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Interference Mitigation Using Asynchronous
Transmission and Sampling Diversity

Mehdi Ganji and Hamid Jafarkhani

Abstract—In this paper, we show that by investigating inherent
time delays between different users in a multiuser scenario, we
are able to cancel interference more efficiently. Time asynchrony
provides another tool to cancel interference which results
in preserving other resources like frequency, time and code.
Therefore, we can save the invaluable resource of frequency
band and also increase spectral efficiency. A sampling method
is presented which results in independent noise samples and
obviates the need for the complex process of noise whitening.
By taking advantage of this sampling method and its unique
structure, we implement maximum-likelihood sequence detection
which outperforms synchronous maximum-likelihood detection.
We also present successive interference cancellation withhard
decision passing which gives rise to a novel forward-backward
belief propagation method. Next, the performance of zero forcing
detection is analyzed. Simulation results are also presented to
verify our analysis.

I. I NTRODUCTION

There are many applications where multiple users share a
common channel to transmit data to a receiver. Numerous
examples of multiaccess communication include uplink trans-
mission of a single cell in a cellular system, a group of twisted-
pair copper subscriber lines transmitting data to the same
switching office, multiple ground stations communicating with
a satellite and interactive cable television networks. Thekey
challenge in multiuser transmissions or multiple access chan-
nels is Interuser Interference. Over several decades, many
methods have been introduced to address this problem [1],
[2]. Most of these methods are based on assigning orthogonal
dimensions to different users to be able to separate them and
prevent interference. For example, time division multipleac-
cess (TDMA) protocols allocate different time slots to different
users to mitigate interference. The same concept can be applied
by partitioning the frequency spectrum among different users,
which is called frequency division multiple access (FDMA).
Code division multiple access is another scheme used to
surpass interuser interference in which users are multiplexed
by distinct codes rather than by orthogonal frequency bands,
or by orthogonal time slots [3]. More recently, multiple receive
antennas are utilized at the receive side to take advantage of
the spatial domain in order to cancel interference [4], [5].

In this paper, we investigate the timing mismatch between
users as an additional resource to address the problem of
interuser interference. By exploiting time delays betweenusers
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and employing an appropriate sampling method, we design
detection methods which not only cancel the interference
effectively, but also outperform the synchronous ones. When
timing mismatch is used to cancel the interuser interference,
resources like frequency spectrum, time and receive antenna
can be employed to improve the performance. There are other
examples in the literature in which asynchronous transmission
outperforms synchronous transmission. For example, by using
timing delays between users, zero forcing (ZF) detection
can be performed with one receive antenna and additional
receive antennas can be used to gain diversity [6], [7]. In [6],
the authors proposed a ZF receiver in MIMO setting which
takes advantage of timing mismatch between data streams
and provides full diversity ofM , whereM is the number
of receive antennas. However, a crucial impairment of their
receiver design is addressed in [7]. The design of asynchronous
differential decoding methods which outperform their syn-
chronous counterparts is discussed in [8], [9]. In this paper, we
present sampling diversity and provide several decoders togain
advantages from asynchronous transmission. We analytically
prove that our ZF method provides full diversity and we
study its asymptotic performance for large number of receive
antennas.

II. SYSTEM MODEL

A. General Settings

We consider a system with K users, transmitting data to a
common receiver simultaneously, which can have one receive
antenna or multiple ones. Due to different physical locations
of users, their signal is received with various time delays.It
is assumed that each data stream is received with an arbitrary
delay smaller than the symbol interval and only the receiver
knows the time delays. The signal transmitted from User k is
described by:

sk(t) =
∑N

i=1 bk(i)p(t− (i − 1)Ts) (1)

whereTs is the symbol length andp(.) is the pulse-shaping
filter with non-zero duration ofT . Also,N is the frame length
andbk(i) is the transmitted symbol by User k in theith time
slot. The transmitted signals are received with a relative delay
of τk and a channel path gain ofhk. Then, the received signal
can be represented by:

y(t) =
∑K

k=1 hksk(t− τk) + n(t) (2)

whereK is the number of users andn(t) is the white noise
with variance ofσ2. Without loss of generality, we assume
that 0 = τ1 < τ2 < · · · < τK < T .
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B. Output Samples

The output of the matched filter at each receiver antenna
can be sampled at different sampling times associated with
different users as shown in Fig. 1a. These sets of samples
provide sufficient statistics for decoding transmitted symbols
[10]. We can break down the integrals corresponding to the
sampling in Fig. 1a to define a new sampling method as shown
in Fig. 1b. The corresponding output samples are written in
Eq. (9) whereτk+1 is an auxiliary variable equal to T.
By defining intermediate variablesuji(l, k) and noise samples

(a)

(b)

Fig. 1: Sampling methods

vl(j) in Eqs. (10) and (11), at the bottom of the page, we can
write output samples in a more compact way:

yl(j) =
K∑

k=1

N∑

i=1

bk(i)uji(l, k)hk + vl(j) (3)

j = 1, . . . , N + 1 sampling time index

l = 1, . . . ,K index of matched user

Defining y(j) = [y1(j), y2(j), . . . , yK(j)]T and b(i) =
[b1(i), b2(i), . . . , bK(i)]T , then, y(j) for different values of
j can be written as:

y(j) =

N∑

i=1

Ujihb(i)+ v(j) 1 ≤ j ≤ N + 1 (4)

where h = diag[h1, h2, . . . , hK ], v(j) =
[v1(j), v2(j), . . . , vK(j)]T and Uji is a K × K matrix

whose elements are defined asUji(l, k) = uji(l, k). The next
step is to put all vectors ofy(j) together and definey as
[y(1),y(2), . . . ,y(N + 1)]T . Then,y can be written as:

y =



U11 U12 U13 ... U1N

U21 U11 U12 ... U1(N−1)

...
...

...
...

...
U(N−1)1 ... U21 U11 U12

UN1 ... U31 U21 U11

U(N+1)1 ... U41 U31 U21







h 0 0 ... 0
0 h 0 ... 0
...

...
...

...
...

0 ... 0 h 0
0 ... 0 0 h







b(1)
b(2)

...
b(N)


 + v

= UHb+ v (5)

Block Toeplitz structure ofU originates from the fact that
u(j+m)(i+m)(l, k) = uji(l, k). This can be verified by a
change of variable in Eq. (10). Based on the relation between
T andTs, different numbers of adjacent symbols interfere with
each other. For example, for rectangular pulse shapes, i.e.,
T = Ts, at each instant only current and previous symbols
cause interference. In other words, onlyU11 and U21 are
nonzero. Without loss of generality, we assume thatT = 1,
thereforeU11 andU21 are defined as follows:

U11 =




τ2−τ1 0 ... 0
τ3−τ2 τ3−τ2 ... 0

...
...

...
...

τK−τK−1 ... τK−τK−1 0
1−τK ... 1−τK 1−τK


 (6)

U21 =




0 τ2−τ1 ... τ2−τ1
0 0 ... τ3−τ2
...

...
...

...
0 ... 0 τK−1−τK
0 ... 0 0


 (7)

Hence, for rectangular pulse shapes, the system model simpli-
fies to:

y =



U11 0 0 ... 0
U21 U11 0 ... 0

...
...

...
...

...
0 ... U21 U11 0
0 ... 0 U21 U11

0 ... 0 0 U21







h 0 0 ... 0
0 h 0 ... 0
...

...
...

...
...

0 ... 0 h 0
0 ... 0 0 h







b(1)
b(2)

...
b(N)


+ v

= UHb+ v (8)

The important fact about this sampling method is that the
covariance matrix of noise samples is diagonal. With a small
abuse of notation, we denoteDiag(U11) as a diagonal

yl(j) =

∫ τ(l+1)+(j−1)Ts

τl+(j−1)Ts

K∑

k=1

N∑

i=1

bk(i)p(t− (j − 1)Ts − τl)p(t− (i− 1)Ts − τk)hkdt

+

∫ τ(l+1)+(j−1)Ts

τl+(j−1)Ts

n(t)p(t− (j − 1)Ts − τl)dt 1 ≤ l ≤ K, 1 ≤ j ≤ N + 1 (9)

uji(l, k) =

∫ τ(l+1)+(j−1)Ts

τl+(j−1)Ts

p(t− (j − 1)Ts − τl)p(t− (i− 1)Ts − τk)dt (10)

vl(j) =

∫ τ(l+1)+(j−1)Ts

τl+(j−1)Ts

n(t)p(t− (j − 1)Ts − τl)dt (11)



matrix including diagonal elements ofU11. Then, it can be
shown thatE[vvH ] is equal toσ2(IN ⊗Diag(U11)), where
IN is anN×N identity matrix and(⊗) is Kronecker product.

Since the statistically sufficient samples in Fig. 1a can be
created from samples in Fig. 1b, the samples in Fig. 1b, i.e.
Eq. (8), are sufficient statistics too. Both of these sampling
methods introduce intentional intersymbol interference (ISI)
and impose memory on the system; however, they have some
differences:

1) Sampling intervals in Fig. 1b are smaller and need
faster sampler.

2) Since sampling intervals are disjoint in Fig. 1b, noise
samples are independent. However, due to sampling
overlap, the noise samples in Fig. 1a are correlated.

3) The sampling in Fig. 1b results in an overdetermined
system, while the number of output samples in Fig. 1a
is equal to the number of input symbols.

For rectangular pulse shape, the input-output relationship of
the sampling method in Fig. 1a is:

y =



R11 R12 0 ... 0
R21 R11 R12 ... 0

...
...

...
...

...
0 ... R21 R11 R12

0 ... 0 R21 R11







h 0 0 ... 0
0 h 0 ... 0
...

...
...

...
...

0 ... 0 h 0
0 ... 0 0 h







b(1)
b(2)

...
b(N)


+ n

= RHb+ n (12)

whereR11,R21 andR12 are defined as:

R11 =



1 1−(τ2−τ1) ... 1−(τK−τ1)
1−(τ2−τ1) 1 ... 1−(τK−τ2)

...
...

...
...

1−(τK−1−τ1) ... 1 1−(τK−τK−1)
1−(τK−τ1) ... 1−(τK−τK−1) 1


 (13)

R12 = (R21)
T =




0 0 ... 0 0
τ2−τ1 0 ... 0 0

...
...

...
...

...
τ(K−1)−τ1 τ(K−1)−τ2 ... 0 0

τK−τ1 τK−τ2 ... τK−τK−1 0




(14)

Because of intersection between sampling intervals, noise
samples are correlated and noise whitening procedure needs
to be performed before symbol detection. Noise whitening
involves Cholesky decomposition and matrix inversion which
increases complexity of receiver.

III. R ECEIVER DESIGN

In this section we introduce different detection methods
which take advantage of distinct features of the sampling
method shown in Fig. 1b. One of these features is converting a
memoryless system into a system with memory and indepen-
dent noise samples. This enables us to implement the Viterbi
algorithm based on samples in Eq. (8). The other feature
is that this sampling method provides extra output samples

which can be used to improve detection methods. For example,
these extra samples make it possible to carry out successive
interference cancellation (SIC) backward and forward. Also,
by means of introduced ISI, zero forcing detection can be
performed even with one receive antenna, which is impossi-
ble in synchronous multiuser transmission. In what follows,
we will show how asynchronous multiuser transmission can
outperform synchronous multiuser transmission.

A. Maximum-Likelihood Sequence Detection (MLSD)

Due to inherent memory in the system that results from
time delays, we can use the maximum-likelihood sequence
detection method implemented by the Viterbi algorithm. The
objective of maximum-likelihood sequence detector is to find
the input sequence that maximizes the conditional probability,
or the likelihood of the given output sequence. Exhaustive
search over2NK different input sequences is an obvious
choice, but it is impractical even for a moderate number ofK
andN . Fortunately, using the Viterbi algorithm, MLSD can
be implemented by complexity order of2K [11]. For using
the Viterbi algorithm, the likelihood metric should be additive
and the noise samples should be independent. Therefore, the
sampling method in Fig. 1b is the best fit for implementing
the Viterbi algorithm. It reduces the complexity by avoid-
ing the noise whitening procedure which involves Cholesky
Decomposition and matrix inversion. We show that by using
this sampling method, we can outperform synchronous ML
detection with the same complexity order of2K .
Based on the recursive relation between input and output
which is described as:

y(j) = U11hb(j) −U21hb(j − 1)+ v(j) 2 ≤ j ≤ N

the trellis diagram of the system includesAK states withAK

outgoing paths to the next states, andAK incoming paths
from previous states, whereA is the size of the transmitted
modulation. To calculate the metric for each path, we need to
calculate the likelihood function as follows:

Pr(y(j)|b(j), b(j − 1)) =

Pr(v(j) = y(j)−U11hb(j) −U21hb(j − 1)) =

1√
(2π)K |Σ|

exp (−1

2
sj

HΣ−1sj)

wheresj = y(j) − U11hb(j) − U21hb(j − 1) andΣ =

E[v(j)v(j)H ]. By discarding common terms and simple
calculations, the metric for each path can be defined as∑K

i=1
|sj(i)|2

σ2U11(i,i)
. After calculating the path metrics, the final

goal is to find the surviving path and trace it back to decode the
transmitted symbols. The simulation result for this algorithm
and its comparison with the synchronous ML detection is
presented in Section V.

B. Successive Interference Cancellation with Hard Decision
Passing

Despite the excellent performance provided by MLSD, its
complexity grows exponentially with the number of users,



which might be prohibitive in some practical scenarios. Suc-
cessive interference cancellation (SIC) detection that takes a
serial approach to cancel interference can be used to reduce
complexity. Using the sampling method in Fig. 1b, this serial
approach can be either a forward SIC initiated from the first
transmitted symbol, i.e.,b1(1), or a backward SIC started from
the last transmitted symbol, i.e.,bK(N).

For example, for forward processing,b1(1) can be decoded
by usingy1(1) without interference, thenb2(1) can be decoded
by cancelling the interference ofb1(1) from y2(1), and so
on. The same procedure can be performed backwards. One
can also combine forward and backward operations. However,
when hard decisions are used, such a combination will not
result in a noticeable gain. On the other hand, by using soft
decisions, combining the forward and backward operations
will improve the results as explained in the following section.

C. Forward Backward Belief Propagation Detection

In the previous section we introduced an SIC method
which was performed by passing hard decisions of previously
decoded symbols to cancel the interference. In this section, we
introduce a similar detection method which passes likelihood
values. By using likelihood values, instead of hard decisions,
performance can be improved as shown by simulation results.
Additionally, this method provides the opportunity to exploit
benefits of backward processing as well. We explain the
strategy of decoding for BPSK modulation andK = 2, but it
can be also generalized to other modulations and other values
of K. We also assume that transmitted symbols have the same
prior probabilities and calculate the conditional probabilities
as follows:




a = P (y1(1)|b1(1) = 0) = 1√
2πρ1σ2

exp
(
− |y1(1)+h1ρ1|2

2ρ1σ2

)

b = P (y1(1)|b1(1) = 1) = 1√
2πρ1σ2

exp
(
− |y1(1)−h1ρ1|2

2ρ1σ2

)

P fw
0 (b1(1)) = P (b1(1) = 0|y1(1)) = a

a+b

P fw
1 (b1(1)) = P (b1(1) = 1|y1(1)) = b

a+b



c = P (y2(1)|b2(1) = 0, y1(1)) =

P fw
0 (b1(1))

1√
2πρ2σ2

exp
(
− |y2(1)+h1ρ1+h2ρ2|2

2ρ2σ2

)
+

P fw
1 (b1(1))

1√
2πρ2σ2

exp
(
− |y2(1)−h1ρ1+h2ρ2|2

2ρ2σ2

)

d = P (y2(1)|b2(1) = 1, y1(1)) =

P fw
0 (b1(1))

1√
2πρ2σ2

exp
(
− |y2(1)+h1ρ1−h2ρ2|2

2ρ2σ2

)
+

P fw
1 (b1(1))

1√
2πρ2σ2

exp
(
− |y2(1)−h1ρ1−h2ρ2|2

2ρ2σ2

)

P fw
0 (b2(1)) = P (b2(1) = 0|y1(1), y2(1)) = c

c+d

P fw
1 (b2(1)) = P (b2(1) = 1|y1(1), y2(1)) = d

c+d

where ρi = U11(i, i). Using these successive calculations,
P fw
0 (bk(n)) andP fw

1 (bk(n)) can be found for all values of
1 ≤ n ≤ N and 1 ≤ k ≤ K. As explained before, due
to the structure of the sampling method in Fig. 1b, the last
transmitted symbol can also be detected without interference
and the same procedure can be applied backward to find
P bw
0 (bk(n)) andP bw

1 (bk(n)). Using either of these likelihood

sets as a detection metric will result in an improvement
over the hard-decision SIC method that was presented in
the previous section. Moreover, the performance can even
surpass the performance of the synchronous ML detection if
we use forward and backward operations together and define
the detection metric as:

P0(bk(n)) = P fw
0 (bk(n))P

bw
0 (bk(n))

P1(bk(n)) = P fw
1 (bk(n))P

bw
1 (bk(n))

Simulation results are presented in Section V.

D. Zero Forcing

One of the well-known linear multiuser receivers is the ZF
receiver which cancels the interference caused by the other
users in the expense of enhancing the noise. In a synchronized
system, we need at least K receive antennas to be able to
perform ZF detection; however, by exploiting asynchrony, we
can perform ZF with only one receive antenna [6], [7]. To
have a fair comparison with the synchronous case, we study
the system model when multiple receive antennas are used at
the receiver. By stacking output samples of all receive antennas
together we can represent the system model as follows:




y1

y2

...
yM


 =




U 0 . . . 0
0 U . . . 0
...

...
. . .

...
0 . . . 0 U







H1

H2

...
HM


 b+




v1

v2

...
vM




ytot = UtotHtotb+ vtot

ytot = Ltotb+ vtot

where M is number of receive antennas. Then, the zero-
forcing detector is defined as:

ỹ = (Ltot
HΣtot

−1Ltot)
−1Ltot

HΣtot
−1ytot = b+ ṽ

(15)

where Σtot = IM ⊗ Σ, and Σ is an NK × NK di-
agonal matrix representing the covariance matrix of noise
samplesvi, 1 ≤ i ≤ M . The noise enhancement factor
is (Ltot

HΣtot
−1Ltot)

−1, which affects the receiver perfor-
mance and will be studied in the following section.

IV. PERFORMANCEANALYSIS

All asynchronous receivers presented in the previous section
provide full diversity. Because the ZF receiver has the worst
performance among all introduced receivers, we only need to
show full diversity for the ZF receiver. The system represented
in Eq. (15) consists ofNK subchannels, each of them having
SNR of E[|bk(i)|2]

COVṽ(i,i)
, 1 ≤ i ≤ NK, whereCOVṽ can be

calculated as:

COVṽ = E[ṽṽH ] = σ2(Ltot
HΣtot

−1Ltot)
−1 (16)

= σ2(

M∑

i=1

Li
HΣ−1Li)

−1 (17)

= σ2(

M∑

i=1

Hi
∗RHi)

−1 (18)



whereLi = UHi. In the derivation ofCOVṽ , Eq. (17) is
found by some matrix manipulation and Eq. (18) is obtained
by using the fact thatUHΣ−1U = R. This identity can
be simply verified by examining matrices defined in Eqs.
(8) and (12). Unfortunately, due to the complex structure of(∑M

i=1 Hi
∗RHi

)−1

for M ≥ 1, finding the exact expression
of bit error rate (BER) forM ≥ 1 is not easy. We derive
an upper bound on BER by finding an upper bound on the
diagonal elements ofCOVṽ and show that full diversity is
achieved. BecauseR is positive definite, for every1 ≤ i ≤ M ,
H∗

i RHi is also positive definite. Therefore, we can apply the
following lemma.

Lemma 1: For n positive definite matricesAi, 1 ≤ i ≤ n,
we have:

(

n∑

i=1

Ai)
−1 ≤

n∑

i=1

Ai
−1 (19)

whereB ≤ C means thatC −B is positive semidefinite.
Proof: This lemma is a straightforward result of the

following inequality, which can be found in [12].

(A+B)−1 ≤ A−1 A,B : positive definite matrices

As a result, we can conclude thatCOVṽ ≤
σ2

∑M
i=1 (Hi

∗RHi)
−1. This inequality implies that the

diagonal elements of the covariance matrix of noise are upper
bounded as follows:

COVṽ(i, i) ≤
σ2R−1(i, i)

∑M
j=1 |h(1+(i−1)modK),j|2

1 ≤ i ≤ NK

(20)

where hk,m is the channel coefficient between Userk and
Receive Antennam.
The BER expression for an AWGN channel with aver-
age transmit power ofE[|bk(i)|2] and noise variance of

σ2R−1(i,i)
∑

M
j=1 |h((1+(i−1)modK),j) |2

is equal to:

pi =

√
δ02

πR−1(i,i)

2
(
1 + δ02

R−1(i,i)

)M+ 1
2

× (21)

Γ(M + 1
2 )

Γ(M + 1)
× 2F1(1,M +

1

2
;M + 1;

1

1 + δ02
R−1(i,i)

)

whereδ0 = E[|bk(i)|2]
σ2 . The details of derivation can be found

in Appendix A. Due to having the same average transmit
power and a lower noise variance, we conclude that BER for
each subchannel is upper bounded bypi, i.e.,Pi ≤ pi. If we
defineDi = − limδ0→∞

log Pi

log δ0
anddi = − limδ0→∞

log pi

log δ0
, it

is clear thatDi ≥ di. By using the fact that the hypergeometric
function of form2F1(1,m+ 1

2 ;m+1; 1
1+c ) converges to one as

c grows large [13], we can calculate thatdi = M . Therefore,
the diversity of theith subchannel is greater than or equal to
M . On the other hand,M is the maximum available diversity
for this system, which completes the proof of achieving full
diversity, i.e.Di = M .

A. Analyzing Asymptotic Performance for Large Number of
Receive Antennas

In this section, we show that whenM goes to infinity,
the correlation between noise samples and the effect of fad-
ing coefficients vanishes. For normalizing purposes, instead
of using Eq. (15), we perform ZF by multiplying output
samples by

√
M(Ltot

HΣtot
−1Ltot)

−1Ltot
HΣtot

−1in this
section. Then, the inverse of noise covariance will be equalto

1
σ2M

∑M
i=1 Hi

∗RHi, which can be represented as:

COVṽ
−1 =

1

σ2
R ◦ (JN ⊗ H̃) (22)

where(◦) is Hadamard product andJN is theN×N all-ones
matrix. H̃ is also defined as follows:

1

M




∑M
m=1 |h1,m|2 ∑M

m=1 h1,mh∗

2,m ...
∑M

m=1 h1,mh∗

K,m
∑

M
m=1 h2,mh∗

1,m

∑
M
m=1 |h1,m|2 ...

∑
M
m=1 h2,mh∗

K,m

...
...

...
...∑

M
m=1 hK,mh∗

1,m

∑
M
m=1 hK,mh∗

2,m ...
∑

M
m=1 |hK,m|2




Then, by using the law of large numbers, it can be shown
that H̃ → IK asM → ∞ [14]. The immediate result is that
COVṽ

−1 and COVṽ approaches to1
σ2 INK and σ2INK ,

respectively. This result implies that at the output of the ZF
receiver, noise samples are independent and SNR for each
subchannel is a fixed value ofMδ0, independent of channel
coefficients. In other words, the effect of fading coefficients
and correlation between noise samples will vanish.

B. Effect of Time Delays on Performance

In this section, we calculate the optimal values of delays for
the ZF detection in order to achieve the lowest average BER
with one receive antenna at high SNR. Because forM = 1
the inequality in Eq. (20) turns into equality, the exact BER
expression for each subchannel can be obtained as:

Pi = √
δ02

πR−1(i,i)

2
(
1 + δ02

R−1(i,i)

)3/2

Γ(3/2)

Γ(2)
2F1(1, 3/2; 2;

1

1 + δ02
R−1(i,i)

)

Approximating Pavg at high SNR for one receive antenna
results in: (see Appendix B for more details)

P̃avg =
1

4
√
πNK

Γ(3/2)

Γ(2)
×

∑
iR

−1(i, i)

δ0
,

For a fixed number of users and frame length, in order to
maximizeP̃avg, we need to maximize the trace(R−1) which is
related to time delays between different users. In what follows,
we derive the relationship between the trace(R−1) and time
delays, and consequently find optimum time delays.

Lemma 2: the sum of the diagonal elements of the inverse
of matrix R is equal to:

trace(R−1) =
(N − 1)(N + 1)

3(1 + τ1 − τK)
+

2N + 1

3(N + 1 + τ1 − τK)

+
N(N + 2)

3

K−1∑

i=1

1

τi+1 − τi
(23)



The proof is presented in Appendix C.
Theorem 1: The optimum time delays which result in the

lowest average BER for ZF detection at high SNR are: (τ1 is
assumed to be zero)

τi−1 =
i− 2

i− 1
× τi 3 ≤ i ≤ K (24)

Also τK is found by solving the following equation:

Aτ4K +Bτ3K + Cτ2K +DτK + E = 0 (25)

where

A = (1 − (K − 1)2)
(N + 2)

3
.

B =
−2

3
(1 − (K − 1)2)N2 + 2(4(K − 1)2 − 1)

(N + 1)

3
.

C =
1

3
(1− (K − 1)2)N3 +

2

3
(1− 4(K − 1)2)N2−

2(K − 1)2(3N + 2).

D =
2

3
(K − 1)2(N3 + 5N2 + 8N + 4).

E = −1

3
(K − 1)2(N3 + 4N2 + 5N + 2).

The proof is easily obtained by taking the derivation of Eq.
(23) with respect to time delays.
For K = 2, A will be zero and Eq. (25) is a polynomial of
degree 3 which has a closed-form solution as follows:

τopt =
N + 2− 3

√
N3 + 1.5N2 − 1.5N − 1

3
(26)

whereN is the block length. However, for other values of
K, Eq. (25) should be solved numerically. After findingτK ,
the remaining time delays are calculated recursively usingEq.
(24). The optimum delay values for differentK andN values
are reported in Tables I and II. Optimum time delays approach

TABLE I: Optimum Time Delays whenK = 2

Case N=10 N=32 N=64 N=128 N→ ∞

K=2 0.5240 0.5077 0.5039 0.5019 0.5

TABLE II: Optimum delays whenN = 128

Case N=128

K=4 [0.2505,0.5010,0.7514]

K=6 [0.1669,0.3338,0.5006,0.6675,0.8344]

K=8 [0.1251,0.2502,0.3754,0.5004,0.6256,0.7507,0.8758]

uniform time delays, i.e,τk = k−1
K , 2 ≤ k ≤ K, as N

increases. The effects of time delay values on the performance
are studied numerically in the following section.

V. SIMULATION RESULTS

In this section, we provide simulation results in order
to validate our theoretical results and compare different
methods. In all simulations, channel coefficients are
independent Rayliegh fadings with variance one, fixed during

the block and changing independently for each block. All
users have the same average power of one and variance of
noise (σ2) is equal to10

−SNR
10 where SNR is in dB. To avoid

inter-block interference, the last symbol of each block should
be idle for asynchronous methods. This will reduce spectral
efficiency, but it is negligible for large block lengths. In all
simulations, the block length is 128 and the time delays are
uniform except in the case where we report the time delays to
study their effects on the performance. The number of users
and the number of receive antennas is denoted byK andM ,
respectively. WhenM is not specified, the assumption is that
only one receive antenna is used. Transmitted symbols are
chosen from BPSK modulation and the comparing criterion
is the average bit error rate among all the users.

In Fig. 2,we compare the performance of the asynchronous
MLSD method with that of the synchronous ML. Asyn-
chronous MLSD outperforms synchronous ML detection with
similar complexity. Fig. 2 also includes the single-user bound
for a better comparison. As can be seen in the figure, asyn-
chronous MLSD forK = 2 achieves performance of the single
user system at high SNR.

Fig. 3 shows the performance of different SIC methods

Fig. 2: Comparing asynchronous MLSD and synchronous ML

presented in Section III-B. Our new forward backward belief
propagation method using the sampling method in Fig. 1b
improves the performance of traditional SIC method by about
3 dB.
Fig. 4 compares the performance of the synchronous and

asynchronous ZF detectors. Although asynchronous ZF is
possible with one receive antenna, for fair comparison, we
consider the cases where the number of receive antennas and
users are the same. Since all users are assumed to have the
same transmit power, synchronous ZF for(K = 2,M = 2)
and(K = 4,M = 4) provides the same performance and both
of them have diversity of one. However, for asynchronous ZF
detection, diversity of2 and4 is achieved for(K = 2,M = 2)
and(K = 4,M = 4), respectively. This is due to the sampling
diversity as discussed earlier.



Fig. 3: Performance of SIC method with hard decisions and
soft decisions

Fig. 4: Comparing synchronous and asynchronous ZF

We study the effects of time delay values on the perfor-
mance of a ZF system withK = 4 users and one receive
antenna in Fig. 5. Note that a synchronous ZF solution does
not exist in this case as we need at leastM = 4 receive
antennas. We show the results for six different sets of time
delays. For optimum time delays we use the result of Section
IV-B as reported in Table II. The curve associated with
random time delays represents the average performance over
uniformly distributed random time delays. The remaining sets
of time delays are specified in the figure. The optimum time
delays and time delays of[0.01, 0.1, 0.9] have the best and
worst performances, respectively. They also have the lowest
and the highest trace(R−1), respectively, which are presented
along with other sets of time delays in Table III. As can
be seen, a lower trace(R−1) results in a better performance.
This observation is in line with the analysis in Section IV-B
where trace(R−1) was introduced as a criterion to compare
the performance of different time delays.
Finally, to compare different methods with each other, we

include the performance of all detection methods forK = 2

TABLE III: Comparing trace(R−1) for different time delays
in Fig. 5

Time delays trace(R−1)

[0.2505, 0.5010, 0.7514] 8.8404 × 104

[0.4, 0.6, 0.8] 9.6639 × 104

[0.1, 0.4, 0.7] 1.1065 × 105

[0.1, 0.2, 0.9] 1.7347 × 105

[0.01, 0.1, 0.9] 6.7784 × 105

Fig. 5: Effect of time delays in asynchronous ZF detection for
K = 4

in Fig. 6. Both MLSD and forward-backward BP detection
methods not only outperform the synchronous ML detection,
but also achieve the performance of the single user system.
In addition, the low complexity method of SIC with hard
decisions also provides good performance.

Fig. 6: Comparison of all detection methods forK = 2

VI. CONCLUSION

In this paper, we studied benefits of asynchrony when
multiple users are sending data simultaneously to a common



receiver. Instead of treating asynchrony as a disruptive factor,
we exploited it as an additional resource to cancel interfer-
ence. We have shown that asynchrony between data streams
adds a favorable ISI which makes interference cancellation
possible. It also introduces memory to the system which can
be exploited by methods like maximum-likelihood sequence
detection. In addition to MLSD, a novel forward-backward
belief propagation detection method was presented and this
method outperforms synchronous ML detection. Exact BER
expression for ZF detection was derived and it was verified
that a diversity equal to the number of receive antennas is
achievable by asynchronous transmission.
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APPENDIX A
DERIVATION OF BIT ERROR RATE (BER) EXPRESSION

For an AWGN channel with an average transmit power of
E[|bk(i)|2] and noise variance of σ2R−1(i,i)

∑
M
j=1 |h(1+(i−1)modK),j |2

, the

post SNR at the receiver can be expressed as:

δi =
δ0

∑M
j=1 |h(1+(i−1)modK),j|2

R−1(i, i)
(27)

where δ0 = E[|bk(i)|2]
σ2 . We know that|hi,j |2 follows a chi-

squared distribution with two degrees of freedom for allis
and js. Therefore,

∑M
j=1 |h(1+(i−1)modK),j|2 is chi-squared

distributed with 2M degrees of freedom. As a result, the
distribution ofδi can be calculated as follows:

Pδi(δ) =
R−1(i, i)

δ0

(
R−1(i,i)

δ0
δ
)M−1

exp
(
−R−1(i,i)

δ02
δ
)

2MΓ(M)
(28)

whereΓ(.) is the Gamma function. For a specific value of
SNR, BER varies according to the modulation. We assume
that BPSK is used, however, extension to other modulations
is straightforward. Based on this assumption, the BER for a
given value of SNR, e.g.,δ is equal toQ(

√
2δ). The next step

is to calculate the following integral:

pi =

∫ ∞

0

Q(
√
2δ)Pδi(δ)dδ

The integral of am

Γ(m)

∫∞
0

exp (−az)zm−1Q(
√
bz)dz has a

closed-form of:
√
b/2πa

2
(
1 + b

2a

)m+1/2

Γ(m+ 1/2)

Γ(m+ 1)
2F1(1,m+

1

2
;m+ 1;

1

1 + b
2a

)

where 2F1(q, w; e; r) is the hypergeometric function [15].
Therefore, the bit error rate, i.e.,pi is equal to:

pi =

√
δ02

πR−1(i,i)

2
(
1 + δ02

R−1(i,i)

)M+ 1
2

× (29)

Γ(M + 1
2 )

Γ(M + 1)
× 2F1(1,M +

1

2
;M + 1;

1

1 + δ02
R−1(i,i)

)

APPENDIX B
AVERAGE BER AND ITS APPROXIMATION AT HIGH SNR

In Eq. (29), pi depends onR−1(i, i) which varies for
different values ofi, and therefore each subchannel has a
different BER. This is unlike the synchronous ZF, where all
resulting subchannels have the same performance. In order to
evaluate the performance of the entire system, we define the
average BER performance as follows:

pavg =

∑NK
i=1 pi
NK

(30)

Sincepavg is not tractable, we approximate it at high SNR,
using the fact that2F1(1,m + 1

2 ;m + 1; 1
1+c) converges to

one asc grows large [13]. Hence, at high SNR,pavg can be
approximated as follows:

p̃avg = Const ×
∑NK

i=1 (R
−1(i, i))M

δM0
(31)

where the constant value is equal to 1
2(M+1)NK

√
π

Γ(M+ 1
2 )

Γ(M+1) .



APPENDIX C
PROOF OFLEMMA 2

When the frame length isN , we denoteR by RN . Then,
we prove by induction that, for allN ∈ Z+,

trace((RN )−1) =
(N − 1)(N + 1)

3(1 + τ1 − τK)
+

2N + 1

3(N + 1 + τ1 − τK)

+
N(N + 2)

3

K−1∑

i=1

1

τi+1 − τi
(32)

Base case: WhenN = 1, R1 is equal toR11 which can
be written as a generalized Fiedlers matrix whose inverse is
given by [16]:

R11
−1 =

− 1

2




d1
1

τ2−τ1
... 0 f

1
τ2−τ1

d2
1

τ3−τ2
... 0

...
...

...
0 ... 1

τK−1−τK−2
dK−1

1
τK−τK−1

f 0 ... 1
τK−τK−1

dK




(33)

wheref anddis are defined as:

f =
1

τK − τ1 − 2
(34)

d1 =
1

τ1 − τ2
− 1

τ1 − τK + 2
(35)

dK =
1

τ7 − τ8
− 1

τ1 − τK + 2
(36)

di =
1

τi−1 − τi
+

1

τi − τi+1
2 ≤ i ≤ K − 1 (37)

Then, trace(R−1
11 ) is equal to

(
− 1

2

∑K
i=1 di

)
, which can be

calculated using the above equations:

trace(R−1
11 ) =

1

(2 + τ1 − τK)
+

K−1∑

i=1

1

τi+1 − τi
(38)

Therefore, Eq. (32) is true forN = 1.
Induction step: Suppose Eq. (32) is true forN . We need to
show that it also holds forN + 1, i.e.,

trace((R(N+1))−1) =
(N)(N + 2)

3(1 + τ1 − τK)
+

2N + 3

3(N + 2 + τ1 − τK)

+
(N + 1)(N + 3)

3

K−1∑

i=1

1

τi+1 − τi

(39)

Because matrixR follows a recursive structure,RN+1can be
presented as follows:

RN+1 =

[
(RN )NK×NK (L)NK×K

(LT )K×NK (R11)K×K

]

whereLT = [0K×K , . . . ,0K×K , (R21)K×K ]. For calculating
the inverse ofRN+1, we use the following lemma for matrix
inversion in block form.

Lemma 3: Let na(m+n)×(m+n) matrixT be partitioned
into a block form:

T =

[
A B

C D

]

where them×m matrixA andn×n matrixD are invertible.
Then, we have:

T−1 =

[
M−1 −M−1BD−1

−D−1CM−1 D−1 +D−1CM−1BD−1

]

whereM = A−BD−1C [17].
Here,A, B, C andD are equal toRN , L, LT andR11,
respectively. Therefore,M is equal to:

M = RN −L(R11)
−1LT (40)

Now, we need to find the inverse ofM . By definingZ as
(RN )−1, the inverse ofM can be presented as:

M−1 =



IK . . . 0K,K Z1NQ(IK −ZNNQ)−1

0K×K
. . .

...
...

...
... IK Z(N−1)NQ(IK −ZNNQ)−1

0K×K . . . 0K×K (IK −ZNNQ)−1



Z

(41)

whereQ = R12R11
−1R21 andZijs areK×K partitioning

blocks ofZ. Also, Ik and0i×j are ak × k identity matrix
and ai× j all-zero matrix, respectively.
To show the correctness of Eq. (41), we need to take the
following steps:

Step 1: By some calculations, it can be shown that

L(R11)
−1LT is equal to

[
0 0
0 Q

]
. As a result, we have:

M = RN −
[
0(N−1)K×(N−1)K 0(N−1)K×K

0K×(N−1)K Q

]
(42)

Step 2: If we multiply both sides byZ, we will have:

ZM = INK −




0K×K . . . 0K×K Z1NQ

0K×K . . . 0K×K Z2NQ
...

...
...

...
0K×K . . . 0K×K ZNNQ


 (43)

Step 3: We denote the right hand side of Eq. (43) byX,
then, we can conclude that the inverse ofM is equal to:

M−1 = X−1Z (44)

Step 4: X−1 can be calculated as follows:

X−1 =



IK . . . 0K,K Z1NQ(IK −ZNNQ)−1

0K×K
. . .

...
...

...
... IK Z(N−1)NQ(IK −ZNNQ)−1

0K×K . . . 0K×K (IK −ZNNQ)−1




(45)



Step 5: Finally, if we plugX−1 in Eq. (44), we will reach
Eq. (41).

If we denoteK ×K diagonal blocks ofM−1 as [M−1]i,i
1 ≤ i ≤ N , then, by use of Lemma 3, trace((RN+1)−1) can
be written as:

trace((RN+1)−1) =

N∑

i=1

trace([M−1]i,i)+

+ trace(R11
−1 +R11

−1R21[M
−1]N,NR12R11

−1) (46)

By simplifying Eq. (41), diagonal blocks ofM−1 can be
presented as follows:

1 ≤ i ≤ N − 1 :

[M−1]i,i = Zii +ZiNQ(I −ZNNQ)−1ZNi (47)

i = N :

[M−1]i,i = (I −ZNNQ)−1ZNN (48)

In Eq. (46), we set the diagonal blocks ofM−1 as Eqs. (47)
and (48). Then, by some manipulations, trace((RN+1)−1) can
be presented as:

trace((RN+1)−1) = trace((RN )−1) + trace(R11
−1)

+
N−1∑

i=1

trace(ZiNQ(I −ZNNQ)−1ZNi)

+ trace((I −ZNNQ)−1ZNN )− trace(ZNN )

+ trace(R11
−1R21(I −ZNNQ)−1ZNNR12R11

−1)
(49)

The first and second terms in Eq. (49) can be calculated by
induction hypothesis and induction base, respectively. Calcu-
lating other terms in Eq. (49) is tedious but similar for different
values ofK. Therefore, we only calculate it forK = 2 and
skip the rest. ForK = 2, Q is equal to:

Q =

[
0 0
0 1−τ

1+τ

]
(50)

whereτ = τ2 − τ1.

If we plugQ =

[
0 0
0 1−τ

1+τ

]
in Eq. (49), after some calculations

we will have:

trace((RN+1)−1) = trace((RN )−1) +
2

1− (1− τ)2

+
1− τ

(1 + τ) − (1− τ)r(2N, 2N)

2N∑

i=1

(r(2N, i))2

+
(1 + τ)(1 + (τ − 1)2)

(2− τ)2[(1 + τ)− (1 − τ)r(2N, 2N)]
r(2N, 2N) (51)

where r(i, j) is the (i, j)th element of matrix(RN )−1. By
induction hypothesis, the first term in Eq. (51) is equal to
(N−1)(N+1)
3(1−τ2+τ1)

+ N(N+2)
3(τ2−τ1)

+ 2N+1
3(N+1−τ2+τ1)

. For calculating Eq.
(51), we also need values ofr(2N, i), 1 ≤ i ≤ 2N , which
are elements of the last row of(RN )−1. Due to the special

structure of matrixR, values ofr(2N, i) can be calculated as
follows: {

r(2N, 2i− 1) = τ−i
τ(N+1−τ)

r(2N, 2i) = i
τ(N+1−τ)

1 ≤ i ≤ N (52)

To verify Eq. (52), we can multiply the last row of
(RN )−1, i.e., [r(2N, 1), r(2N, 2), . . . , r(2N, 2N)], by differ-
ent columns ofRN as follows:

1st column:
(τ − 1)1

τ(N + 1− τ)
+

(1)(1− τ)

τ(N + 1− τ)
= 0

(2i)th column: 1 ≤ i ≤ N − 1

(τ − i)(1− τ)

τ(N + 1− τ)
+

(i)1

τ(N + 1− τ)
+

(τ − (i+ 1))τ

τ(N + 1− τ)
= 0

(2i− 1)th column: 2 ≤ i ≤ N

((i − 1))(τ)

τ(N + 1− τ)
+

(τ − i)1

τ(N + 1− τ)
+

(i)(1− τ)

τ(N + 1− τ)
= 0

2N th column:
(τ −N)(1 − τ)

τ(N + 1− τ)
+

(N)1

τ(N + 1− τ)
= 1

These results verify that the last row of(RN )−1 follows the
pattern in Eq. (52).
The last step is to plug Eq. (52) into Eq. (51). As a result,
trace((RN+1)−1) is equal to (N)(N+2)

3(1−τ2+τ1)
+ (N+1)(N+3)

3(τ2−τ1)
+

2N+3
3(N+2−τ2+τ1)

, which verifies the induction step and completes
the proof.
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