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Interference Mitigation Using Asynchronous
Transmission and Sampling Diversity
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Abstract—In this paper, we show that by investigating inherent and employing an appropriate sampling method, we design
ploying pprop piing g

time delays between different users in a multiuser scenariove  detection methods which not only cancel the interference

are able to cancel interference more efficiently. Time asyrwony effectively, but also outperform the synchronous ones. Whe

provides another tool to cancel interference which results timi : tch i dt | the int interf
in preserving other resources like frequency, time and code Iming mismatch Is used to cancel the interuser interiezenc

Therefore, we can save the invaluable resource of frequency resources like frequency spectrum, time and receive aatenn
band and also increase spectral efficiency. A sampling metdo can be employed to improve the performance. There are other
is presented which results in independent noise samples andexamples in the literature in which asynchronous transomiss
obviates the need for the complex process of noise whitening 1herforms synchronous transmission. For example, bygusi
By taking advantage of this sampling method and its unique . . . .
structure, we implement maximum-likelihood sequence detgion timing delays betwe?n users, Z(:j'ro forcing (ZF) detgquon
which outperforms synchronous maximum-likelihood detecon. €an be performed with one receive antenna and additional
We also present successive interference cancellation withard receive antennas can be used to gain diversity [6], [7]_]n [6
decision passing which gives rise to a novel forward-backwe  the authors proposed a ZF receiver in MIMO setting which
belief propagation method. Next, the performance of zero ficing takes advantage of timing mismatch between data streams
detection is analyzed. Simulation results are also presead to . . . .
verify our analysis. and prqwdes full diversity ofM, wher(_eM is t_he number _
of receive antennas. However, a crucial impairment of their
receiver design is addressed[in [7]. The design of asynclumn

differential decoding methods which outperform their syn-

There are many applications where multiple users sharg g onous counterparts is discussed’in [8], [9]. In this pape
common channel to transmit data to a receiver. NUMerojg,sent sampling diversity and provide several decodeaito
examples of multiaccess communication include Up"”ksra”advantages from asynchronous transmission. We analytical
mission of a single cell in a cellular system, a group of tedist prove that our ZF method provides full diversity and we

pair copper subscriber lines transmitting data to the sargg,qy its asymptotic performance for large number of regeiv
switching office, multiple ground stations communicatinw g tannas.

a satellite and interactive cable television networks. kKb

challenge in multiuser transmissions or multiple accessich .
nels is Interuser Interference. Over several decades, ményGeneral Settings
methods have been introduced to address this proklém [1]We consider a system with K users, transmitting data to a
[2]. Most of these methods are based on assigning orthogooammon receiver simultaneously, which can have one receive
dimensions to different users to be able to separate them amdenna or multiple ones. Due to different physical loaggio
prevent interference. For example, time division multipte  of users, their signal is received with various time deldys.
cess (TDMA) protocols allocate different time slots to eifnt is assumed that each data stream is received with an aybitrar
users to mitigate interference. The same concept can biedpptielay smaller than the symbol interval and only the receiver
by partitioning the frequency spectrum among differentsise knows the time delays. The signal transmitted from User k is
which is called frequency division multiple access (FDMA)described by:

Code division multiple access is another scheme used to N ) ]

surpass interuser interference in which users are muttple sk(t) = 2imy bu(O)p(t — (i = VT5) @)

by distinct codes rather than by orthogonal frequency bangghereT, is the symbol length angy(.) is the pulse-shaping

or by orthogonal time slots [3]. More recently, multipleea® filter with non-zero duration of". Also, N is the frame length
antennas are utilized at the receive side to take advantfagegyqqg by (i) is the transmitted symbol by User k in thih time

the spatial domain in order to cancel interfererice [4], [5]. slot. The transmitted signals are received with a relatey

In this paper, we investigate the timing mismatch betweeyi -, and a channel path gain &f.. Then, the received signal
users as an additional resource to address the problemcgh be represented by:

interuser interference. By exploiting time delays betwesers K
y(t) =Y 11 hiese(t — ) + n(t) 2
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|. INTRODUCTION

Il. SYSTEM MODEL
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B. Output Samples whose elements are defined@ls; (I, k) = u;;(I, k). The next
The output of the matched filter at each receiver antenfieP iS to put all vectors E}il(j) together and defing as
can be sampled at different sampling times associated with1),¥(2),---,y(N + 1)]". Then,y can be written as:
different users as shown in Fif.]1la. These sets of sampbes:
provide sufficient statistics for decoding transmitted bpis

. . Uix Uiz Uiz ... Uin
[10]. We can break down the integrals corresponding to the Uz: Ui Uiz ... Usiwv-1) hO O .. 0 b(1)

i ) . i ] Oh O ... O b(2)
sampling in Fig[_Tla to define a new sampling method as shown Lo : L .
in Fig.[ID. The corresponding output samples are written if Ux_1); ... Us1 U1 Uiz N :

Eq. (9) wherer,; is an auxiliary variable equal to T. U(lzjvill)l » gﬁ gﬁi g; 0.. 0 0h b(IN)
By defining intermediate variables; (I, k) and noise samples _UHb+ v (5)

e (1) h@| | e b (V) Block Toeplitz structure ofU originates from the fact that
AP oy | e [ elm] | u(jer)(Hm)(l,_k) = u;i(l, k). This can be vern‘l_ed by a
= n® | o ) change of variable in Eq_(10). Based on the relation between
- s — T andTy, different numbers of adjacent symbols interfere with
P st e B0 30 =] each other. For example, for rectangular pulse shapes, i.e.
@ T = Ty, at each instant only current and previous symbols
cause interference. In other words, orlliy; and Uy; are
bi(1) b2 | | [ nw nonzero. Without loss of generality, we assume that 1,
bj(1) by{(2) | """"" | by (N) thereforeUU1; andU,; are defined as follows:
bs(1) b5(2) | --------- | b5 () S 0 0
71(1) 72(1) 72 (11 (2) 72(2) ¥5(2) N + 1y (N +1) BT TeTTR 0
Ui = : (6)
(b) : . :
TK—TK—1 Tk—Tk-1 0
Fig. 1: Sampling methods 1=k I=7rx  1-7Tk
) 071o—71 ... To—T1
v(4) in Egs. [I0) and{d1), at the bottom of the page, we can T3 T2
write output samples in a more compact way: Uz = _ (7)
0 0 11—
_ K N _ _ 0 o o "
yi() = DY be@ugill k) + v () ) Hence, for rectangular pulse shapes, the system modelisimpl
k=1 1i=1 .
L fies to:
j=1,...,N+1 sampling time index
l=1,...,K index of matched user Y=
o0 p RO O . 0 b(1)
Defining y(j) = [yl(j)ay2(j)a---ayK(j)_]T and b() = Uz Uiz 0 0 0Oh 0 ..0 b(2)
[b1(3),b2(3), ..., b (i)]T, then,y(j) for different values of Pt el e S +v
' i : 0 .. UanUp; O : SR :
4 can be written as: o & vl U, 0.0 RO b(N)
N 0 0 0 U2
y(j) = S Ujhb()) +v(j) 1<j<N+1 (4 —UHb+v ®)
=1 The important fact about this sampling method is that the
where h = diaghi, ha, ..., hk], v(j) = covariance matrix of noise samples is diagonal. With a small

[’Ul(j)a’UQ(j)v"-a

vr(5)]T and Uj; is a K x K matrix abuse of notation, we denot®iag(U;1) as a diagonal

Ta4n+HE-1)Ts K
uti) = [ SN bt — ( — DT — m)p(t — (i — 1T, — ) et
i+ -1Ts k=1 i=1
Ta+1)+G—1)Ts
o nOpt— (G — DTy —m)dt 1<I<K, 1<j<N+1 )
T1+(J— s
Ta+1)+G—=1)Ts
wlt) = [ = = T = = T, = g (10)
4+ (j—1)Ts
Ta+1) 1T
v(j) = / i n(t)p(t — (j — 1)Ts — 7)dt (11)
T+(G—-1)Ts



matrix including diagonal elements &f1;. Then, it can be which can be used to improve detection methods. For example,
shown thatE[vv*] is equal too?(In ® Diag(U11)), where these extra samples make it possible to carry out successive
In isanN x N identity matrix and ®) is Kronecker product. interference cancellation (SIC) backward and forward.oAls
by means of introduced ISI, zero forcing detection can be

Since the statistically sufficient samples in Higl 1a can Iperformed even with one receive antenna, which is impossi-
created from samples in Fig.lb, the samples in Eig. 1b, ilde in synchronous multiuser transmission. In what follpws
Eq. (8), are sufficient statistics too. Both of these sangpliwe will show how asynchronous multiuser transmission can
methods introduce intentional intersymbol interferenk®)( outperform synchronous multiuser transmission.
and impose memory on the system; however, they have some

differences: A. Maximum:-Likelihood Sequence Detection (MLSD)
1) Sampling intervals in Fig_1b are smaller and need Due to inherent memory in the system that results from
faster sampler. time delays, we can use the maximum-likelihood sequence

2) Since sampling intervals are disjoint in Figl 1b, nois@etection method implemented by the Viterbi algorithm. The
samples are independent. However, due to samplifiective of maximum-likelihood sequence detector is tdl fin
overlap, the noise samples in Fig] 1a are correlated the input sequence that maximizes the conditional proipgbil

3) The sampling in Fig—1b results in an overdetermine®d the likelihood of the given output sequence. Exhaustive

system, while the number of output samples in Eig. 1search over2VK different input sequences is an obvious
is equal to the number of input symbols. choice, but it is impractical even for a moderate numbeKof

and N. Fortunately, using the Viterbi algorithm, MLSD can
be implemented by complexity order af¢ [11]. For using
the Viterbi algorithm, the likelihood metric should be ailcd

For rectangular pulse shape, the input-output relatignshi
the sampling method in Fig. lLa is:

y= and the noise samples should be independent. Therefore, the
Ri1 Riz O .. 0O ho 0 .. 0 b(1) sampling method in Fid_1b is the best fit for implementing
Ror Rux Rz o 0 0O h 0..0 b(2) the Viterbi algorithm. It reduces the complexity by avoid-
S D L : tn ing the noise whitening procedure which involves Cholesky
o T ﬁ;i ﬁij 098 &R b(IN) Decomposition and matrix inversion. We show that by using
= RHb-+n (12) this sampling method, we can outperform synchronous ML
detection with the same complexity order f.
where R11,R31 and Ry, are defined as: Based on the recursive relation between input and output
which is described as:
R = i . y(§) = Un1hb(j) — U21hb(j — 1) +v(j) 2<j< N
1 1—(1m2—71 1—(txg—71
1—(r2—71) 1 1—(rx—72) the trellis diagram of the system includdd® states withA®
: . . (13) outgoing paths to the next states, ad& incoming paths
1— (T —1—71) 1 1= (T —7K 1) from previous states, wherg is the size of the transmitted
1=(rc—1) N ! modulation. To calculate the metric for each path, we need to
0 0 0 0 calculate the likelihood function as follows:
To—T 0 0 0
Rise (Ba) = | = . Pr(y(3)[b(5). b(G — 1)) =
12 = f21)” = : . . : : . . . .
TK—1) =71 (K1) T2 - o 0 Pr(v(g) = y(3) — U11hb(j) — U21hb(5 — 1)) =
TK—T1 TK—T2 ... TK—Tk-10 1 1
(14) ——exp(—=s; 75 s;)

e exp (3

Because of intersection between sampling intervals, noise (2m)* 2]
samples are correlated and noise whitening procedure ne®@res; = y(j) — U11hb(j) — U21hb(j — 1) and X =
to be performed before symbol detection. Noise whitening[v(s)v(j)"]. By discarding common terms and simple
involves Cholesky decomposition and matrix inversion whiccalculations, the metric for each path can be defined as
increases complexity of receiver. SE % After calculating the path metrics, the final
goal is to find the surviving path and trace it back to decode th
transmitted symbols. The simulation result for this altori

In this section we introduce different detection methodsnd its comparison with the synchronous ML detection is
which take advantage of distinct features of the samplimgesented in Sectidn]V.

method shown in Fid._1b. One of these features is converting a ) ) ) o
memoryless system into a system with memory and indepéh- Uccessive Interference Cancellation with Hard Decision

Ill. RECEIVERDESIGN

dent noise samples. This enables us to implement the Vitef5sSN9
algorithm based on samples in E@J (8). The other featureDespite the excellent performance provided by MLSD, its
is that this sampling method provides extra output samplesmplexity grows exponentially with the number of users,



which might be prohibitive in some practical scenarios.-Susets as a detection metric will result in an improvement
cessive interference cancellation (SIC) detection thiatstea over the hard-decision SIC method that was presented in
serial approach to cancel interference can be used to redthe® previous section. Moreover, the performance can even
complexity. Using the sampling method in Figl] 1b, this deri@urpass the performance of the synchronous ML detection if
approach can be either a forward SIC initiated from the firste use forward and backward operations together and define
transmitted symbol, i.eb; (1), or a backward SIC started fromthe detection metric as:
the last transmitted symbol, i.é.x (V). fw bw
Py(b =P P (b

For example, for forward processing,(1) can be decoded 0(bx(n) Ow( k() (l)m( k()
by usingy: (1) without interference, theby (1) can be decoded Py (bg(n)) = P{ % (br(n)) P (b (n))
by cancelling the interference @f (1) from (1), and so Simulation results are presented in Secfidn V.
on. The same procedure can be performed backwards. (H]e .

. . . Zero Forcing

can also combine forward and backward operations. However, . ) ) ]
when hard decisions are used, such a combination will notOne of the well-known linear multiuser receivers is the ZF
result in a noticeable gain. On the other hand, by using sé&Ceiver which cancels the interference caused by the other
decisions, combining the forward and backward operatioH§ers in the expense of enhancing the noise. In a synchtbnize

will improve the results as explained in the following senti SYStem, we need at least K receive antennas to be able to
perform ZF detection; however, by exploiting asynchrong, w

C. Forward Backward Belief Propagation Detection can perform ZF with only one receive antenna [6], [7]. To
ve a fair comparison with the synchronous case, we study
(i-ig'} system model when multiple receive antennas are used at
the receiver. By stacking output samples of all receiverards
together we can represent the system model as follows:

In the previous section we introduced an SIC meth
which was performed by passing hard decisions of previou
decoded symbols to cancel the interference. In this seatien
introduce a similar detection method which passes likeltho
values. By using likelihood values, instead of hard deaisjo

performance can be improved as shown by simulation results. Y vu o ... 0 H, U1
Additionally, this method provides the opportunity to eipl Y2 | o v ... 0 H; b+ U2
benefits of backward processing as well. We explain the N S : :

strategy of decoding for BPSK modulation ahd= 2, but it Yy 0 ... 0 U| |Hyg v

can be also generalized to other modulations and other salue U Hootb+ v
of K. We also assume that transmitted symbols have the same Ytet = ~totHitot tot

prior probabilities and calculate the conditional proltitibs Ytot = Lioth + viot
as follows: where M is number of receive antennas. Then, the zero-
2\ forcing detector is defined as:
a = Pln(1)fhi(1) = 0) = 2L exp (- nlgiml) 10TN9 e _ )
1’)] ly1 (1)—ha p1 |2 Y= (LtotHEtot lLtot) 1LtotH2tot 1ytot =b+7
b= P (D)hi(1) = 1) = -t exp (-l ) (15)
P (b1(1)) = P(b1(1) = Oy (1)) = % where Bipy = Ipy ® X, and X is an NK x NK di-
Plf“’(bl(l)) =P(b1(1) =111 (1)) = aLer agonal matrix representing the cqvariance matrix of noise
¢ = P(ys(1)[ba(1) = 0,1 (1)) = samplesv;, 1 < ¢ < M. The noise enhancement factor
o Y2 21 =5 Iyz(_l)+h1p1+h2p2\2 is (Ltot " Stot *Log) ', Which affects the receiver perfor-
Fo " (01(1) s exp (_ T )+ mance and will be studied in the following section.
P (b (1)) —— oxp (— |y2(1)‘§;2p;jh2”2|2) IV. PERFORMANCEANALYSIS
d = P(y2(1)|b2(pf) =1,y1(1)) = AII_ asynchr_onou; receivers presented in the previousmecti
PJ (b1 (1)) ——— exp (_ |y2(1)+h1P1—h2p2|2)+ provide full diversity. Because the ZF receiver has the wors
o 1 V27 pao? 2p20° performance among all introduced receivers, we only need to
Plfw(bl(l)) 1 _exp (_ Iyz(l)—ggf;;thzf) show full diversity for the ZF receiver. The system repreésen
Fu 2mp2o . in Eqg. (IB) consists oV K subchannels, each of them having
Py “(b2(1)) = P(b2(1) = Oly1(1), y2(1)) = 25 SNR of g[o“"';i% 1 < i < NK, where COV; can be
P (ba(1)) = P(ba(1) = 1[y1(1),52(1)) = 7 calculated as:

where p; = U1(i,i). Using these successive calculations, COVg = E[69"] = 6%(Ltot " Ztot 'Liot) ' (16)
P{"(bx(n)) and P{* (bx(n)) can be found for all values of

M
1 <n< Nandl <k < K. As explained before, due :gQ(ZLin—lL,-)*l (17)
to the structure of the sampling method in Hig] 1b, the last i=1
transmitted symbol can also be detected without interfaren M
and the same procedure can be applied backward to find = 02(2 H,"RH;)™* (18)

Py (bi(n)) and PY™ (bx(n)). Using either of these likelihood i=1



where L; = UH;. In the derivation of COV;, Eq. [I7) is A. Analyzing Asymptotic Performance for Large Number of
found by some matrix manipulation and EQ.](18) is obtaind®eceive Antennas

by using the fact tha7’£~'U = R. This identity can | this section, we show that whehl goes to infinity,

be simply verified by examining matrices defined in Edgphe correlation between noise samples and the effect of fad-
(8 and [12). Unfortunately, due to the complex structure ¢ig coefficients vanishes. For normalizing purposes, atste
(Zf”lH RH) for M > 1, finding the exact expressionof using Eq. [IB), we perform ZF by multiplying output
of bit error rate (BER) forM > 1 is not easy. We derive Samples byV/M (Liot™ Stot ™" Liot) ™' Lot Stor ™ 'in this

an upper bound on BER by finding an upper bound on tﬁ@Ctlon Then, the inverse of noise covariance will be etal
diagonal elements o€ OV; and show that full diversity is s Soie1 Hi*RH;, which can be represented as:

achieved. BecausR is positive definite, for every < i < M, . -

H?RH; is also positive definite. Therefore, we can apply the cov; = ;R °o(Jn®H) (22)
following lemma.

. . ) where(o) is Hadamard product andly; is the N x N all-ones
Lemma 1. For n positive definite matriced;,1 < ¢ < n, () P N %

matrix. H is also defined as follows:

we have:
n n ZTI:{:'I ‘hl,m|2 %:1 hl’mh;,m 71:{ 1 hl mhK m
- - 1| Zhcihemhi, Soiglhaml® o S0 hambie
O ATy AT 19 = ’ ’
INEEED L e
where B < C means thaC — B is positive semidefinite. My b SN B SN (el
Proof: This lemma is a straightforward result of theThen, by using the law of large numbers, it can be shown
following inequality, which can be found in_[12]. that H — I'x as M — oo [14]. The immediate result is that

COV; ! and COV; approaches toal—QINK and o2 Ink,
respectively. This result implies that at the output of tHe Z
B receiver, noise samples are independent and SNR for each
As a result, we can conclude thaCOV; < subchannel is a fixed value dffd,, independent of channel
2> M (H:*RH;)"'. This inequality implies that the coefficients. In other words, the effect of fading coeffitgen
diagonal elements of the covariance matrix of noise are uppgd correlation between noise samples will vanish.

bounded as follows:
! W B. Effect of Time Delays on Performance

1<i<NK In this section, we calculate the optimal values of delays fo
j=1 (14— 1ymoar) 51 the ZF detection in order to achieve the lowest average BER
(20)  with one receive antenna at high SNR. BecauseMbr=
where hy ,,, is the channel coefficient between Userand the inequality in Eq.[(20) turns into equality, the exact BER
Receive Antennan. expression for each subchannel can be obtained as:
The BER expression for an AWGN channel with aver-
age transmit power ofE[|bs(i)|?] and noise variance of

(A+B)"' < A™! A, B: positive definite matrices

o?R™*(i,1)

COV;(ii) <

P =

"R (iid) is equal to: VTR T(3/2) 1
S It (= ymodrc) i) |2 R 3/2 2F1(1,3/2;2; ———55—)
302 F( ) 1+ ==

502 2 1 + 1/ - R (’L#Z)

o TR~1(i,i) 21 R1(i,i)
b= 502 M+3 x (21) Approximating P,,, at high SNR for one receive antenna
2 ( R’l(i,i)) results in: (see Append[xIB for more details)

LM+ 3 1 1 __ —10; .
MXQF1(17M+—;M+1 —) Py = 1 I'(3/2) xZiR (z,z)’
'(M+1) 2 1+ U(Z D 4. /TNK T(2) do

ku(z)\ | The details of derivation can be foundFor a fixed number of users and frame Iength in order to
rTWaX|m|zePW,, we need to maximize the trad@({ ) which is

elated to time delays between different users. In whab¥ed|

We derive the relationship between the tra@e() and time

delays, and consequently find optimum time delays.

Lemma 2: the sum of the diagonal elements of the inverse
of matrix R is equal to:

wheredg
in Appendlxlﬂ Due to having the same average trans
power and a lower noise variance, we conclude that BER
each subchannel is upper boundedphyi.e., P; < p;. If we
define D; = — limg, o0 125 =andd; = — lims, o0 }gg? it
is clear thatD; > d,. By usmg the fact that the hypergeometrlc

function of formq 3 (1, m+ ;m+1; 1Jrc) converges to one as

¢ grows large[[1B], we can calculate that= M. Therefore, tracd R~ _(IN-DHIV+T) n 2N +1

the diversity of theith subchannel is greater than or equal to 3147 — TK) (N +14+7m —7K)
M. On the other handy/ is the maximum available diversity N +2)

for this system, which completes the proof of achieving full Z Pp—— (23)

diversity, i.e.D; = M. i=1



The proof is presented in AppendiX C. the block and changing independently for each block. All
Theorem 1. The optimum time delays which result in theusers have the same average power of one and variance of

—SNR

lowest average BER for ZF detection at high SNR are:i§¢ noise ¢?) is equal t01070 where SNR is in dB. To avoid

assumed to be zero) inter-block interference, the last symbol of each blockutio
i—9 . be idle for asynchronous methods. This will reduce spectral
Timl = T X1 3<i<K (24) efficiency, but it is negligible for large block lengths. Il a

simulations, the block length is 128 and the time delays are
uniform except in the case where we report the time delays to
ATk + By +C1 + D + E=0 (25) study their effects on the performance. The number of users
and the number of receive antennas is denoted&’bgnd M,
respectively. When\/ is not specified, the assumption is that
only one receive antenna is used. Transmitted symbols are
chosen from BPSK modulation and the comparing criterion

Also 7k is found by solving the following equation:

where

A=(1— (k-1 2

B = %2(1 — (K —1)*))N? 4+ 2(4(K — 1) - 1) (v + 1), is the average bit error rate among all the users.
C= %(1 — (K —1)*)N3 + ;(1 —4(K — 1)*)N*— In Fig.[2,we compare the performance of the asynchronous

MLSD method with that of the synchronous ML. Asyn-

2
2(K —1)°(N +2). chronous MLSD outperforms synchronous ML detection with

D= E(K —1)%(N® +5N? + 8N +4). similar complexity. Fig[R also includes the single-useurd
3 1 for a better comparison. As can be seen in the figure, asyn-
E = _g(K —1)>(N3 4+ 4N? + 5N +2). chronous MLSD forK = 2 achieves performance of the single

user system at high SNR.
The proof is easily obtained by taking the derivation of Eq.Fig. [3 shows the performance of different SIC methods
(23) with respect to time delays.
For K = 2, A will be zero and Eq.[(Z5) is a polynomial of

10° -

degree 3 which has a closed-form solution as follows: Asynchronous MLSD, K=2
—b— Asynchronous MLSD, K=4
) o ) —e— Synch ML, K=2
_ N+2—+V/N3+15N2—15N —1 o6 R e
Topt = 3 ( ) —— Single User Bound

where N is the block length. However, for other values of
K, Eq. [2%) should be solved numerically. After findimg,

the remaining time delays are calculated recursively uEigg
(24). The optimum delay values for differefit and N values

are reported in Tablés | and 1. Optimum time delays approach

Bit Error Probability

TABLE I: Optimum Time Delays wher< = 2

Case N=10 N=32 N=64 N=128 N> oo 10° I T N I .
0 2 4 6 8 10 12 14 16 18
K=2 05240 05077 0.5039 0.5019 0.5 SNR (dB)

Fig. 2: Comparing asynchronous MLSD and synchronous ML

TABLE II: Optimum delays whenV = 128
presented in Sectidn Il[IB. Our new forward backward belief

Case N=128 propagation method using the sampling method in Eig. 1b
K=4 [0.2505,0.5010,0.7514] improves the performance of traditional SIC method by about
K=6 [0.1669,0.3338,0.5006,0.6675,0.8344] 3 dB.

K=8 [0.1251,0.2502,0.3754,0.5004,0.6256,0.7507,8B75 Fig. [4 compares the performance of the synchronous and

asynchronous ZF detectors. Although asynchronous ZF is

uniform time delays, i.e;, = % 2 < k < K, as N possible with one receive antenna, for fair comparison, we

increases. The effects of time delay values on the performaigonsider the cases where the number of receive antennas and
are studied numerically in the following section. users are the same. Since all users are assumed to have the
same transmit power, synchronous ZF fét = 2, M = 2)
V. SIMULATION RESULTS and(K = 4, M = 4) provides the same performance and both

In this section, we provide simulation results in ordeof them have diversity of one. However, for asynchronous ZF
to validate our theoretical results and compare differedetection, diversity of and4 is achieved fo(K =2, M = 2)
methods. In all simulations, channel coefficients amend(K =4, M = 4), respectively. This is due to the sampling
independent Rayliegh fadings with variance one, fixed durimiversity as discussed earlier.



10° TABLE IlI: Comparing traceR ") for different time delays

in Fig.[8
Time delays trace® 1)
z [0.2505,0.5010,0.7514] | 8.8404 x 10*
z
g [0.4,0.6,0.8] 9.6639 x 104
a
5 [0.1,0.4,0.7] 1.1065 x 10°
E
e —+—SIC with Hard Decisions,K=2 | [0.1,0.2,0.9] 1.7347 x 10°
o —#— SIC with Hard Decisions,K=4 b
——FW Belief Propagation, K=2 [0.01,0.1,0.9] 6.7784 x 10°
—&— FW Belief Propagation, K=4
—8—FW BW Belief Propagation, K=2
—6—FW BW Belief Propagation, K=4 10° i i i ‘ ‘ i ‘
=3 ; i ; 7 f i 3 i —+— Asynch. ZF: optimum time delays
19 0 2 4 6 8 10 12 14 16 18 Asynch. ZF: random time delays
SNR (dB) Asynch. ZF: [0.4,0.6,0.8]

—+—Asynch. ZF: [0.1,0.4,0.7]
—e— Asynch. ZF: [0.1,0.2,0.9]
—P— Asynch. ZF: [0.01,0.1,0.9]

Fig. 3: Performance of SIC method with hard decisions and
soft decisions

Bit Error Probability

2
E 10 22 24 26 28 30 32 34 36
g SNR (dB)
£ Fig. 5: Effect of time delays in asynchronous ZF detectian fo
= K=1
10751 —6— Asynchronous ZF, (K=2,M=2)
—p— Asynchronous ZF, (K=4,M=4)
—+— Synchronous ZF, (K=2,M=2) . . .
—s— Synchronous ZF, (K=4,M=4) L in Fig.[6. Both MLSD and forward-backward BP detection
6 L L L L L .
1050 12 ) 16 18 20 22 methods not only outperform the synchronous ML detection,

SNR (dB) but also achieve the performance of the single user system.

In addition, the low complexity method of SIC with hard

Fig. 4: Comparing synchronous and asynchronous ZF decisions also provides good performance.

We study the effects of time delay values on the perfor-
mance of a ZF system witlk’ = 4 users and one receive ”"*‘“’”*““wwg-‘,m_w\é\
antenna in Fig[]5. Note that a synchronous ZF solution does s o2
not exist in this case as we need at ledst = 4 receive o ]
antennas. We show the results for six different sets of time 3
delays. For optimum time delays we use the result of Section g
[V-Bl as reported in Tableé_ll. The curve associated with 5
random time delays represents the average performance over gm_z _[—Asynehronous Lsp
uniformly distributed random time delays. The remainintsse e 3
of time delays are specified in the figure. The optimum time i gsje;;':f;’fo‘":;‘;m )
delays and time delays df.01,0.1,0.9] have the best and —— Asynchronous ZF
worst performances, respectively. They also have the lbwes P s s s et D O D
and the highest trac& '), respectively, which are presented Yoz 4 & s _d0 iz 14 % 1

. . . SNR (dB)
along with other sets of time delays in Tahlel lll. As can

be seen, a lower tracB("') results in a better performance. Fig. 6: Comparison of all detection methods fr= 2
This observation is in line with the analysis in Section 1v-B
where traceR™') was introduced as a criterion to compare
the performance of different time delays. VI. CONCLUSION
Finally, to compare different methods with each other, we In this paper, we studied benefits of asynchrony when
include the performance of all detection methods fr= 2 multiple users are sending data simultaneously to a common



receiver. Instead of treating asynchrony as a disruptigtofa wherej, = E“bgiw We know that|h; ;|* follows a chi-

we exploited it as an additional resource to cancel interfegquared distribution with two degrees of freedom for 4all
ence. We have shown that asynchrony between data streama js. Therefore,zjj‘i1 |h(1+(i,1)modK)_,j|2 is chi-squared
adds a favorable ISI which makes interference cancellatidistributed with 2/ degrees of freedom. As a result, the
possible. It also introduces memory to the system which cdistribution of§;, can be calculated as follows:

be exploited by methods like maximum-likelihood sequence M1 o
detection. In addition to MLSD, a novel forward-backward R (i, i) (RT(“)&) exp (—RT(Q“)(S)

0o 2MT(M)

belief propagation detection method was presented and thisPs, (6) =
method outperforms synchronous ML detection. Exact BER
expression for ZF detection was derived and it was verified
that a diversity equal to the number of receive antennasvidiereI'(.) is the Gamma function. For a specific value of

(28)

achievable by asynchronous transmission.
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APPENDIXA

DERIVATION OF BIT ERRORRATE (BER) EXPRESSION
For an AWGN channel with an average transmit power

Sincepq.g is nNot tractable, we approximate it at high SNR,
using the fact that F1(1,m + %;m + 1; ﬁ) converges to
one asc grows large[[1B]. Hence, at high SNR,., can be

%fpproximated as follows:

NE i ; £ a®R™1(4,)
E[|br(4)]?] and noise yanance CE,-“; [T ——ct the NE o1 s
post SNR at the receiver can be expressed as: Pavs = Const x > im (RM (4,9)) (31)
SoSM 12 04
0 Zj:l | (1+(Z*1)mOdK)7‘]|
51’ = 1. . (27) . 1 r(M+1)
R (i,1) where the constant value is equal g 2

NEK/x D(M+1) "



APPENDIXC Lemma 3: Let na(m+n)x(m-+n) matrix T be partitioned

PROOF OFLEMMA 2 into a block form:
When the frame length %7, we denoteR by R™N. Then, T — [A B}
we prove by induction that, for alN € Z, C D
trace (RN)-1) — (N —1)(N+1) N ON + 1 \_/rvfr]]ere then; xm matrix A andn x n matrix D are invertible.
3(1+71_7'K) 3(N—|—1+7’1—TK) en, we have.
K-1 _ M ~-M~'BD!
N(N +2 1 L=
+ M 3 ) Y. @ T [—D‘ch_l D'+ D 'CcM'BD™!
o Tl T T

. . whereM = A — BD~'C [17).
Base caseWhen N = 1, R! is equal toR;; which can Here, A, B, C and D are equal toR"Y, L, L" and R,
be written as a generalized Fiedlers matrix whose inverserisspectively. Therefore) is equal to:
given by [16]:

: M = RN — L(Ry;)'L” (40)
R ' =
11 o o P Now, we need to find the inverse &¥f. By defining Z as
! no N o (RN)~1, the inverse ofM can be presented as:
1 T2—T1 T3—T2 1
-5 N N N 33 M=
0 m dg—1 W*]ﬁ Ig OK,K ZlNQ(IK—ZNNQ)_l
f 0 ﬁ dx 0 :
. KxK z
where f andd;s are defined as: I 7 QI ZnNQ) !
: : K (N—-1)N K — 4NN
1 0 ... 0 (Ix —ZnNQ)™?
- - 34 KxK KxK K NN
f TK —T1 — 2 ( ) (41)
1 1
dy = 7 T e 12 (35) whereQ = R12R11 'Rz and Z;;s areK x K partitioning
1 1 2 i{ blocks of Z. Also, I;, and0;; are ak x k identity matrix
dg = —— — — " (36) and ai x j all-zero matrix, respectively.
7 ) [ERE lTK To show the correctness of Eq.{41), we need to take the
d; = + 2<i<K-1 (37) following steps:

Tim1 =T Ti T Titl Step 1 By some calculations, it can be shown that

Then, traceR;y') is equal to -3 Zfil di), which can be L(R;;) 'L” is equal to {O 0]. As a result, we have:

0
calculated using the above equations: Q
. P . M= RN _ |:O(J\(/)—1)K><(N—1)K O(N—l)KXK] (42)
tracd Ry;') = T ——— Z _— (38) Kx(N-1K Q
@+7n—7TK) T Step 2 If we multiply both sides byZ, we will have:
Therefore, Eq.[(32) is true faW = 1. Orxrx ... Oxxix ZinQ
Induction step: Suppose Eql(32) is true fa¥. We need to Oxxx ... Oxxx ZanQ
show that it also holds foiV + 1, i.e., ZM = InNk — : : . (43)
trace (RIN+TD)~1) = (M) +2) 2V +3 Oxxk ... Okxx ZNNQ
S(1+ 7 = 7x) 39:‘_ 247 —7K) Step 3 We denote the right hand side of Ef.¥43) B,
n (N +1)(N+3) Z 1 then, we can conclude that the inverseMdf is equal to:
3 —~ Tl —T; 1 -1
i=1 M'=Xx"'z (44)
(39)

Step 4 X ! can be calculated as follows:

Because matrix? follows a recursive structurd?’V+1can be ;)

presented as follows: X =
I ... 0 Z Iv—2Z -1
RN+ _ (RN )NExNEK (L)NKXK} K K.’K iNQ(Ik . NNQ)
(L") kxnk  (Ri1)kxk OrxK
whereL” = [0k« k., ...,0xxx, (R21)xxx]. For calculating : : Ik Z(N—l)NQ(IK—ZI\Lll\fQ)f1
the inverse ofRV+1, we use the following lemma for matrix LOxkxkx ... Oxxk (Ix - ZNNQ)

inversion in block form. (45)



Step 5 Finally, if we plug X ! in Eq. (43), we will reach

Eq. (41).

If we denoteK x K diagonal blocks oV~ as[M '], ;
1 <i < N, then, by use of Lemmid 3, tra¢dt’¥ +1)~!) can
be written as:

tracd (RN 1)~ Ztrace{ i)+
+tracd Ry~ + R11 "Ro1[M 'y NyRi2R117") (46)
By simplifying Eq. [41), diagonal blocks oM ~! can be
presented as follows:
1<i<N-1:
MY =Zii + ZinQUI — ZNNQ) ' Zni (47)
i=N:
M~ Y,i=I - ZNNQ) ' ZNN (48)
In Eq. [48), we set the diagonal blocks M ~' as Eqs.[(d7)

and [48). Then, by some manipulations, tf@d@™ +1)~!) can
be presented as:
tracg (RN 1) ™! = tracd(R™) ') + tracd Ry; 1)
N—-1
+ Z tracd Z;NQ(I — ZNNQ) ' Zns)
=1
+ trace((I — ZNNQ)ilzNN) — trace(ZNN)
+tracRy1 'Ro1(I — ZNNQ) ' ZnNR12R11 ")
(49)

The first and second terms in E. [49) can be calculated
induction hypothesis and induction base, respectiveljciza
lating other terms in EQL{49) is tedious but similar for difnt
values of K. Therefore, we only calculate it fok® = 2 and
skip the rest. Fo = 2, Q is equal to:

0 1)

—r (50)
0 7

o-|

wherer = — 7.

If we plugQ@Q = 0 L] in Eqg. (49), after some calculations
we will have: e
2
N+1y-1) _ Ny—1
tracg(R™ 1Y)~ 1) =tracd(R"Y) ') + T-a=2
1—7 N
AT 2 TN
A+7)(1+(r-1)?)
TR+ = e, any G2 G
wherer(i,7) is the (i, j)th element of matrix RY)~!. By

i(nduc;t(ion ?ypotfgesis), the first term in Eq._{51) is equal t
N—-1)(N+1 N(N+2 2N+1 H
S0=rtr) T 3=y T 30Vii—ns For calculatmg.Eq.
([ﬁ), we also need values of2N,i), 1 < i < 2N, which

are elements of the last row ¢f2%)~!. Due to the special

structure of matrixR, values ofr(2V, i) can be calculated as

follows:

To verify Eq. [B2), we can multiply the last row of
(RN)=1,ie., [r(2N,1),7(2N,2),...,7(2N,2N))], by differ-
ent columns ofRY as follows:

(2N, 2i —

) T(NJrl T) .
(2N, 2i) = lsish

(N+1 T)

(52)

. (=11 (HA-7)

st column: T(N+1-7) 7(N+1-7)
(2i)¢, column: 1<i< N -1

(r—9)(1—71) (1)1 (T—@+1)T
T(N+1-7) 7(N+1-7) 7(N+1-7)
(2 — 1)4p, column: 2<i< N

(i =1))(7) (r—i)1 HA—-7) _
TN+1—-7) 7(N4+1-7) 7(N+1-1)

(T =N)1—1) (V1

2Nth column: P g P e

These results verify that the last row aR™)~! follows the

pattern in Eq.[(52).

The last step is to plug qu:(BZ) into EQ.[51). As a result,

trace(RN+1)~1) is equal to 2002 4 EEDUS)

2N+3
IO which verifies the induction step and completes
the proof.

by

(0]
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