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Abstract—In this work, we study the joint optimization of edge
caching and data sponsoring for a video content provider (CP),
aiming at reducing the content delivery cost and increasingthe
CP’s revenue. Specifically, we formulate the joint optimization
problem as a two-stage decision problem for the CP. In Stage
I, the CP determines the edge caching policy (for a relatively
long time period). In Stage II, the CP decides the real-time data
sponsoring strategy for each content request within the period.
We first propose a Lyapunov-based online sponsoring strategy in
Stage II, which reaches 90% of the offline maximum performance
(benchmark). We then solve the edge caching problem in StageI
based on the online sponsoring strategy proposed in Stage II, and
show that the optimal caching policy depends on the aggregate
user request for each content in each location.Simulations show
that such a joint optimization can increase the CP’s revenueby
30%∼100%, comparing with the purely data sponsoring (i.e.,
without edge caching).

I. I NTRODUCTION

A. Background and Motivations

Nowadays, we are witnessing the explosive growth of global
mobile data traffic, which has reached 2.5 exabytes per month
in 2014, where mobile video traffic accounts for 55% of the
total mobile traffic. According to Cisco [1], mobile video
traffic will contribute nearly 75% of worldwide mobile data
traffic by 2019. The fast increase of mobile video traffic
creates huge opportunities, and meanwhile brings additional
challenges for video content providers (CPs).Mobile users are
often sensitive to the data consumption. Thus, it is important
for CPs to design proper incentive mechanisms in order to
attract mobile video users [2], [3].

Data Sponsoringis a novel and effective method recently
introduced by CPs to expend user demand for video contents
[4]–[10]. The key idea is to allow CPs to subsidize video users’
cost of downloading video data, hence attract more mobile
video users and traffic. With data sponsoring, mobile users
benefit from the free wireless access for video contents, and
CPs benefit from the increased video users and traffic (through,
for example, selling more built-in advertisements). That is, it
can achieve a win-win situation for CPs and users, and hence
has attracted the interests of both academy and industry. As
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Fig. 1. System Model.

a real-world example, AT&T announced its sponsored data
program in January 2014, in which AT&T allows advertisers
to sponsor mobile data to entice users to watch ads they might
otherwise have avoided [11].

Traditional data sponsoring can potentially help a CP to
attract more video traffic and earn more revenue, but at the
same time, it will increase the CP’s cost of delivering contents
to video users, and also increase the burden of CDNs due
to the increased video traffic.Edge cachingemerges as a
promising paradigm to alleviate the burden of CDNs, reduce
the content delivery cost of the CP, and in addition, save
the energy consumptions of mobile users [12]–[14]. The key
idea is to cache popular video contents on edge networks in
advance, and deliver the cached contents on edge networks to
the local users through WiFi or Femtocell links directly.1 Edge
caching can alleviate the traffic burdens of congested cellular
networks and reduce the energy consumptions of mobile users,
and hence can deliver contents with a lower cost than the
traditional CDNs. As a real-world example, Xunlei, one of
the largest online content download service providers in China,
has adopted a new service that utilizes users’ bandwidths and
storage capacities to implement edge caching [13]. Xunlei
offers the edge network resources to CPs, allowing them to
replicate contents for the accesses of neighbour users, andthe
CPs pay Xunlei fee in return.

Although there have been a lot of works studying sponsored

1Edge caching is different from mobile data offloading [15]–[17], where
CPs deliverthe contents on the serverto mobile users through local WiFi.
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data [6]–[10] and the edge caching [12]–[14], all of these
works, as far as we know, considered sponsored data and the
edge caching separately.In this work, we aim to solve the CP
payoff maximization problem by jointly considering sponsored
data and edge caching under the fixed budget [7].

B. Solution and Contributions

We consider a simple yet representative model, where one
CP offers video services to a set of mobile users, using edge
caching and sponsored data. Each user moves and chooses a
video content randomly in a particular time. As illustratedin
Fig. 1, a content can be delivered to a user in two different
ways: cellular network and WiFi network (if the content is
cached on the local WiFi network in advance).

In the former case, the CP can further decide whether to
sponsor the content request via the cellular network. If so,the
CP pays the data transmission cost in the cellular network for
the user (e.g., user 2 in Fig. 1); otherwise, the user pays the
data transmission cost by himself as usual (e.g., user 3). In
the latter case, it is implied that the content is sponsored,as
the user does not need to pay for the data transmission cost
in the WiFi network (e.g., user 1). Moreover, if a content is
sponsored (either via cellular or WiFi), it will be delivered to
the user with certainvalue-added service(e.g., advertisement),
hence can bring additional value for the CP.

Thus, the key problems for the CP are following:
1) WiFi Caching Problem:Whether to cache a video con-

tent on a third-party WiFi network at a particular location for
a long time period (e.g., one day)?

2) Real-time Sponsoring Problem:Whether, and if so, how
(via cellular or WiFi) to sponsor a video content at each
instantaneous time slot (e.g., one minute)?

In this work, we will study the joint optimization of spon-
sored data and edge caching for maximizing the CP’s revenue
systematically. More specifically, we formulate the problem
as a two-stage decision problem for the CP. In Stage I, the
CP determines the WiFi caching policy at the beginning of
each time period. In Stage II, the CP determines the real-time
sponsoring solution for each content request in each time slot.
As far as we know, this is the first work that studies such a
joint optimization of sponsored data and edge caching. The
key contributions of this works are summarized as follows.

• Novel Model: To our best knowledge, we are the first to
study the joint optimization of data sponsoring and edge
caching for video content providers.

• Offline Optimal Performance (Benchmark):We formulate
the joint optimization problem of edge caching and data
sponsoring. The solution shows that the CP’s revenue
can be increased by30% ∼ 100% comparing with that
without edge caching. Moreover, data sponsoring can
support30% of overall user requests.

• Online Suboptimal Performance:We propose an online
caching strategy and a Lyapunov-based online algorithm
to achieve the real-time sponsoring decisions, which
outperforms baselines10% ∼ 50% and reaches90% of
the offline maximum benchmark performance.

The rest of this paper is organized as follows.In Section
2, we present the system model. In Section 3, we provide
the problem formulation and the offline solution. In Section
4, we provide the detailed online solution.We provide the
simulation results in Section 5, and conclude in Section 6.

II. SYSTEM MODEL

A. Network Model

We consider a mobile video content delivery network
(CDN), where a video content provider (CP) provides video
service to a setU = {1, 2, ..., U} of mobile users. Each user
moves and requests video contents randomly according to
his instantaneous individual preference. LetS = {1, 2, ..., S}
denote the set of all video contents. A video content can be
delivered to a user in two different ways:

• Cellular Direct Delivery: The video content (located in
the remote server) will be delivered to the user through
the cellular link directly;

• WiFi Cache Delivery: The video content is cached in a
local WiFi network in advance, and will be delivered to
the (nearby) user through the WiFi link locally.

For clarity, we illustrate such a dual-channel CDN in Fig. 1.
Without loss of generality, we assume that the cellular network
covers the whole area, while each WiFi network covers a small
area. We further assume that the coverage areas of different
WiFi networks are non-overlap.2 Let L = {1, ..., L} denote
the set of areas (locations) covered by WiFi networks.

To enable the WiFi cache delivery, the CP needs to cache
the video contents in the corresponding WiFi networks (at
the corresponding locations) in advance.Without loss of
generality, we consider the cache operation on adaily basis
[18]. That is, the CP makes the cache decision at the beginning
of each day, and each video cache (on a WiFi network) will
be available for the whole day.3

To facilitate the user modeling, we further consider atime-
slottedsystem, where each daily period is divided into a set
T = {1, 2, ..., T } of small time intervals (e.g., one second),
called time slots. Each user moves and requests a content
randomly in each time slot. Letsu[t] ∈ S

⋃
{0} denote the

content request of useru in time slot t, where su[t] = 0
denotes that the user doesnot request any video content.
Let lu[t] ∈ L

⋃
{0} denote the location of useru in time

slot t, where lu[t] = 0 denotes that the user is in the
location without any WiFi coverage. Then, the service request
vector and location vector of useru ∈ U in the whole daily
period can be written asSu = {su[1], su[2], ...su[T ]} and
Lu = {lu[1], lu[2], ..., lu[T ]}, respectively.

B. Sponsoring Scheme

When a useru requests a contentsu[t] at time slott, the
CP can decide whether to sponsor the request, and if so, how
to sponsor the request.

2When multiple WiFi networks are overlapping, we can simply choose one
of them for video caching.

3Note that there are also some works considering the dynamic cache (e.g.,
in [19]). In this work, we use the fixed cache strategy to emphasize the
relationship between caching and sponsoring.



Moreover, if the CP decides to sponsor a content request,
there are two different sponsoring schemes, correspondingto
two content delivery schemes, respectively. Namely,

• Cellular Sponsoring: The CP delivers the content in the
remote server to the user through the cellular link, and
pays for the cellular delivery cost.

• WiFi Sponsoring: The CP delivers the content cached in
the local WiFi network to the user through the WiFi link
locally, and pays for the WiFi caching cost.

Let Vs denote the sponsoring value for the CP when
sponsoring a video contents ∈ S, which is related to the
value-added service associated with the video. For example, a
popular video is usually associated with a high-value advertise-
ment, and hence has a large value. LetCs denote the cellular
delivery cost for the CP when sponsoring a video content
s ∈ S through the cellular network.Cs is proportional to the
size of the content and the cellular data price.Let Cw

s = α ·Cs

denote the WiFi caching cost for the CP when caching a video
contents ∈ S in a WiFi network. Note thatCw

s is a one-
time caching cost, which is independent of the actual times of
WiFi sponsoring for contents. We defineα as thecaching-
to-delivery factor, denoting the relative cost of WiFi caching
to cellular delivering. Note thatα > 1 because caching cost
consists of transmission cost as well as storage cost.

C. CP Model

For each content request, the CP decides whether to sponsor
the request, and if so, how to sponsor the request. To do this,
the CP need to determine the following strategies:

• Caching Strategy(at the beginning of each day): Which
contents would be cached, and at which locations?

• Sponsoring Strategy(for each request in each time slot):
Whether to sponsor each content request, and if so, with
which sponsoring scheme?

Let Z[l, s] ∈ {0, 1} denote whether to cache a video content
s ∈ S at location l ∈ L. Then, given the caching strategy
{Z[l, s], ∀l ∈ L, ∀s ∈ S}, the totalWiFi caching costis

γ =
∑

l∈L

∑

s∈S

Z[l, s] · Cs · α. (1)

Let yu[t] ∈ {0, 1} and xu[t] ∈ {0, 1} denote whether to
sponsor the content request (i.e.,su[t]) of useru in time slot
t via WiFi sponsoring and Cellular sponsoring, respectively.
As only one sponsoring scheme will be chosen, we have:

xu[t] + yu[t] ≤ 1, ∀u ∈ U , t ∈ T . (2)

Moreover, the WiFi sponsoring scheme can be chosen only
when the contentsu[t] is cached at locationlu[t] (i.e., the
location of useru in time slot t). Then, we have:

yu[t] ≤ Z
[
lu[t], su[t]

]
, ∀u ∈ U , t ∈ T . (3)

Given the cellular sponsoring strategy{xu[t], ∀u ∈ U , t ∈ T },
the totalcellular delivery costin time slot t is:

C[t] =
∑

u∈U

xu[t] · Cu[t], ∀t ∈ T , (4)

whereCu[t] = Csu[t] is the cellular delivery cost for sponsor-
ing usern’s contentsu[t] in time slot t.

Given the cellular and WiFi sponsoring strategies
{xu[t], yu[t], ∀u ∈ U , t ∈ T }, the totalsponsoring valuethat
the CP can achieve in time slott is:

V [t] =
∑

u∈U

(xu[t] + yu[t]) · Vu[t], ∀t ∈ T , (5)

whereVu[t] = Vsu[t] is the sponsoring value from usern’s
contentsu[t] in time slot t.

Therefore, the CP’s overall (time-average) payoff is:

R =
1

T
·

(
T∑

t=1

V [t]−
T∑

t=1

C[t]− γ

)
, (6)

where the first term is the total (average) sponsoring value,
the second term is the total (average) cellular delivery cost,
and the last term is the total (average) WiFi caching cost. For
convenience, we denoteR[t] = V [t]−C[t] as the instantaneous
payoff of the CP in time slott.

III. O FFLINE OPTIMIZATION BENCHMARK

The CP’s objective is to maximize his payoffR, given a
certain budget. LetB denote the total budget of the CP, for
both caching video contents and sponsoring video contents.
Then, we have the followingbudget constraintfor the CP:

T∑

t=1

C[t] + γ ≤ B. (7)

Therefore, the joint caching and sponsoring problem for the
CP can be formulated as follows:

max R

s.t. (2), (3), (7);

var. xu[t] ∈ {0, 1}, ∀u, t;

yu[t] ∈ {0, 1}, ∀u, t;

Z[l, s] ∈ {0, 1}, ∀l, s.

(8)

It is notable that (8) is anoffline optimization problem
(serving as benchmark), which requires the complete network
information4. Namely, to formulate the problem, the CP needs
to know the whole network information in all time slots in ad-
vance. In practice, however, the CP cannot obtain the complete
network information when making caching and sponsoring
decisions.

We look into the offline optimization problem (8) togain
certain meaningful insight into the design of our two-stage
strategy. For convenience, we denoteN [l, s] as the total
number of requests for contents in location l, i.e.,

N [l, s] =
∑

u∈U

∑

t∈T

1(su[t] = s & lu[t] = l),

where1(x) = 1 if x is true, and0 otherwise. From (8), we
can easily find the following observations.

4Note that (8) is a binary integer programming, and can be effectively
solved by many classic methods.



Observation 1:If Z[l, s] = 1, thenxu[t] = 0 andyu[t] = 1,
for all u ∈ U , t ∈ T with su[t] = s, lu[t] = l.
That is, if a contents is cached in locationl, then all of the
requests for contents at locationl will be sponsored by local
WiFi. Hence, the CP’s payoff achieved from caching a content
s in location l in Stage Ican be computed by:

Rw[l, s] = Z[l, s] · (N [l, s] · Vs − α · Cs);

Observation 2:If Z[l, s] = 0, thenyu[t] = 0, for all u ∈
U , t ∈ T with su[t] = s, lu[t] = l.
That is, if a contents is not cached in locationl, then none of
the requests for contents at locationl will be sponsored via
local WiFi. Hence, the CP’s payoff achieved from sponsoring
contents in location l in Stage IIvia cellular is:

Rc[l, s] =
∑

u∈U

∑

t∈T

1(su[t] = s & lu[t] = l) · xu[t] · (Vs − Cs)

= X [l, s] ·N [l, s] · (Vs − Cs),

whereX [l, s] =
∑

u∈U

∑
t∈T

1(su[t]=s & lu[t]=l)·xu[t]

N [l,s] ∈ [0, 1]
denotes the percentage of requests for contents at locationl
that being sponsored via cellular network.

Based on the above, we can transform the original problem
(8) into an equivalent problem with respect to the decisions
regarding each content on each location,i.e., Z[l, s] ∈ {0, 1}
andX [l, s] ∈ [0, 1]. Formally,

max R =
∑

l∈L

∑

s∈S

(Rw[l, s] +Rc[l, s])

s.t. X [l, s] + Z[l, s] ≤ 1, ∀l, s;

γ + β ≤ B;

var. X [l, s] ∈ [0, 1], ∀l, s;

Z[l, s] ∈ {0, 1}, ∀l, s;

(9)

whereγ =
∑

l∈L

∑
s∈S Z[l, s]·α·Cs is the total WiFi caching

cost, andβ =
∑

l∈L

∑
s∈S X [l, s] · N [l, s] · Cs is the total

cellular sponsoring cost.It is easy to see that problem (9) is a
mixed-integer linear programming, and we can solve it to get
the offline solution.

Theorem 1:Problem (9) is equivalent with problem (8).
If we solve problem (9), we deriveX [l, s] and Z[l, s],

then we can simply deploy caching strategy byZ[l, s] and
randomly chooseX [l, s] ∗ N [l, s] user requests in locationl
for contents to sponsor,i.e., set xu[t] = 1. Thus we derive
one of the solution of problem (8).It is important to note
that problem (9) depends only on the number of requests for
each content in each location, i.e.,N [l, s], ∀l ∈ L, s ∈ S,
while not on the request and location of each user in each
time slot. However, it still requires the complete information
to compute the exactN [l, s]. Nevertheless, it inspires us to find
estimations forN [l, s], and design the caching policy based
on the estimatedN [l, s]. We notice that in problem (9) the
caching payoffRw[l, s] andRc[l, s] are closely coupled with
each other, hence maximizing the two parts separately will not
derive the optimal overall payoffR.

To this end, we propose a two-stageonlinedecision process
based on the analysis in problem (9)for the CP to maximize
his payoff without complete network information. In Stage I,
the CP determines the WiFi caching strategy at the beginning
of the period, based on theestimatednumber of requests for
each content in each location. In Stage II, given the WiFi
caching strategy in Stage I, the CP determines the sponsoring
strategy for each content request in each time slot, using a
Lyapunov optimization framework.

IV. ONLINE OPTIMIZATION FRAMEWORK

As mentioned above, we formulate the CP’s payoff maxi-
mization problem under incomplete network information as
a two-stageonline decision process: In Stage I, the CP
determines the WiFi caching strategy at the beginning of the
period; In Stage II, the CP determines the real-time sponsoring
strategy for each content request in each time slot.Next, we
analyze these two stages by backward induction.

A. Stage II: Best Sponsoring Strategy

Lyapunov optimization [20], [21] is a widely used technique
for solving stochastic optimization problems with time average
constraints. In our case, it can be used to maximize the CP’s
payoff with CP budget constraint in an online manner. We
propose a Lyapunov optimization based online sponsoring
strategy, which does not rely on the complete network informa-
tion and converges to the offline benchmark with a controllable
approximation error bound.

In Stage II, the CP determines the best sponsoring strategy
for each content request in each time slot, given the WiFi
caching strategy{Z∗[l, s], ∀l ∈ L, ∀s ∈ S} determined in
Stage I. Hence, the total budget (cost) for WiFi caching is:

γ∗ =
∑

l∈L

∑

s∈S

Z∗[l, s] · Cs · α.

And the reminder budget for real-time data sponsoring is:

B̃ = B − γ∗.

The key idea of Lyapunov optimization is to use thestability
of the queue to ensure that the time average constraint is
satisfied. Following this idea, we first introduce virtual queue
for the CP budget. Letqt denote the queue backlog of the CP
at time t. Then, the queue dynamics of CP is:

qt+1 =
[
qt −

B̃

T

]+
+ C[t]. (10)

By queue stability theorem [20], the CP budget constraint is
equivalent withq’s stability.

We study the queue stability by using theLyapunov drift,
which is defined as follows:

△[t] =
1

2
(qt+1)2 −

1

2
(qt)2. (11)

By the Lyapunov drift theorem (Th. 4.1 in [20]), if an
algorithm greedily minimizes the Lyapunov drift△[t] in each
slot t, it potentially maintains the stability of the queue (i.e.,
ensures the budget constraint of the CP).



Next, we analyze the joint queue stability and payoff
maximization. By the Lyapunov optimization theorem (Th. 4.2
in [20]), to stabilize the queues while optimizing the objective,
we can use such an allocation policy that greedily minimizes
the following drift-plus-penalty:

Π[t] = △[t]− φ · R[t], (12)

whereφ ≥ 0 is a non-negative control parameter that achieves
tradeoff between optimality and queue backlog. Directly min-
imizing Π[t] is difficult due to the none-linearity of△[t] with
respect to the queue backlog. Hence, we solve an upper bound
of △[t], denoted by△̂[t], which is linear and given by:

△̂[t] = Θ + qt ·
(
C[t]−

B̃

T

)
, (13)

whereΘ is a constant. Thus, we can derive the desired online
policy by minimizing the upper bound̂△[t] − φ · R[t] of
drift-plus-penalty in each time slot. Formally, we presentthe
Lyapunov-based Online Policy in Algorithm 1.

ALGORITHM 1: Lyapunov-based Online Policy

Initialization: q 1 = 0
for i = 1 → T do
Allocation Rule:
min △̂[t]− φ ·R[t]
s.t. 0 ≤ xu[t] + yu[t] ≤ 1 ∀u ∈ U

Z∗[lu[t], su[t]] ≥ yu[t] ∀u ∈ U
xu[t], yu[t] ∈ {0, 1} ∀u ∈ U

Update Rule:
qt+1 = [qt − B̃

T
]+ + C[t]

end

1) Performance Analysis:We denote the offline optimal
payoff (benchmark) asR∗. By Th. 4.1 in [20], together with
Theorem 1, we can show that the Lyapunov-based Online
Policy in Algorithm 1 converges toR∗ with a controllable
approximation error boundO(1/φ). Formally,

Theorem 2:Let R[t] denote the CP revenue achieved in
each time slott by using Algorithm 1. Then,

lim
T→∞

1

T

∑

t∈T

E(R[t]) ≥ R∗ −
Θ

φ
. (14)

B. Stage I: Edge Caching Strategy

The caching strategy in Stage I is dependent on the sponsor-
ing strategy in Stage II, but we cannot obtain the close form
of the optimal online sponsoring solution in Stage II. To this
end, we aim to derive the caching strategy from problem (9).
The key idea is to solve problem (9) by estimatingN [l, s].
Next, we provide two estimation methods forN [l, s] under
two different system scenarios.

1) Independent and Identically Distributed System:In this
scenario, each user’s locations and content requests are in-
dependent and identically distributed (i.i.d.) across different
time slots. Letµu,s denote the probability of useru requesting
contents, and ηu,l denote the probability of useru moving
to locationl. Then, we can compute theexpectednumber of
requests for each contents on each locationl:

Ñ [l, s] =
∑

u∈U

∑

l∈L

∑

s∈S

µu,s · ηu,l. (15)

Substituting the above expected numberÑ [l, s] into (9), we
can derive the caching strategy in this scenario.

2) Discrete-Time Markov System:In this scenario, each
user behaviors rather irregularly, but the crowd behavior shows
a strong positive correlation among two successive days.
Intuitively, a hot video today is likely to be hot tomorrow.
Let N †[l, s] denote the number (of requests for contents at
location l) counted in the previous time period. LetP (M |N)
denote the one-step transition probability of the request num-
ber of a content at a location. Then, we can compute the
expectedrequest number for each contents on each locationl:

N̂ [l, s] =

∞∑

M=0

P (M |N †[l, s]) ·M. (16)

Substituting the above expected numberÑ [l, s] into (9), we
can derive the caching strategy in this scenario. We analyzea
dataset of 3 million watching sessions provided by iQiYi [22]
and observe that the popularity of each content shows strong
correlation in time periods, which enables us to predict the
future request number in the Markov framework.

V. SIMULATION RESULTS

A. Dataset Description

1) Mobile Video Streaming and WiFi Station Traces:We
use the mobile video streaming trace collected by iQiYi [22],
one of the most popular online video providers in China with
about 200,000,000 active mobile users. The dataset contains
about 190,000 mobile video users with a total of 3,000,000
watching sessions in Beijing within 2 weeks in May 2015.
The number of unique video contents is about 100,000.

We also collected the locations of free WiFi Routes (APs)
in Beijing via Tencent Mobile Manager [23], a mobile phone
app with over 400,000,000 users in China, which helps users
discover and connect to free WiFi. The dataset contains the
information of over 166,000 WiFi APs in Beijing.

2) Mapping of the Two Datasets:In our experiments, we
combine these two datasets to explore the WiFi APs that
available to users when they request video contents. We
assume the signal range of each WiFi AP is 100m, within
which mobile users can connect to the AP. Then we map the
location of each user at each content request to the nearest AP
if the distance between the user and the AP is less than 100m;
otherwise, we map the user to the blank location (i.e.,l = 0)
without any WiFi coverage.



B. Performance Analysis

We compare the payoff under pure sponsor and joint sponsor
cases. We notice that joint sponsor outperforms pure sponsor
by 30% ∼ 100%. We then study thepuresponsoring paradigm
in Stage II without considering Edge Caching. In order to
evaluate the Lyapunov-based algorithm, we choose two spon-
soring algorithms as baselines, namely greedy optimization
and average greedy optimization. The greedy optimization
aims to achieve the best performance in current time slot.
The average greedy optimization aims to achieve the best
performance and keep the cost even in each time slot. In Fig. 2,
we find Lyapunov-based sponsoring algorithm outperforms
baselines in different CP budgets with10% ∼ 50% gain in
CP payoff and can reach about90% of payoff under complete
information.Average greedy algorithm outperforms the greedy
one, because it will distribute the budget in each time slot and
tends to sponsor the most valuable contents. Moreover, when
CP budget is40, the sponsor can cover30% of users’ requests.

Fig. 2. Pure Sponsoring Payoff under Different CP Budgets

We further study Edge Caching and Sponsored Data jointly.
We achieve the payoff under cache with “low error” and “high
error”, which means different prediction accuracies of video
broadcast number. In order to evaluate the joint optimization
algorithm, we choose two cases as benchmarks: in “best
cache”, the caching policy is determined under complete
information; in “no cache”, we only deploy pure sponsoring
paradigm.We notice that in the caching cases, sponsoring
payoff is less than it is in the no-caching case, because Edge
Caching consumes part of CP’s budget. Larger prediction
error will cause less caching payoff. We can see from Fig.
3 that Edge Caching and Sponsored Data jointly improve
30% ∼ 100% in CP’s payoff than the no-caching case.

VI. CONCLUSION

In this paper, we studied the joint optimization of sponsored
data and edge caching for maximizing the CP’s revenue.
We formulate the joint optimization problem as a two-stage
decision problem and solve the problem with Lyapunov op-
timization techniques and predicted edge caching principle.
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Fig. 3. Joint Payoff under Cache Paradigms

The simulation results on a large-scale trace indicate thatour
design improves CP’s payoff significantly.
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