satisfy the following inequality.

x
∑

i=1

n2
i ≥

(

x
∑

i=1

ni

)2

x
. (13)
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Thus,

ηp =
tt2h + (r − 1− t)t2l

k2

≥ (tth + (r − 1− t)tl)
2

k2(r − 1)

=
1

r − 1
, (14)

with equality if and only iftl = th, i.e., k is a multiple of(r − 1). In this case,γsys
1 is able to

reach a lower boundmin (γsys
1 ), and

min (γsys
1 ) =

r − 2

2r − 3
+

r − 1

2r − 3
· 1

r − 1

=
r − 1

2r − 3
. (15)

According to Equation (15),γsys
1 approaches0.5 as the number of parity check nodes tends

to infinite, i.e., RSR-II codes are able to save at most50% repair bandwidth. For a DSS whose

parameters(n, k, r) are given, in order to further improve the repair efficiency,the structure of

piggybacking design is supposed to be modified. As the analysis above, the protected stripe-repair

ratio ηp is smaller thanηnp. It implies that the repair efficiency of piggybacking codesmay be

improved by increasingpp according to Equation (12). Actually, largerpp means more protected

symbols involved in one piggyback function that leads to thereduction ofηp. Therefore, it is

possible to improve the repair efficiency of piggybacking codes by optimizing the proportion of

protected stripespp.

IV. GENERALIZED PIGGYBACKING CODES

In this section, we present a generalized construction which contains various protected and

non-protected stripes. An analysis is performed to clarifythe relationship between repair ratio

γ and the proportion of protected stripespp. The results show that our proposed generalized

piggybacking codes are able to provide more efficient node repair by optimizingpp. The repair

ratio γ
sys
2 of the generalized piggybacking codes approaches zero whenthe number of the parity

check nodes tends to infinity.
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node1 a1,1 · · · as,1 as+1,1 · · · as+p,1

...
...

.. .
...

...
. . .

...

nodek a1,k · · · as,k as+1,k · · · as+p,k

nodek+1 pT
1 a1 · · · pT

1 as pT
1 as+1 · · · pT

1 as+p

nodek+2 pT
2 a1 · · · pT

2 as pT
2 as+1 · · · pT

2 as+p

...
...

.. .
...

...
. . .

...

nodek+r pT
r a1 · · · pT

r as pT
r as+1 · · · pT

r as+p

Fig. 3. (s+ p) instances of the base code.

A. Code design

Similarly, choose an(n, k) systematic MDS codeC2 as the base code of a generalized

piggybacking code.r = n−k is the parity check number. Two parameterss andp are introduced

to represent the numbers of protected and piggybacked stripes, respectively. Figure 3 depicts the

(s+ p) instances ofC2.

According to the construction principle of piggybacking framework, piggyback functions

added on thei-th stripe should only involve the original messages of the stripes[1, · · · , i−1]. For

the sake of simple analysis, we add the piggyback functions only on the parity check symbols in

non-protected stripes. Redefine the non-protected stripesas piggybacked stripes. As illustrated

in Fig.3, all symbols stored in the(s+ p) stripes are divided into 4 regions.

• Region A contains all the systematic symbols of the protected stripes.

• Region B contains all the systematic symbols and the first parity check symbol of the

piggybacked stripes.

• Region C contains all the parity check symbols of the protected stripes.

• Region D contains the last(r − 1) parity check symbols of the piggybacked stripes.

Once a systematic node failure happens, the repair procedure is supposed to regenerate the

October 14, 2018 DRAFT



IEEE TRANSACTIONS ON COMMUNICATIONS 14

(s+p) missing symbols in Region A and B. Similar to RSR-II codes, the systematic symbols in

Region B are self-sustaining: According to the MDS property, missing symbols in one row of

Region B could be recovered by the surviving symbols in the otherk rows. As for the systematic

symbols in Region A, piggybacking functions are constructed to protected them. These piggyback

functions are supposed to be embedded in Region D. The size ofRegion D is(r − 1)p, i.e.,

at most(r − 1)p piggyback functions can be designed. It is a noteworthy factthat thes failed

protected symbols in one row of Region A should be simultaneously recovered by solving a

set of linear combinations. In order to guarantee that thereare enough piggyback functions to

simultaneously recover thoses missing symbols in Region A, the following inequality must be

satisfied when we choose the parameterss andp.

(r − 1)p ≥ s. (16)

In the remainder this subsection, an method of the construction of (r− 1)p piggyback functions

is illustrated as follows.

1 Construct a⌈ ks
(r−1)p

⌉ × (r − 1)p empty piggybacking array.

Each column of this piggybacking array corresponds to one piggyback function.

2 Fill the protected symbols in Region A into the piggybacking array.

The protected symbols in Region A form ak × s array as shown in Fig.3. Step 2 takes

these symbols in rowwise from thek × s array and fills them into the piggybacking array.

Obviously, if ks is not divisible by(r − 1)p, the last row of this piggyback array would

not be full.

3 Obtain the(r− 1)p piggybacking functions, and add them in Region D. After all protected

symbols are allocated into the piggyback array, sum the symbols in each column up. Thus,

(r − 1)p piggybacking functions are obtained, and they can be added into Region D in an

arbitrary order.

It is remarkable that the piggyback functions are only summations of some protected symbols.
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As a result, the recovery of missing protected symbols couldbe very simple. An example is

presented to illustrate the partition method and the repairprocedure.

Example 1. Consider an (8, 4) systematic MDS code as the base code. Set s = 3, and p = 2.

Denote a,b, c,d, e of length 4 as the 5 input message vectors. Thus, the original storage array

is

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

pT
1 a pT

1 b pT
1 c pT

1 d pT
1 e

pT
2 a pT

2 b pT
2 c pT

2 d pT
2 e

pT
3 a pT

3 b pT
3 c pT

3 d pT
3 e

pT
4 a pT

4 b pT
4 c pT

4 d pT
4 e

The protected symbols in Region A are {a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4} and {d1, d2, d3, d4}.

Fill them into a 2× 6 piggyback array. We have

a1 b1 c1 a2 b2 c2

a3 b3 c3 a4 b4 c4

Sum the symbols in each column up, and then we achieve the six piggyback functions (a1 +

a3), (b1 + b3), (c1 + c3), (a2 + a + 4), (b2 + b4), (c2 + c4). Finally, the generalized piggybacking

code can be constructed as follows
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a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

pT
1 a pT

1 b pT
1 c pT

1 d pT
1 e

pT
2 a pT

2 b pT
2 c pT

2 d+(a1+a3) pT
2 e+(b1+b3)

pT
3 a pT

3 b pT
3 c pT

3 d+(c1+c3) pT
3 e+(a2+a4)

pT
4 a pT

4 b pT
4 c pT

4 d+(b2+b4) pT
4 e+(c2+c4)

B. Analysis on repair bandwidth

Recall the construction of piggyback functions in Section.IV-A. If ks is not dividable by

(r − 1)p, the systematic symbols partitioned into the(r − 1)p piggyback functions are uneven.

Here, we define the(r − 1)p sizes of these piggyback functions as the numbers of contained

systematic symbols in Region A. Without loss of generality,assume the(r − 1)p sizes are not

all the same, and denote them asn1, n2, · · · , n(r−1)p. Obviously, they satisfy that

(r−1)p
∑

i=1

ni = ks. (17)

Suppose that thel-th systematic node fails,l ∈ {1, · · · , k}. All remaining symbols stored in

Region B except nodel are needed to reconstruct{as+1,l, · · · , as+p,l} with the MDS property.

The amount transmitted in this step iskp symbols. In Region D, thes parity check symbols

containing the piggyback functions of{a1,l, · · · , as,l} are required to recover thes missing

protected symbols. Moreover, the components along{as+1, · · · , as+p} should be subtracted out

from thes downloaded parity check symbols. However, the left piggybacking functions are still

involved with some other protected symbols besides{a1,l, · · · , as,l}. Hence, more symbols in

Region A are needed. Assume the sizes of theses piggybacking functions areni1 , ni2 , · · · , nis.

The download amount of systematic symbols from Region A in this step is(ni1 + ni2 + · · ·+

nis − s).

Now we derive the total bandwidth of repairing all thek systematic nodes. Symbols in Region
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B need to be downloadedk2p times. Consider a parity check symbol stored in Region D.

Suppose the size of the piggybacking function embedded in this parity check symbol isni

(i ∈ {1, · · · , (r − 1)p}). During the repair procedures, the parity check symbol needs to be

downloadedni times. Meanwhile, each of theni involved systematic symbols in Region A needs

to be downloaded(ni − 1) times. Therefore, the total repair bandwidth of all thek systematic

nodes isk2p+
∑(r−1)p

i=1 n2
i .

From the above, the average repair ratioγ
sys
2 is

γ
sys
2 =

1

k2(s+ p)
(k2p +

(r−1)p
∑

i=1

n2
i ). (18)

Rewrite Equation (18) as

γ
sys
2 =

1

k2(s+ p)
(k2p +

(r−1)p
∑

i=1

n2
i )

=
1

k2(s+ p)

[

k2p+

(
(r−1)p
∑

i=1

ni)
2 +

∑

i 6=j

(ni − nj)
2

(r − 1)p

]

=
1

k2(s+ p)

[

k2p+

k2s2 +
∑

i 6=j

(ni − nj)
2

(r − 1)p

]

. (19)

Without loss of generality, assumeks is not dividable by(r − 1)p, and

t′l =
⌊ ks

(r − 1)p

⌋

, t′h =
⌈ ks

(r − 1)p

⌉

, t′ = ks− t′l(r − 1)p. (20)

Thus,t′ out of (r− 1)p piggyback functions have the size oft′h, and the rest(r− 1)p− t′ ones

have the size oft′l. Then,γsys
2 goes to

γ
sys
2 =

1

k2(s+ p)

[

k2p +
k2s2

(r − 1)p
+

t′((r − 1)p− t′)

(r − 1)p

]

. (21)

In a DSS, the parameters of base code(k, r) are given. Thus,γsys
2 is varied with different

values of(s, p). In order to explore the relationship betweenγ
sys
2 and the proportion of protected
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Fig. 4. The lower and upper bounds with variouspp.

instancespp = s
s+p

, the lower and upper bounds ofγsys
2 are derived as follows,

γ
sys
2 ≥ 1

k2(s+ p)
(k2p+

k2s2

(r − 1)p
)

=
p

s + p
+

s

s+ p
· s

(r − 1)p
(22)

γ
sys
2 ≤ 1

k2(s+ p)

[

k2p +
k2s2

(r − 1)p
+

(r − 1)p

4

]

=
p

s + p

(

1 +
r − 1

4k2

)

+
s

s+ p
· s

(r − 1)p
(23)

Rewrite the lower and upper bounds as functionsΓlow(pp) andΓup(pp) of pp. Then,

Γlow(pp) = (1− pp) +
pp

2

1− pp
· 1

r − 1
(24)

Γup(pp) = (1− pp)
(

1 +
r − 1

4k2

)

+
pp

2

1− pp
· 1

r − 1
(25)

Example 2. Assume the code rate of the base code is 0.5, i.e., k = r. For various r’s, Figure

4 shows the curves of Γlow(pp) and Γup(pp) with pp.

It illustrates that the lower bound Γlow(pp) and upper bound Γup(pp) are close to each other.

Moreover, both of them can reach their extreme points by optimizing pp which implies that the

generalized piggybacking code can obtain optimum γ
sys
2 with appropriate parameters (s, p).
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Further analyze the optimum condition forγsys
2 with the derivatives ofΓlow(pp) andΓup(pp),

which are with respect topp and listed as follows

∂Γlow(pp)

∂pp
=

−rp2p + 2rpp − (r − 1)

(r − 1)(1− pp)2
(26)

∂Γup(pp)

∂pp
=

−rp2p + 2rpp − (r − 1)

(r − 1)(1− pp)2
− r − 1

4k2
. (27)

Let ∂Γlow(pp)
∂pp

and ∂Γup(pp)
∂pp

equal to zero. Then, we work out the minimum values ofΓlow(pp) and

Γup(pp) as follows,

1) min(Γlow(pp)) =
2√
r+1

, whenpp = 1− 1√
r
;

2) min(Γup(pp)) =
−2+2

√

r+
(r−1)2

4k2

r−1
, whenpp = 1− 1

√

r+ (r−1)2

4k2

.

The results indicate that

1) min(Γlow(pp)) is only determined by the number of parity check nodesr;

2) min(Γup(pp)) is determined by bothk and r. However, for high code rate,min(Γup(pp))

is dominantly determined byr;

3) min(Γup(pp)) corresponds closely tomin(Γlow(pp)). In other words, there exists a gener-

alized piggybacking code whose repair ratio is very close tothe lower bound.

Figure 5 shows the curves ofmin(Γlow(pp)) andmin(Γup(pp)) with r. It implies that

min(γsys
2 ) ≈ min(Γlow(pp)) =

2√
r + 1

. (28)

At the end of this subsection, we perform asymptotic analyses of min (γsys
1 ) andmin (γsys

2 ),

and compare them with the repair ratio ofminimum storage regenerating (MSR) codesγMSR.

The limits ofmin (γsys
1 ) andmin (γsys

2 ) asr approaches infinity are

lim
r→+∞

min (γsys
1 ) = lim

r→+∞

r − 1

2r − 3
= 0.5 (29)

lim
r→+∞

min (γsys
2 ) = lim

r→+∞

2√
r + 1

= 0. (30)

As described in [9], [8], [25], MSR codes which correspond tothe best storage efficiency are

one of two most important classes of regenerating codes. Therepair bandwidth for one failure

October 14, 2018 DRAFT



IEEE TRANSACTIONS ON COMMUNICATIONS 20

100 101 102 103 104

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
pa

ir 
ba

nd
w

id
th

 a
s 

%
 o

f m
es

sa
ge

 s
iz

e

min(Γ
low

)

min(Γ
up

), rate:0.4

min(Γ
up

), rate:0.6

min(Γ
up

), rate:0.8

Fig. 5. Minimum values ofγsys
1 andγsys

2 .

node is

BMSR =
Md

k(d− k + 1)
, (31)

whereM represents the size of original messages,d denotes the number of accessed surviving

nodes, andk is the dimension of the MSR code. For the sake of simple comparison, we set the

code rate to0.5, andd = n− 1 such that the MSR code provides the highest repair efficiency.

Thus,

γMSR =
BMSR

M =
2

r
− 1

r2
. (32)

The curves ofmin (γsys
1 ), min (γsys

2 ) and γMSR are shown in Fig.6. It shows thatmin (γsys
2 )

approaches zero instead of50% as the number of parity check nodes tends to infinity. As a

result, compared with RSR-II codes, generalized piggybacking codes are able to provide more

efficient node repair with less bandwidth. Moreover,min (γsys
2 ) is closer toγMSR - the theoretical

lower bound of repair ratio.

Table I compares the repair efficiency of RSR-II codes and generalized piggybacking codes

with various code parametersn andk. It is illustrated that with the increasing of the number of

parity check nodes, generalized piggybacking codes can reach smaller repair bandwidth.
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TABLE I

EFFICIENCY COMPARISON FOR DIFFERENT EXPLICIT CODES

n, k
RSR-II codes generalized piggybacking codes

stripes γ
sys
1 s, p stripes γ

sys
2

10, 5 7 0.5886 1, 1 2 0.6400

20, 10 17 0.5341 2, 1 3 0.4867

30, 15 27 0.5207 3, 1 4 0.4133

40, 20 37 0.5147 4, 1 5 0.3700

50, 25 47 0.5114 4, 1 5 0.3344

80, 40 77 0.5068 5, 1 6 0.2740

200, 100 197 0.5026 9, 1 10 0.1819

C. Analysis on decoding complexity

In this subsection, the complexity of node repair procedureof generalized piggybacking

codes is analyzed first. Then the comparison with RSR-II codes is performed. It is shown

that the computational complexity for repairing a single systematic node cost by generalized

piggybacking codes is much less than that of RSR-II codes.

As the statement in Section.III and IV-B, piggybacking codes adopt two kinds of calculations
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to repair a failed node. MDS decoding is used for the recoveryof the missing symbols in

non-protected or piggybacked stripes, while solving linear combinations is employed to recon-

struct the missing symbols in protected stripes. Recall thegeneralized piggybacking code, in

Section.IV-A, which hass protected stripes andp piggybacked stripes. The repair procedure of

the l-th systematic node is described in Section.IV-B.

In order to recoveras+i,l - the missing symbol of thei-th piggybacked stripe, the symbols

{as+i,1, · · · , as+i,l−1, as+i,l+1, · · · , as+i,k,p
T
1 as+i} are required. Denote the vector representation

of pj (j ∈ {1, · · · , r}) as [pj,1, · · · , pj,k]. Then,as+i,l can be worked out by the below equation.

as+i,l = p−1
j,l [p

T
1 as+i − (as+i,1pj,1 + · · ·+

as+i,l−1pj,l−1 + as+i,l+1pj,l+1 + · · ·+

as+i,kpj,k)]. (33)

Hence, the MDS decoding for the recovery of one missing symbol in a piggybacked stripe costs

k multiplications and(k − 1) additions.

Consider the recovery ofai,l - the missing symbol in thei-th protected stripe. According to

the description of Section.IV-A, we denote the piggyback function which involvesai,l together

with other (nx − 1) protected symbols asFx. In order to reconstructai,l, from Region D, the

stored symbolξ containingFx is needed, and the(nx − 1) surviving protected symbols are also

required. Hence,ai,l can be figured out as follows.

• Compute the parity check symbol inξ. This step costsk multiplications and(k−1) additions.

• Subtract the parity check symbol fromξ. Thus, 1 addition is needed.

• Subtract the(nx−1) surviving protected symbols form the leftFx. Thus,(nx−1) additions

are required.

Actually,nx represents the size of the piggyback functionFx, i.e.,nx equals tot′l or t′h. Therefore,

solving linear combinations for one missing protected symbol costsk multiplications and ks
(r−1)p

+

k − 1 additions, on average.
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TABLE II

COMPUTATIONAL COMPLEXITY FOR NODE REPAIR

Multiplications Additions

MDS decoding k (k − 1)

Solving linear
k ks

(r−1)p
+ k − 1

combinations

The computational complexity of MDS decoding and solving linear combinations is listed in

Table II.

According the analysis in Section.III, solving linear combinations is introduced by piggyback-

ing codes to reduce the repair bandwidth of partial missing symbols. For RSR-II codes,(r− 1)

missing protected symbols need to be simultaneously recovered by solving a group of(r − 1)

linear functions. As a result, we have to perform Gaussian elimination. However, for generalized

piggybacking codes, piggyback functions are simple summations of some protected symbols.

Compared with the calculations for MDS decoding, those for solving linear combinations cost

only ks
(r−1)p

more additions. Thus, the generalized piggybacking framework is able to provide

high repair efficiency because it can significantly reduce the repair bandwidth for a single failed

systematic node with low computational complexity.

V. CONCLUSION AND DISCUSSION

This paper presents a generalized piggybacking construction with various protected instances

and piggybacked instances. Compared with the previous design, our proposed generalized pig-

gybacking codes can save more repair bandwidth by optimizing the proportion of protected

instances. When the number of parity check nodes tends to infinity, the average repair bandwidth

as a fraction of total messages approaches zero. Moreover, complexity analysis demonstrates

that generalized piggybacking codes are able to efficientlyrepair the failed node with reasonable
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complexity overhead.

In fact, if we look at piggybacking functions from the view oferror-correction codes, piggy-

backing codes are perfect encounter between codes with small minimum Hamming distance and

codes with large minimum Hamming distance. The repair of systematic symbols in piggybacked

stripes is relied on the base codes of these stripes. These base codes have strong erasure-correction

capability due to their large minimum distance. However, itresults in strong correlation among

all the symbols. Thus, decoding of these good codes requestslarge amount of data access. For

the repair of protected stripes, piggybacking functions are linear combinations of the protected

systematic symbols. In other words, these symbols togetherwith piggyback functions can be

considered as linear codes with small minimum distance. Since these bad codes have weak

correlation among symbols, their decoding requests small amount of data access.
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