arXiv:1702.01241v1 [cs.IT] 4 Feb 2017

IEEE TRANSACTIONS ON COMMUNICATIONS 1

Generalized Piggybacking Codes for

Distributed Storage Systems

Shuai Yuanh, Qin Huang!'**, Senior Member, IEEE, Zulin Wang, Member, |EEE
'Qian Xuesen Laboratory of Space Technology
China Academy of Space Technology, Beijing, China, 100094
2School of Electronic and Information Engineering
Beihang University, Beijing, China, 100191

Email: yuanshuai@qgxslab.cn; ghuang.smash@gmail.comlimv201@163.com

Abstract

This paper generalizes the piggybacking constructionditributed storage systems by considering
various protected instances and piggybacked instancesly#is demonstrates that the proportion of
protected instances determines the average repair batidfgida systematic node. By optimizing the
proportion of protected instances, the repair ratio of galimed piggybacking codes approaches zero
instead of 50% as the number of parity check nodes tends ttinfFurthermore, the computational
complexity for repairing a single systematic node cost byegalized piggybacking codes is less than

that of the existing piggybacking designs.

Part of this paper has been accepted by IEEE Global ComntiotrisaConference (IEEE Globecom 2016).

Corresponding author: Q. Huang.

October 14, 2018 DRAFT

http://arxiv.org/abs/1702.01241v1

IEEE TRANSACTIONS ON COMMUNICATIONS 2

Index Terms

piggybacking, distributed storage systems, MDS, nodeirepa

I. INTRODUCTION

Nowadays, distributed storage systems (DSSs) are beimgasiogly employed by network
applications. Data in DSSs is deployed over multiple sterdgvices. However, these discrete
devices are prone to failure because of malfunctions or t@aamce. In order to ensure the
reliability of the stored data even in the occurrence of nodavailability, DSSs are supposed
to introduce redundancy to resist storage node failurepliéion is the simplest redundant
fashion, and has been adopted to improve the reliability lanynDSSs, such as the Google
File System[[1] and the Hadoop Distributed File System (HP[$. With the rapid growth
of amount of storage data, erasure coding has become a bbtiee for DSSs. Compared
with replication, it is able to provide orders of magnitu@dability increasing for same storage
resource consumptioh![3]. As a result, several large-ssyaleems, such as OceanStare [4], Total
Recall [5], Windows Azure Storagkl[6], and Google ColosG#g2) [7], have employed erasure
coding techniques to improve their storage efficiency.

Maximum distance separable (MDS) codes as one kind of erasure codes have been introduced
into many DSSs for their optimal storage efficiency. MDS @y can be used to recover missing
data in a DSS. Consider anrnode DSS deployed with afn, k) MDS code. If one node of
this storage system is failed, data stored:inodes is required to reconstruct the missing data
in this failure nodek times amount of stored data is needed to recover the missitag @hus,
the usage of network and disk is significantly high, i.e., tapair efficiency is very low. To
address this repair issue, many codes have been consttaateduce the transmission data for
repairing failure node.

As the statement in [8], there are three types of node regeact repair, functional repair and

exact repair of the systematic part. However, exact repdlieé most considered from in practical

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 3

DSSs. In[[9], Dimakis et al. defined the amount of transmissiata during repairing one single
failed node agepair bandwidth. The authors derived an optimal tradeoff between storage an
repair bandwidth (theoretic cut-set bound), and propasgeherating codes which lie on the
tradeoff curve. In[[10],[114],[112],[T13],[[14], the existea and the construction of regenerating
codes have been studied. However, the optimal tradeofiged\wby regenerating codes was only
derived for functional repair. Almost all the interior p&sron the storage-bandwidth tradeoff are
not achievable under exact repair [15].

MDS array codes are another important class of erasure amibesin DDSs. They have the
advantage of simple encoding and decoding proceduresasohity can be easily implemented
in hardware devices. Many designs of MDS array codes, suéiV&NODD [16], B-codel[[17],
X-code [18], RDP [[19], STAR[[20] and Zigzag codes |[21], haweeb presented for storage
and communication applications. However, the repair badithwof MDS array codes can not
achieve the theoretic cut-set bound.

In 2011, Rashmi et al. proposed a new kind of distributedagf@rcodes callegdiggybacking
codes to reduce the data amount read and downloaded for node @24irThe key idea of
piggybacking codes is taking several instances of an egidtase code, and attaching linear
combinations of symbols in some protected instances tor atbe-protected instances. Hence,
the missing symbols in protected instances are able to beveesd by solving these linear
equations instead of MDS decoding. Piggybacking is a sirapteuseful construction to improve
the repair efficiency of missing nodes. Several designsgdyiacking codes were presented in
[22] and [23]. These designs are able to sav& to 50% repair bandwidth for one failed node
on average. Facebook Warehouse Cluster and the new Hadstbilted File System (HDFS)
have employed piggybacking codes to improve their repdiciency [24].

Although piggybacking codes are practical and easy to implgation, the reduction of repair
bandwidth of the proposed piggybacking designs still haagatg the theoretic cut-set bound of
regenerating codes. 10 [23], Rashmi, Shah, and Ramcham@an three specific piggybacking

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 4

constructions. The second one we represent with RSR-Ilasntbst efficient construction in
terms of repair bandwidth. The description in[23] showst tR8R-1l codes are able to save
up to 50% of repair bandwidth. This paper investigates the mechamisneduction of repair
bandwidth by using piggybacking codes. From the recoverthaus of the systematic symbols,
we distinguish instances of piggybacking codes with ptettstripes and non-protected stripes.
An analysis of a lower bound on the repair bandwidth of RSBstes implies that the proportion
of protected instances determines the repair efficiencyiggyacking constructions.

This paper firstly presents a generalized piggybackinggdesith various protected and non-
protected stripes in order to obtain various proportionrotgcted stripes. Second, a lower bound
and an upper bound on the repair bandwidth of generalizeglyparking codes are introduced.
The analysis of the two bounds indicates that by optimizhreygroportion of protected stripes,
the repair ratio (defined as average repair bandwidth as a fraction of the amfuoriginal
messages) of a generalized piggybacking code approachesnatead of50% as the number
of parity check nodes tends to infinity. It is closer to thatmoinimum storage regenerating
(MSR) codes which has the theoretical lower bound. At ldst, dcomputational complexity for
the repair of a single failed systematic node is analyzee. rEsults show that the generalized
piggybacking codes are able to provide more efficient repdln little complexity overhead.

The remainder of this paper is organized as follows. Sedtidmiefly introduces the piggy-
backing framework and RSR-Il codes. Section Il performsaaalysis of the repair efficiency
of RSR-II codes. Our generalized piggybacking codes arsepted in Section IV. Finally, the

conclusion is given in Section V.

Il. BACKGROUND
A. Maximum distance separable codes

Consider an(n, k, d) linear block codeC, wheren is its code lengthk is its dimension, and

d represents the minimum Hamming distance. C68de called an MDS code, if its minimum

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 5
Hamming distancel meets the Singleton bound, i.e.,
d=n—Fk~+1. (1)

MDS codes are an important class of linear block codes. Rangparameters and k, the
minimum distancel reaches the maximum possible value. Thus, MDS codes ardabterect
as many agn — k) erasures for givem and k.

MDS codes have been extensively applied in many DSSs. inrade storage system, initially
the original message is divided info information packets. Subsequently, thepackets are
encoded into, packets and stored in thenodes respectively. With the MDS property, messages
from any k out of n nodes could reconstruct the original message. Thus, tiemyis able to

tolerate the failures of anyn — k) storage nodes.

B. Piggybacking framework

In this subsection, we introduce the piggybacking framéwehich is the basis of construct-
ing piggybacking codes. Piggybacking framework guarantiwat DSSs are able to employ
piggybacking codes without extra cost of storage. Moreotlex decoding properties of the
error-correction codes adopted by original DSSs, such agrimimum distance or the MDS
property, are not ruined by piggybacking reconstruction.

In general, the piggybacking framework operates on muatipktances of an existing base
code and adds several designed functions of the data in sostences onto other instances.
The base code of piggybacking framework can be arbitrarfadh it is a very attractive feature
in practice. Under the piggybacking framework, the DSS®em repair bandwidth reduction
with only small modification based on their existing errorfection codes.

Consider a linear block cod@ represented by. encoding functiond f;}",. Supposeu is
the original message @f,. Then encoded symbols argf;(u)} ,. For ann-node system, using
C: as the base code, the piggybacking framework, whichchasstances of’;, is illustrated in

Fig[d.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 6

stripe 1 stripe 2 stripe 3 e stripe «v
nodel | fi(u) | fi(u2) +g21(w) | fi(us) +g31(ur,uz) | -+ | fi(ua)+ ga,1(ur, -+, ua—1)
node2 | fo(uy) | fo(uz) +g22(ur) | fo(us) +g3o(ur,uz) | -+ | fa(ua) + ga2(ur, -+ ,ua—1)
noden | fn(u1) | fo(u2) + g2n(ur) | fu(us) +gsn(u,uz) | -+ | fun(ua) + gan(ur, -, ua—1)

Fig. 1. Piggybacking framework

As shown in Fid.IL, thex rows correspond to the storage nodes, the columns are called
stripes, {u;}i, are« independent original messages ag; }; ;_, are piggyback functions.

It is a very important consideration that the piggyback tiows added on théth stripe(i €
{2,3,---,a}) can only be linear combinations of original messages gfes$fi1,2,---,(i—1)}.
This principle guarantees that all the stripes of this pimpking framework are decodable
through a recursion process: In stripe 1, no piggyback fanstare added, so the original
messageu; can be directly recovered by using the decoding proceduré, ofor stripe 2,
with the decodedu,, it is easy to compute the added piggyback functiéps;(u,)}7_, and
subtract them from the stored symbols. Then, is decodable. In a similar way, after the
decoding procedures of stripds,2,--- (i — 1)} are finishedu;,uy,--- ,u;_; are available
to the piggyback functiongg; ;(ui,--- ,u;1)}%_,. The base code of this stripe is obtained after
subtracting these piggybacking functions, so thatan be recovered.

As the statement above, thesymbols stored in one node are independent. Sometimes, an

invertible linear transformation is performed to simplihe computation. Such a transformation

still retains the decoding properties of the piggybackiragrfework.

C. RSR-Il codes

Under the piggybacking framework described in SedfidB],IRashmi et al. have presented

three designs of piggybacking codes for different consitiens. The second design RSR-II is

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 7

constructed for the purpose of pursuing high efficiency pare As the statement i [23], RSR-II
codes can save up % repair bandwidth of a systematic node.

For the sake of simple description, @n k) MDS code in systematic form is chosen as the base
code. Denote = n—k as the number of parity check nodes. RSR-II codes consi&rof3) in-
stances of the base code. Represen{2he 3) associated original messagesasa,, - - - , as,_3,
wherea; (i € {1,2,---,2r — 3}) is a vector of lengtht, anda; = [a;1,ai2, -+ ,a;x|. Then,

the (2r — 3) stripes are shown in the following form:

nodel ail a1 s a2r—3.1
nodek ai g ask | *c | G2r—3k
nodek+1 plTal plTaQ cee plTazr—3
nodek+r | pfa; | pfag | --- | plag._3
wherepy, ps, - - - , P arer encoding vectors corresponding to thearity check symbols of the

base code.

The piggyback functions of RSR-II codes gre— 1)? linear combinations of the systematic
symbols of the firs{r — 1) stripes, and they are added on the last 1) parity check symbols
of the last(r — 1) stripes. The construction of these piggyback functionsken in three steps.

First, thek systematic nodes are split info — 1) node sets{S;}/~{ as evenly as possible.
Without loss of generality, we supposds not a multiple of(r — 1), and define three variables

as follows,

tl:{£J,th:[rkl],t:k—(r—ml.)
7f—1

Hence, the first node setsS;}!_; are of sizet,, and the remaining.S;};—,".

, are of sizet;.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 8

T T T T T
" . P; ar—1+ p; ar+ P; &r+i—3+ | P; arti—2+ pP; agr—3+
Piar) | Py -2 r—1 T T T T T
Zj:ld';éifl q;,;Vi 9;1Vi Qi i—2Vi q;,;Vi Qi r—1Vi
(a) node(k+:) with piggyback functions
T T T T T
" . Qi i—1ar—1— p; ar+ P; &r+i—3+ | P; arti—2+ pP; agr—3+
pP;ai | - P; ar—2
ZQT_?’ To. T . T . T v T .
Jj=r P; &; qz,l 1 q1,172 1 ql,z 1 qz,rfl 2

(b) node(k+2) with an invertible Tinear transform

Fig. 2. Stored symbols in piggybacked nodeti)

Second, define two sets of vectors of lengthv;}’_, and {v,}7_, with

Vi = a,_j+ia,_s+ita,_g+---+i Ca, €))

~ . .2 r—9
Vi = V,—a,_;=ta,_o+ia._3+---+1i “aj. 4)

ror—1

25— 1o separate thé tuples in each vector

Then, introduce(r — 1)? selection vectorq; ;}

of {v;}/_,,{vi}I_, into (r — 1) segments. And the selection vectors are defined as follows
qi; = M;p;, (5)
where{M}_{’s are diagonal matrices of siz& x k). On the diagonal oM, only the positions

corresponding to the systematic nodesSinare “1”. Therefore,

r—1
j=1

ror—1

Finally, add the piggyback functions é¥;}_,, {Vi}i_, and{q;, ;},", ;—, into the parity check
symbols in the lastr — 1) nodes. Hence, nodg+i), i € {2,3,--- ,r}, has the following form
as shown in Fi§.2(&). An invertible linear transformatisnritroduced to reduce the complexity

for node repair. Finally, symbols in nodé+i) are illustrated in Fi§.2(b).

D. Repair bandwidth of RSR-Il codes

We userepair ratio v to represent the measure of repair efficiency of a distribsterage

code. Repair ratio is defined as the average amount of tradafa needed for repairing one

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 9

failure node as a fraction of original messages. In this sctiien, we recall the repair procedure

sYs

of one systematic node by RSR-II codes. Then, the repaw citRSR-Il ;*° is computed.
Consider ann-node DSS deployed with afin, k) RSR-Il code. For the sake of simple

description, we represent the fifst— 1) stripes agrotected stripes, whose systematic symbols

are involved in the piggyback functions and definedoestected symbols. Meanwhile, the last

(r — 2) stripes are represented asn-protected stripes, whose systematic symbols are named

with non-protected symbols. If the /-th systematic node fails, repair procedure of this node

is to recover the missing protected symbéis,} _}

and the missing non-protected symbols
{a;,}27%. Assume nodé belongs toS; which is one of the(r — 1) node sets described in

Sectior.II-=C. The repair procedure is described in Aldonfl.

Algorithm 1 The repair algorithm of RSR-1l codes
1 Recovering the missing non-protected symbjals,

2r—3.

The base code of this RSR-II code is in systematic MDS forntofding to MDS property,
a;; can be directly recovered withy 1, - -+, a;;_1, a1, 5 Gk, Pl A

2 Getting the piggyback functions involved with the missjprgtected systeméa; ;}i-;;
As statement inI[-C, there afe —1) piggyback functions containing, ;’s (i = [2,--- ,7]).
These piggyback functions are linear combinations of tiséggted symbols i¥;. Download
the (r — 1) parity check symbols containing thie — 1) piggyback functions, and subtract
the items aboufa;}3®. Then, the(r — 1) piggyback functions involved witka,, }/—| are
left.

3 Recovering the missing protected symbéis;}/_};
Including {a;;}=], the other surviving protected symbols f)\/ are also involved with
the (r — 1) piggyback functions obtained in step 2. Download theseigimgy symbols, and
subtract them out from th@ — 1) piggyback functions. Thera,;,;}/=] can be reconstructed

by solving the left(r — 1) linear combinations.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 10

From Algorithm[1, (» — 2)k symbols are needed to be downloaded in step 1, (and 1)
symbols are needed in step 2. In step 3, if the siz€;a$ ¢, the number of downloaded symbols
is (r—1)(t, — 1). Otherwise, if the size i, (r—1)(¢, — 1) symbols are downloaded. We denote
the average repair bandwidth of one systematic nodB;45 The number of systematic nodes
in the node sets of sizg ist - t;,, and the number of those systematic nodes in the node set of

sizet; is (r — 1 —t)t;. Thus

B = Llmal(r— 2k + (r —)

+(r—=1=0t((r —2)k+ (r — 1)t)]. (7)
Thus, the repair ratia;”* is
sys nys
7
1
— m[tth((r —2)k+ (r—1)t,) +
(r—=1—=t)t((r—2)k+ (r — 1)t;)]
1 2
- m[/{? (T— 2) +
(tt2 + (r — 1 =)t} (r — 1)]. (8)

IIl. EFFICIENCY ANALYSIS FORRSR-II CoDES

In this section, a further analysis on the repair efficienER8R-II is performed.
Here, we introduce a notatiosiripe-repair ratio n to measure the repair efficiency of one

stripe

» repair bandwidth for a systematic symbol

"= the amount of original message of this stripe

Consider a piggybacking code withstripes. Assume the stripe-repair ratios of these stripes a
{n:}7_,. Denote the proportions of these stripes{ag_,. Thus, the repair ratio for systematic

nodes of this piggybacking codg¥s has the following form,

B
VY = mez-- 9
i=1

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 11

Recall the RSR-II codes described in Secfionll-D. The mgpaicedure deals with the missing
protected and non-protected symbols in two different messuMDS decoding is adopted for
the recovery of non-protected symbols, and the amount ohtlmading for repairing one missing
non-protected symbol i symbols. As regard to the missing protected symbols, sglirrear
combinations is employed, and the average bandwidth @& ¢;, which depends on the size of
node set containing the failure node. Dengjeand,, as the stripe-repair ratios of protected
and non-protected stripes, respectively. The amount gir@i message of one stripe equals to
the £ symbols stored in the systematic nodes. Hence,

thorth 1
"Iy T or—1

Moy = 1L 11

(10)

Q

Although only an approximate value ¢f is given by Equation{10), it is obvious tha} < 7,.,,
i.e., repair procedure for protected stripes requiresdessmloaded symbols compared with non-
protected stripes. This is the mechanism in reduction ddirdgandwidth by using piggybacking
codes.

In the remainder of this section, we explore the criticatde influencing the repair efficiency
through an analysis of;"*. Represent the proportion of protected stripes with Thus, the

proportion of non-protected stripes (is — p,). Rewrite~;¥* as the form of Equatiori]9). Then,

r—2 kK r—1 tt+(r—-1-1t)t

A v R R e 2
= (L =pp) Mhp + Dy s (12)
wherep, = % My = 1 andn, = “?“Tk;;_t)tf The inequality of quadratic and arithmetic
means tells that for: nonnegative integers;, ns, - - - , n,, they satisfy the following inequality.

- .

z 2
. &)
Yont> =L (13)
i=1

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 12

Thus,
A (r=1=t)t
Mp = kz
o (Bt (r=1-t))?
- k2(r —1)
1
= — (14)

sys

with equality if and only ift; = ¢, i.e., k is a multiple of(r — 1). In this case;;** is able to

reach a lower bounchin (~;?), and

7’—2+r—1 1
2r—3 2r—3 r—1
r—1

T -3 (15)

According to Equation[(15);,¥* approache$.5 as the number of parity check nodes tends

min (") =

to infinite, i.e., RSR-Il codes are able to save at ni®$t repair bandwidth. For a DSS whose
parametergn, k,r) are given, in order to further improve the repair efficienty structure of
piggybacking design is supposed to be modified. As the aisay®ve, the protected stripe-repair
ratio , is smaller tham,,. It implies that the repair efficiency of piggybacking codray be
improved by increasing, according to Equatiori(12). Actually, larggy means more protected
symbols involved in one piggyback function that leads to té@uction ofr,. Therefore, it is
possible to improve the repair efficiency of piggybackingle® by optimizing the proportion of

protected stripeg,,.

V. GENERALIZED PIGGYBACKING CODES

In this section, we present a generalized construction lwhantains various protected and
non-protected stripes. An analysis is performed to clattiy relationship between repair ratio
v and the proportion of protected stripps. The results show that our proposed generalized
piggybacking codes are able to provide more efficient nogairdy optimizingp,. The repair

sys

ratio v,”" of the generalized piggybacking codes approaches zero thieemumber of the parity

check nodes tends to infinity.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 13

nodel

nodek

nodek+1

nodek+2

nodek+r

Fig. 3. (s + p) instances of the base code.

A. Code design

Similarly, choose an(n, k) systematic MDS cod&, as the base code of a generalized
piggybacking coder = n—k is the parity check number. Two parametei@dp are introduced
to represent the numbers of protected and piggybackeastnipspectively. Figufd 3 depicts the
(s + p) instances of’,.

According to the construction principle of piggybackingrfrework, piggyback functions
added on the-th stripe should only involve the original messages of thiges|1,--- ,i—1]. For
the sake of simple analysis, we add the piggyback functiohgan the parity check symbols in
non-protected stripes. Redefine the non-protected stepgsiggybacked stripes. As illustrated
in Fig[3, all symbols stored in thes + p) stripes are divided into 4 regions.

« Region A contains all the systematic symbols of the protestepes.

« Region B contains all the systematic symbols and the firsitypaheck symbol of the

piggybacked stripes.

« Region C contains all the parity check symbols of the pretdtripes.

. Region D contains the last — 1) parity check symbols of the piggybacked stripes.

Once a systematic node failure happens, the repair proeedisupposed to regenerate the

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 14

(s+p) missing symbols in Region A and B. Similar to RSR-II codeg, sistematic symbols in
Region B are self-sustaining: According to the MDS propemtyssing symbols in one row of
Region B could be recovered by the surviving symbols in tieict rows. As for the systematic
symbols in Region A, piggybacking functions are constrdi¢teprotected them. These piggyback
functions are supposed to be embedded in Region D. The siRegibn D is(r — 1)p, i.e.,

at most(r — 1)p piggyback functions can be designed. It is a noteworthy tlaat thes failed
protected symbols in one row of Region A should be simultasorecovered by solving a
set of linear combinations. In order to guarantee that tlaeeeenough piggyback functions to
simultaneously recover thosemissing symbols in Region A, the following inequality must b

satisfied when we choose the parameteesd p.
(r—=1)p=>s. (16)

In the remainder this subsection, an method of the consruct (- — 1)p piggyback functions

is illustrated as follows.

1 Construct & | x (r — 1)p empty piggybacking array.

1
Each column of this piggybacking array corresponds to oggytiack function.

2 Fill the protected symbols in Region A into the piggybackarray.
The protected symbols in Region A formkax s array as shown in Fig.3. Step 2 takes
these symbols in rowwise from thex s array and fills them into the piggybacking array.
Obviously, if ks is not divisible by(r — 1)p, the last row of this piggyback array would
not be full.

3 Obtain the(r — 1)p piggybacking functions, and add them in Region D. After atitpcted
symbols are allocated into the piggyback array, sum the s{grib each column up. Thus,

(r — 1)p piggybacking functions are obtained, and they can be aduedRegion D in an

arbitrary order.

It is remarkable that the piggyback functions are only sutiona of some protected symbols.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 15

As a result, the recovery of missing protected symbols ctnddvery simple. An example is

presented to illustrate the partition method and the remaicedure.

Example 1. Consider an (8,4) systematic MDS code as the base code. Set s = 3, and p = 2.
Denote a, b, ¢, d, e of length 4 as the 5 input message vectors. Thus, the original storage array

is

ar by o | di e
ag bo C2 do €2
a3 by c3 | d3 e3

ag by cq | di ey

pfa p{b plc| pld pfe

psa pib pic| pid pje
pia pib pjc| pjd pje

pia pib pjc| pjd pje

The protected symbolsin Region Aare {a, as, as, as}, {b1, ba, b3, by}, {1, co, 3, ca} @and {dy, do, ds, dys }.
Fill theminto a 2 x 6 piggyback array. e have
a1 b ¢ ax by e
az by c3 as by e
Sum the symbols in each column up, and then we achieve the six piggyback functions (a; +
az), (by + b3), (c1 + ¢3), (as + a+4), (by + by), (c2 + ¢4). Finally, the generalized piggybacking

code can be constructed as follows

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 16

a1 by Cc1 dy €1
ao by Co ds €2
as b3 C3 dg €3
ay by Cy dy €4
pia p{b pic| p{d pie

pia pib pic| phd+(ai+as) pie+ (bi+bs)

pia pib pic| pid+(ci+cs) pjet(aztas)

pia pib pic| pid+(ba+bs) pie+(catca)

B. Analysis on repair bandwidth

Recall the construction of piggyback functions in Secli¢®] If ks is not dividable by
(r — 1)p, the systematic symbols partitioned into the— 1)p piggyback functions are uneven.
Here, we define thér — 1)p sizes of these piggyback functions as the numbers of cadain
systematic symbols in Region A. Without loss of generakiigsume thér — 1)p sizes are not

all the same, and denote themsmasn,, - -- ,n,_1),. Obviously, they satisfy that

(r—1)p

=1
Suppose that théth systematic node fails,€ {1,--- ,k}. All remaining symbols stored in

Region B except nodé are needed to reconstruft,y,, - - - ,as+p,;} With the MDS property.
The amount transmitted in this step &% symbols. In Region D, the parity check symbols
containing the piggyback functions df,,--- ,a,;} are required to recover the missing
protected symbols. Moreover, the components alpmng . - - - ,as;,} should be subtracted out
from the s downloaded parity check symbols. However, the left piggiioay functions are still
involved with some other protected symbols besifes;,- - - ,as;}. Hence, more symbols in
Region A are needed. Assume the sizes of thepmgybacking functions are;,, n;,,--- ,n;,.
The download amount of systematic symbols from Region A ia $tep is(n;, + n;,, +---+
n;, — $).

Now we derive the total bandwidth of repairing all thesystematic nodes. Symbols in Region

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 17

B need to be downloaded?p times. Consider a parity check symbol stored in Region D.
Suppose the size of the piggybacking function embedded ig ghrity check symbol is:;

(¢ € {1,---,(r — 1)p}). During the repair procedures, the parity check symbol sdedbe
downloaded:; times. Meanwhile, each of the involved systematic symbols in Region A needs
to be downloadedn,; — 1) times. Therefore, the total repair bandwidth of all theystematic
nodes isk?p + S\ P n2.

From the above, the average repair ratj¢’ is
(r=1)p

1
A 2). 1

Rewrite Equation[(18) as

sys

Y2 = m(k2p+ Z n;)

(r—1)p
) k*s* + ;(m —n;)?
gl = @

Without loss of generality, assumg is not dividable by(r — 1)p, and

t, = hrfisl)pj’ th, = {(rfisl)pk t'=ks —t)(r —1)p. (20)

Thus,# out of (r — 1)p piggyback functions have the size &f, and the restr — 1)p — ¢’ ones

sYs

have the size of;. Then,~,;”" goes to

s 1 k252 t((r—1)p—1t)
T B2 1) [kZP B C , &)

sys

In a DSS, the parameters of base cdder) are given. Thusy,”” is varied with different

values of(s, p). In order to explore the relationship betwegif’ and the proportion of protected

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 18

100 s ; ; ; , , , -
N /
o 9O N /
N O N
B S j
80 S y
O N /
2 > Vi /
g of N P4
£ N
w60 i
\2 Lo 75 e
b [p— r ,r=5 S S
@ 50 " =
£ Uiy =10
-§ wor I | r=10
3 p
g a0t r, . 150
e T, =50
g 201 T, <1000
2 jow
woh |- r,, 1000 5

L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fi

g. 4. The lower and upper bounds with varigys

instanceg, = -1, the lower and upper bounds 0" are derived as follows,

v > m(lﬁp + %)

- Sfip—FS—ip'(r—sl)p (22)
v < T [k:Qp n (Tk‘jslz)p N (r —41)29]

- sip<”r4221>+sf_p'(rf1)p (23)

Rewrite the lower and upper bounds as functidns,(p,) andI',,(p,) of p,. Then,

Liow(pp) = (1=pp) + - (24)
WP P l1—-p, 7—1
r—1 jos 1
Lup(pp) = (1_pp)(1+ 4]{:2)"’1_1729 1 (25)
p

Example 2. Assume the code rate of the base code is 0.5, i.e., kK = r. For various r’s, Figure
[l shows the curves of T, (p,) and Ty, (p,) With p,.

It illustrates that the lower bound I';,,,(p,) and upper bound I',,,(p,) are close to each other.
Moreover, both of them can reach their extreme points by optimizing p, which implies that the

sYs

generalized piggybacking code can obtain optimum ~5”° with appropriate parameters (s, p).

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 19

Further analyze the optimum condition fgi’* with the derivatives of’;,,(p,) andT,,(p,),

which are with respect tp, and listed as follows

10w (Pp) _ T ps+ 2rp, — (r—1) (26)
Opy (r—1)(1 —p,)?

Oup(py) —op+2rp—(r—1) r—1 o7
Ipyp B (r—1)(1 —pp)? 4k2

Let aplgzﬁp”) and arg;ip”) equal to zero. Then, we work out the minimum values'gf,(p,) and

I'.y(p,) as follows,

1) min<rlow(pp)) = ﬁ, Whenpp =1- %'
I, P G Y
2) mln(rup<pp)) = ﬂ, Whenpp — 1 _ 1

r—1 2 "
(r=1)
V7 Rz

1) min(I',w(py)) is only determined by the number of parity check nodes

The results indicate that

2) min(I",,(p,)) is determined by botlk andr. However, for high code ratenin(I",,(p,))
is dominantly determined by;

3) min(I',,(p,)) corresponds closely tmin(I',,(p,)). In other words, there exists a gener-
alized piggybacking code whose repair ratio is very closthélower bound.

Figure[$ shows the curves afin (I, (p,)) andmin(T,,(p,)) with r. It implies that

2
min(v5"") ~ min(Teu(py)) = N (28)

At the end of this subsection, we perform asymptotic analydenin (7;¥*) and min (v5”°),
and compare them with the repair ratio mfnimum storage regenerating (MSR) codesy,;sr-

sys

The limits of min (7;%*) and min (+;¥*) asr approaches infinity are

. o osysy r—1
TETOO min (,7°) = Jim o= 0.5 (29)
2
. . Sys _ —
A min0z) = I Gy =0 (30)

As described in[]9],[[8],[125], MSR codes which correspondhe best storage efficiency are

one of two most important classes of regenerating codes.r@per bandwidth for one failure

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 20

-

min(FIDW)

AR EE R RS I A A A I min(l"), rate:0.4
up!

4
©

o
o
T

————— min(I"), rate:0.6 |
up!

————— min(I"), rate:0.8
up]

o
3
T

o
o

repair bandwidth as % of message size
°o o o o
N w = w

o
[

o

=
o
°
i
S)
N
i
5 b
N
=
S)
w
=
[S)
S

sys sys

Fig. 5. Minimum values ofy;¥® and~5"".

node is

Busr = #, (31)
where M represents the size of original messagedenotes the number of accessed surviving
nodes, and: is the dimension of the MSR code. For the sake of simple colsgarwe set the
code rate td).5, andd = n — 1 such that the MSR code provides the highest repair efficiency
Thus,

B 2 1
TMSR = j\(jR =—-—— (32)

r o r2

The curves ofmin (7;¥?), min (75Y") and vy sz are shown in Figlé. It shows thabin (15%")
approaches zero instead 8% as the number of parity check nodes tends to infinity. As a
result, compared with RSR-II codes, generalized piggyinackodes are able to provide more
efficient node repair with less bandwidth. Moreovein (,") is closer toy,;sr - the theoretical
lower bound of repair ratio.

Table[l compares the repair efficiency of RSR-Il codes ancegdized piggybacking codes

with various code parametersandk. It is illustrated that with the increasing of the number of

parity check nodes, generalized piggybacking codes carh re@aller repair bandwidth.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 21

-

— sys
min(+") ||

o
©

min(+")

o
®
T

Tmsr

o
3

o
o

o o
w IS

repair bandwidth as % of message size
o o
N o

o
[

T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
r

Fig. 6. Lower bounds on the average repair bandwidths.

TABLE |

EFFICIENCY COMPARISON FOR DIFFERENT EXPLICIT CODES

RSR-Il codes | generalized piggybacking codes
mh stripes | ~;Y° s,p | stripes v5Y*

10,5 7 0.5886 | 1,1 2 0.6400
20,10 17 0.5341 | 2,1 3 0.4867
30,15 27 0.5207| 3,1 4 0.4133
40, 20 37 0.5147 | 4,1 5 0.3700
50, 25 47 0.5114 | 4,1 5 0.3344
80,40 77 0.5068 | 5,1 6 0.2740

200,100 | 197 | 0.5026| 9,1 10 0.1819

C. Analysis on decoding complexity

In this subsection, the complexity of node repair procedofregeneralized piggybacking
codes is analyzed first. Then the comparison with RSR-II sadeperformed. It is shown
that the computational complexity for repairing a singlestsynatic node cost by generalized
piggybacking codes is much less than that of RSR-1l codes.

As the statement in Sectionllll abd TV-B, piggybacking codelopt two kinds of calculations

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 22

to repair a failed node. MDS decoding is used for the recowdryhe missing symbols in
non-protected or piggybacked stripes, while solving lineambinations is employed to recon-
struct the missing symbols in protected stripes. Recallgbeeralized piggybacking code, in
SectiorL.IV=A, which hass protected stripes ang piggybacked stripes. The repair procedure of
the [-th systematic node is described in Secfion.IVv-B.

In order to recovem,,;,; - the missing symbol of theé-th piggybacked stripe, the symbols

{agiin, ,Qsrig 1, Qspite1s > Gsrik, Pl asti} are required. Denote the vector representation
ofp, j€{l,---,r}) as[p1, - ,pjx. Then,a,,;; can be worked out by the below equation.
_ —17,.7
Astig = Pjp[P1@sti — (AspinPin + -+

Qsti1—1Pj1—1 T Qspil+1Pji+1 + -+

Cls+z',kpj,k)]- (33)

Hence, the MDS decoding for the recovery of one missing synmb@a piggybacked stripe costs
k multiplications andk — 1) additions.

Consider the recovery af;; - the missing symbol in thé-th protected stripe. According to
the description of Sectidn.IVAA, we denote the piggybachkction which involvess;; together
with other (n, — 1) protected symbols as). In order to reconstruct,;, from Region D, the
stored symbok containingF), is needed, and the:, — 1) surviving protected symbols are also
required. Henceg;; can be figured out as follows.

. Compute the parity check symbol§nThis step costs multiplications and k—1) additions.

« Subtract the parity check symbol frogn Thus, 1 addition is needed.

« Subtract then, — 1) surviving protected symbols form the Ieft,. Thus,(n, — 1) additions

are required.
Actually, n, represents the size of the piggyback functigni.e.,n, equals ta; or ¢;. Therefore,
solving linear combinations for one missing protected sghabstsk multiplications and(rf—‘“i)er

k — 1 additions, on average.

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 23

TABLE Il

COMPUTATIONAL COMPLEXITY FOR NODE REPAIR

Multiplications Additions

MDS decoding k (k—=1)

Solving linear
k o TR -1
combinations

The computational complexity of MDS decoding and solvingedr combinations is listed in
Table[Il.

According the analysis in Sectiénllll, solving linear camdtions is introduced by piggyback-
ing codes to reduce the repair bandwidth of partial missymgb®ls. For RSR-1I codegy — 1)
missing protected symbols need to be simultaneously reedvey solving a group ofr — 1)
linear functions. As a result, we have to perform Gaussiamieation. However, for generalized
piggybacking codes, piggyback functions are simple sunumsitof some protected symbols.

Compared with the calculations for MDS decoding, those fdviag linear combinations cost

ks
(r—1)p

high repair efficiency because it can significantly redu@ertpair bandwidth for a single failed

only more additions. Thus, the generalized piggybacking fraonkvis able to provide

systematic node with low computational complexity.

V. CONCLUSION AND DIScUssION

This paper presents a generalized piggybacking congtruatith various protected instances
and piggybacked instances. Compared with the previougesur proposed generalized pig-
gybacking codes can save more repair bandwidth by optigitte proportion of protected
instances. When the number of parity check nodes tends tutyntihe average repair bandwidth
as a fraction of total messages approaches zero. Moreawaplexity analysis demonstrates

that generalized piggybacking codes are able to efficigehair the failed node with reasonable

October 14, 2018 DRAFT

IEEE TRANSACTIONS ON COMMUNICATIONS 24

complexity overhead.

In fact, if we look at piggybacking functions from the view efror-correction codes, piggy-
backing codes are perfect encounter between codes with snmnum Hamming distance and
codes with large minimum Hamming distance. The repair ofesgatic symbols in piggybacked
stripes is relied on the base codes of these stripes. Thesaebdes have strong erasure-correction
capability due to their large minimum distance. Howeverggults in strong correlation among
all the symbols. Thus, decoding of these good codes reqlasgts amount of data access. For
the repair of protected stripes, piggybacking functiores larear combinations of the protected
systematic symbols. In other words, these symbols togetitér piggyback functions can be
considered as linear codes with small minimum distanceceSthese bad codes have weak

correlation among symbols, their decoding requests smadluat of data access.

VI. ACKNOWLEDGMENT

We sincerely thank Prof. Shu Lin and Dr. Zhiying Wang for theonstructive suggests.
This paper received funding from NSAF under Grant U15301dd ldational Natural Science
Foundation of China under Grant 61471022, and also spothdwyel aboratory Independent

Innovation project of Qian Xuesen Laboratory of Space Tetdgy.

REFERENCES

[1] S. Ghemawat, H. Gobioff and S.-T. Leung, “The Google fiystem”, in Proc. ACM S GOPS operating systems review,
vol. 37, no. 5, 2003, pp. 2943.

[2] D. Borthakur, “Hdfs architecture guide,” 2008. [Onlin€Available: [http://hadoop.apache.org/common/doasént/hdfs
design.pdf

[3] H. Weatherspoon and J. D. Kubiatowicz, “Erasure codiagreplication: A quantitative comparison,” Rroc. Peer-to-Peer
Systems(IPTPS), 2002, pp. 328337.

[4] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. ¥0Zhnd J. Kubiatowicz, “Pond: The oceanstore prototype,”
in Proc. 2nd USENIX Conf. File and Sorage Technologies(FAST), 2003, pp. 114.

[5] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. VoelKéotal recall: System support for automated availability
management,” irProc. 1st Conf. Networked Systems Design and Implementation(NSDI), 2004, pp. 2525.

October 14, 2018 DRAFT

http://hadoop.apache.org/common/docs/current/hdfs

IEEE TRANSACTIONS ON COMMUNICATIONS 25

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvol McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci et al.,
“Windows azure storage: a highly available cloud storageise with strong consistency,” iRroc. 23rd ACM Symposium

on Operating Systems Principles, 2011, pp. 143157.

“Google-gfs2 colossus,” 2012. [Online]. Available:tp//www.quora.com/Colossus-Google-GFS2.

A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A suna@y network codes for distributed storag®foceedings

of the IEEE, vol. 99, no. 3, pp. 476489, 2011.

A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and K.aRichandran, “Network coding for distributed storage
systems,”|EEE Trans. Inf. Theory, vol. 56, no. 9, pp. 45394551, 2010.

D. Cullina, A. G. Dimakis, and T. Ho, “Searching for mmum storage regenerating codes,”Hroc. 47th Annu. Allerton
Conf. Commun., Control, Comput., 2009.

K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandf&xplicit construction of optimal exact regenerating cede
for distributed storage,” in Proc. 47th Annu. Allerton Coffommun., Control, Comput., 2009, pp. 12431249.

C. Suh and K. Ramchandran, “Exact-repair MDS codes fefriduted storage using interference alignment,”Firoc.
IEEE Int. Symp. Inf. Theory, 2010, pp. 161165.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exaetienerating codes for distributed storage at the MSR and
MBR points via a product-matrix constructiodEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 52275239, 2011.

J. Li, X. Tang, and U. Parampalli, “A framework of consttions of minimal storage regenerating codes with thenogti
access/update propertyEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 19201932, 2015.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and R. Kannan, “Dimited storage codes with repair-by-transfer and
nonachievability of interior points on the storage-bardiwitradeoff,”| EEE Trans. Inf. Theory, vol. 58, no. 3, pp. 18371852,
2012.

M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: Affi@ent scheme for tolerating double disk failures in RAID
architectures,1TEEE Trans. Computers, vol. 44, no. 2, pp. 192202, 1995.

L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, “Low-diéy MDS codes and factors of complete graphEEE Trans.
Inf. Theory, vol. 45, no. 6, pp. 18171826, 1999.

L. Xu and J. Bruck, “X-code: MDS array codes with optimacoding,”|[EEE Trans. Inf. Theory, vol. 45, no. 1, pp.
272276, 1999.

P. Corbett, B. English, A. Goel, T. Grcanac, S. KleimanLeong, and S. Sankar, “Row-diagonal parity for doublé dis
failure correction,” inProc. 3rd USENIX Conference on File and Storage Technologies(FAST), 2004.

C. Huang and L. Xu, “STAR: An efficient coding scheme fasrrecting triple storage node failuresdEEE Trans.
Computers, vol. 57, no. 7, pp. 889901, 2008.

I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS arrages with optimal rebuilding,JEEE Trans. Inf. Theory, vol.
59, no. 3, pp. 15971616, 2013.

October 14, 2018 DRAFT

http://www.quora.com/Colossus-Google-GFS2

IEEE TRANSACTIONS ON COMMUNICATIONS 26

[22] K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybagkidesign framework for read-and download-efficient
distributed storage codes,” iroc. |[EEE Int. Symp. Inf. Theory, 2013, pp. 331335.

[23] K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybagkidesign framework for read-and download-efficient
distributed storage codes,” 2013. [Online]. AvailablegpHtifarxiv.org/pdf/1302.5872.pdf

[24] K. V. Rashmi, N. B. Shah, G. Dikang, K. Hairong, B. Dhrulzand R. Kannan, “A solution to the network challenges of
data recovery in erasure-coded distributed storage sgstAnstudy on the facebookwarehouse cluster,Phesented as
part of the 5th USENIX Werkshop on Hot Topics in Sorage and File System, 2013.

[25] B. Yang and X. Tang, “A systematic piggybacking desigm minimum storage regenerating codekEE Trans. Inf.
Theory, vol. 61, no. 11, pp. 57795786, 2015.

October 14, 2018 DRAFT

http://arxiv.org/pdf/1302.5872.pdf

	I Introduction
	II Background
	II-A Maximum distance separable codes
	II-B Piggybacking framework
	II-C RSR-II codes
	II-D Repair bandwidth of RSR-II codes

	III Efficiency Analysis for RSR-II Codes
	IV Generalized Piggybacking Codes
	IV-A Code design
	IV-B Analysis on repair bandwidth
	IV-C Analysis on decoding complexity

	V Conclusion and Discussion
	VI Acknowledgment
	References

