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Abstract—The upcoming big data era is likely to demand
tremendous computation and storage resources for communi-
cations. By pushing computation and storage to network edges,
fog radio access networks (Fog-RAN) can effectively increase net-
work throughput and reduce transmission latency. Furthermore,
we can exploit the benefits of cache enabled architecture in Fog-
RAN to deliver contents with low latency. Radio access units
(RAUs) need content delivery from fog servers through wireline
links whereas multiple mobile devices acquire contents from
RAUs wirelessly. This work proposes a unified low-rank matrix
completion (LRMC) approach to solving the content delivery
problem in both wireline and wireless parts of Fog-RAN. To
attain a low caching latency, we present a high precision approach
with Riemannian trust-region method to solve the challenging
LRMC problem by exploiting the quotient manifold geometry
of fixed-rank matrices. Numerical results show that the new
approach has a faster convergence rate, is able to achieve optimal
results, and outperforms other state-of-art algorithms.

Index Terms—Edge caching, Fog-RAN, low-rank matrix com-
pletion, Riemannian optimization.

I. I NTRODUCTION

The astounding growth of smart mobile device popularity,
coupled with new types of wireless services and applications,
such as Internet of Things and mobile Cyber-Physical ap-
plications, has helped usher in the era of wireless big data
[1]. Futuristic high speed networks such as Tactile Internet
[2] will enable numerous new services and allow for new
experiences, e.g., autonomous driving, healthcare, and virtual
reality. However, the rapidly growing data and diversified ser-
vices will put great strain on both storage and computation [3]
in wireless communication systems. This calls for a paradigm
shift for wireless access technologies to provide serviceswith
the stringent requirements of ultra-low latency, high datarate,
as well as massive connectivity [4].

By leveraging mobile edge/fog computing concepts [5], the
recent proposal of fog radio access network (Fog-RAN) [6],
[7] represents a disruptive wireless network architectureto
accommodate the upcoming diversified services with ultra-low
latency and high data rates. This is achieved by pushing the
computation and storage resources to network edges, thereby
enabling cloud computation within wireless networks as shown
in Fig. 1.

This work is supported by Shanghai Sailing Program No. 16YF1407700.

Specifically, in Fog-RAN, each radio access unit (RAU)
hosts storage and computation entities, thereby pushing data
and its processing closer to end users. This cache enabled
network architecture promises to reduce network congestion
for wireline communication scenarios [8] and enhance inter-
ference coordination in wireless communication networks [9].
By further pushing the content and computation resources to
smart mobile devices (MDs), end-to-end latency and network
capacity can be improved, e.g., in cache-aided wireless device-
to-device (D2D) networks [10]. In particular, for wearable
computing applications, offloading computation-intensive ap-
plications to proximal smart mobile devices or RAUs can
significantly improve roundtrip delay and energy efficiency
[11].

In this paper, we mainly focus on the content-centric
communication and edge storage aspects of Fog-RAN. The
fundamental goal is to leverage the network caching capability
for efficient content delivery, thereby reducing end-to-end
network latency. To understand this problem, we derive unified
interference alignment conditions for content delivery for wire-
line links between fog server and RAUs, and also for wireless
links between RAUs and smart mobile devices. Surprisingly,
caching problem with fixed side information is equivalent to
the index coding [12] problem, which is equivalent to many
other important problems, including topological interference
management (TIM) and network coding [13]. Unfortunately,
index coding is an NP-hard problem and only a few special
cases can been solved efficiently.

In this paper, we present a low-rank matrix completion
(LRMC) approach [14] to minimize message delivery latency
by exploiting side information provided by the caching capa-
bility. The low-rank modeling framework has wide applica-
tions in machine learning, computational big data analytics,
high-dimensional statistics. Furthermore, the LRMC approach
has recently been exploited to solve the wireless topologi-
cal interference management problem [15] and index coding
problem [16]. However, these existing works mainly focus
on unicast, in which each message is desired by exactly one
destination, whereas in the caching problem each message
may be desired by multiple destinations. Despite of the NP-
hardness of the resulting LRMC problem, we will reveal that
the modeling framework provides algorithmic opportunities.
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Fig. 1. The network architecture of Fog-RAN, in which, the data and its
processing are pushed to the edge of networks, including RAUs and smart
devices. The benefits of caching allow for wireline communication links
between the fog server and RAUs (e.g., massive MIMO, macro base station
(BS), and femtocell access point (AP)), as well as the wireless communication
links between RAUs and small mobile devices.

Although our problem falls within the category of low-rank
matrix completion, which has stimulated a flurry of recent
research activities [14], [17], [18], [19], most prior works
are not applicable in our LRMC problem because of their
special affine constraint and measurement graph structures.
Specifically, the well-known convex relaxation approach by
replacing the rank function to the nuclear norm [14] will al-
ways yield a full-rank solution in the unicast case, which turns
out to be invalid here. Furthermore, alternating minimization
approaches [17], [18] also exhibit their own limitations such
as slow convergence rate, and impractical assumptions (e.g.,
incoherence of the original matrix), and available (estimated)
ground-truth rank. One exception is the conjugate gradient
based Riemannian pursuit algorithm [19], which explores the
embedded manifold structures of fixed-rank matrices to design
rank estimation strategies. However, the first-order method has
slow convergence and is sensitive to initial points.

In this paper, we develop a Riemannian trust-region opti-
mization framework [20] to provide high accuracy solutions
and faster convergence rate for finding the minimal rank in the
LRMC problem. This second-order algorithm is more robust
to initial point choices, and can obtain reliable solutions. We
first solve the fixed-rank matrices, by exploiting the quotient
manifold geometry of the search space of fixed-rank matrices
[20]. We then develop an efficient rank increase mechanism
to estimate the minimum rank while satisfying the affine
constraint. This is achieved by exploiting the closure of fixed-
rank matrices. Numerical results will show that our proposed
algorithm can recover existing optimal DoF results in [12] and
outperform state-of-art algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cache-aided Fog-RAN as shown in Fig. 1, where
both RAUs and smart devices have caching capabilities. To
evaluate the benefits of caching in RAUs, we consider the
wireline communication network between one fog data center
and multiple RAUs. To further investigate the advantages of
caching in smart devices, we consider aK-user interference
channel with cache enabled smart devices. We shall present
that the message delivery problems are equivalent to the index

coding problem with fixed side information [21].

A. The Benefits of Caching for Wireline Communications

Consider a wireline communication network between the
fog data center and cache-enabled RAUs as shown in Fig.
2(a). We assume that the file library consists ofK messages
{W1, . . . ,WK}, each with entropy ofF bits. Let M =
{1, . . . ,K} be the index set of theK independent messages.
Define the setVk ⊂ M as the index set of the messages
cached at thek-th RAU. We consider the general multiple
groupcast scenario, where each message may be desired by
multiple destination nodes [21]. LetMk ⊆ M be the index set
of messages desired by RAUk. We assume that the available
messages will not be further desired by the corresponding
destination node, i.e.,Mk ∩ Vk = ∅. In this paper, we are
interested in constructing the vector linear coding schemes
over real field to maximize the message delivery rate.

Specifically, the transmitted symbol sequencez ∈ RN over
N channel uses is given by

z =
∑

m∈M

Vmsm. (1)

Here, messageWm is split into Qm scalar data streams,
denoted assm = [si(Wm)]Qm

i=1 ∈ RQm×1, and each of which
carries one symbol fromR and is transmitted along the column
vectors of the precoding matrixVm ∈ RN×Qm .

Let Ui,k ∈ R
Qi×N with i ∈ Mk be the receiver combining

matrix at RAU k for the desired messageWi. We have the
following decoding operation for messageWi at RAU k:

ŝi = (Ui,kVi)
−1

Ui,k



z −
∑

j∈Vk

Vjsj



 , ∀i ∈ Mk. (2)

To accomplish the above decoding, we impose the following
interference alignment conditions [21], [15]:

Ui,kVj = 0, ∀i 6= j, i ∈ Mk, j /∈ Vk (3)

det(Ui,kVi) 6= 0, ∀i ∈ Mk. (4)

The first condition (3) is to align and cancel the interference,
and the second condition (4) is to preserve the desired signal.

Therefore, if (3) (4) can both be satisfied overN channel
uses, the message delivery rate tupleR = (Q1

N , Q2

N , · · · , QK

N )
can be achieved. In particular, ifQ1 = · · · = QK = Q0, we
say that the symmetric data rate isQ0

N . Thus the smallerN we
can achieve, the lower latency we can realize. Note that, with
|Mi| = 1 andMi ∩Mj = ∅, ∀i, j, we include the multiple
unicast scenario as a special case [15]. We also observe that
the caching problem with fixed side information (i.e., cached
message) is equivalent to the index coding problem [8].

B. The Benefits of Caching for Wireless Communications

Recently, caching in content-centric wireless networks is
a very popular topic [22], [23]. We consider a wireless
communication modeled as theK-user interference channel as
shown in Fig. 2 (b). Assume that each transmitterk (i.e., RAU)
has the messageWk for transmission. Let the setVk ⊂ M as



the index set of the messages cached at thek-th receiver (i.e.,
smart device). LetMk ⊆ M with Mk ∩Vk = ∅ be the index
set of messages desired by receiverk. With message splitting
as in Section II-A, over theN channel uses, the received signal
yi ∈ CN at receiverk is given by

yk =

K
∑

i=1

H [ki]Visi + nk, ∀k, (5)

where nk ∼ CN (0, IN ) is the additive isotropic white
Gaussian noise,si ∈ CQi×1 represents messageWi, H [ki] =
HkiIN is an N × N diagonal matrix withHki ∈ C as the
constant channel coefficient between transmitteri and receiver
k overN channel uses in the considered block.

Let Ui,k ∈ CQi×N with i ∈ Mk be the receiver combining
matrix at receiverk for the desired messageWi. We assume
that the channel state informationHki with i ∈ Vk is available
at receiverk. Therefore, we can first eliminate the undesired
messages available inVk, resulting the interference space as
∑

j /∈Vk,i6=j H
[kj]Vj for the messageWi. In the regime of

asymptotically high SNR, to accomplish decoding, we impose
the constraint that the desired signal spaceH [ki]Vi is com-
plementary to the interference space, resulting the following
interference alignment condition (see [12], [15])

Ui,kH
[kj]Vj = 0, ∀i 6= j, i ∈ Mk, j /∈ Vk (6)

det(Ui,kH
[ki]Vi) 6= 0, ∀i ∈ Mk. (7)

Since H [ki] = HkiIN for the constant channel over the
N channel uses, conditions (6) and (7) are equivalent to
conditions (3) and (4), respectively.

Therefore, if (6) (7) are both satisfied overN channel uses,
the parallel interference-free channels can be obtained. There-
fore, the DoF tuplesD = (Q1

N , Q2

N , · · · , QK

N ) for the message
delivery over wireless interference channel. In particular, if
Q1 = · · · = QK = Q0, we say that the the symmetric DoF
Q0

N can be achieved for each message. As DoF provides a first-
order characterization for capacity, we shall minimize channel
usesN to improve the message delivery data rate.

III. L OW-RANK MATRIX COMPLETION APPROACH FOR

MOBILE EDGE CACHING

In this section, we present a low-rank matrix completion
modeling framework to find the minimal number of channel
uses such that the interference alignment conditions (3) and
(4) can be satisfied. Specifically, letXij,k = Ui,kVj . Without
lose of generality, we setUi,kVi = IQi×Qi

, ∀i ∈ Mk. We
thus can restrictXij,k ’s to the real field without losing any
performance in terms of achievable DoFs [15]. Therefore, for
Xij,k ∈ RQi×Qj , we have

Xij,k =







0 ∀i 6= j, i ∈ Mk, j /∈ Vk

I ∀i = j, i ∈ Mk

⋆ otherwise,
(8)

where⋆ represents arbitraryQi ×Qj vectors.

Let X = [Xij,k] ∈ R
M×Q with M =

∑K
i=1 |Mi| andQ =

∑K
i=1 Qi. Based on (8), the interference alignment conditions

(3) and (4) can be rewritten as

PΩ(X) = J , (9)

wherePΩ : RM×Q → RM×Q is the orthogonal projection
operator onto the subspace of matrices which vanish outside
Ω such that the(i, j)-th component ofPΩ(X) equals toXij

if (i, j) ∈ Ω and zero otherwise. Here, the constantM × Q
matrix J = [Jmj ] is given by

Jmj =











I if
k−1
∑

i=1

|Mi|+ 1 ≤ m ≤
k

∑

i=1

|Mi|, j ∈ Mk

0 otherwise,

(10)

where I is the Qj × Qj identity matrix. The setΩ is
constructed asΩ = {Sm × Sj |

∑k−1
i=1 |Mi| + 1 ≤ m ≤

∑k
i=1 |Mi|, with j /∈ Vk or j ∈ Mk}, where Si =

{1 +
∑i−1

k=1 Qk, . . . ,
∑i

k=1 Qk}.

A. Low-Rank Matrix Completion Modeling Framework

Observe that the rank of matrixX ∈ RM×Q equalsN , we
propose to solve the following LRMC problem

minimize
X

rank(X)

subject to PΩ(X) = J (11)

to maximize the message delivery rate while satisfying inter-
ference alignment conditions (3) (4), thereby reducing latency.

An illustrative example of a caching problem with5
messages and3 destination nodes is given in Fig. 2. In
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Fig. 2. Cache enabled Fog-RAN. (a) A wireline communicationnetwork
between fog data center and cache-enabled RAUs. (b) Wireless cache-
enabled networks between RAUs and cache-enabled smart devices. (c) The
corresponding index coding problem. Red lines represent the side information.
For example, receiver1 has V1 = {W2,W5} as side information. (d)
Associated low-rank matrix completion model. In this example no message
splitting is taken into consideration, thereforeQi = 1. Gray cells represent
elements to be arbitrary values. For example,(3, 1)-th element ofX must
be 0 sinceW1 is not in the side information of receiver3.



this setting, we haveV1 = {2, 5}, V2 = {1, 5}, V3 =
{2, 4}, V4 = {2, 3}, V5 = {1, 3, 4}. Then all elements
of the set Ω are {(1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4),
(3, 1), (3, 3), (3, 5), (4, 1), (4, 4), (4, 5), (5, 2), (5, 5)}.

B. Problem Analysis

Although LRMC problem is NP-hard generally, there are
several popular methods to yield a feasible solution. The most
common approach is to relax the rank function to nuclear
norm X∗ [14]. But obviously in the unicast case, because
X∗ ≥ |Tr(X)| = Q always holds, we would always end up
with a full rank solution. Another common way to solve the
LRMC problem appliesalternating minimization. In this algo-
rithm, under a fixed rankr we can factorizeX asX = UV T .
Next we optimizeU ∈ RM×r andV ∈ RQ×r alternatively.
Unfortunately, this method has a very slow convergence rate
and the rank assumption is impractical since the rank is
unknown for our problem. Additionally, the algorithm callsfor
the incoherence property of matrixX, which is also invalid.
Interestingly, the authors of [19] presented a Riemannian
pursuit algorithm based on conjugate gradient method, termed
as EmbG. EmbG takes a rank increase strategy by exploiting
the embedded manifold structures of fixed rank matrices. As a
first-order algorithm, the convergence of EmbG is slow, and is
sensitive to initial points. Therefore, we hope to find a method
with higher accuracy, faster convergence rate and more robust
to initial points.

IV. R IEMANNIAN TRUST-REGION METHOD FOR

LOW-RANK MATRIX COMPLETION ON QUOTIENT

MANIFOLDS

In this section, we shall present a Riemannian trust-region
framework which is a second-order algorithm for faster con-
vergence rate and higher resolution. We first recast the LRMC
problem as a set of fixed-rank subproblems and present the
corresponding Riemannian trust region approach. Then we
develop our rank-increasing strategy by exploiting the closure
of fixed-rank matrices to ensure that the objective function
monotonically decreases.

A. Fixed-Rank Riemannian Trust-Region for Matrix Comple-
tion

By defining the cost function with Frobenius norm

f(X) =
1

2
‖PΩ(X) − J‖2F , (12)

problem (11) can be reformulated as a sequence of subprob-
lemsP given the fixed rankr:

P : minimize
X∈Mr

1

2
‖PΩ(X)− J‖2F . (13)

With a little abuse of notation here,Mr := {X ∈
RM×Q : rank(X) = r} is a smooth (C∞) manifold.

The matrix X can be represented by a SVD-type fac-
torization of well defined manifoldX = UΣV T , U ∈
St(r,M),Σ ∈ GL(r),V ∈ St(r,Q). Here St(r,M) = {Y ∈
RM×r : Y TY = Ir} is the compact Stiefel manifoldof

orthonormalM × r matrices, and GL(r) = {Y ∈ R
r×r :

rank(Y ) = r} is the non-compact Stiefel manifoldof all
r × r nonsingular matrices. ThusX = (U ,Σ,V ) and
computational spaceis Mr := St(r,M)× GL(r) × St(r,Q),
on which our algorithm is built. Then thequotient spaceis
Mr/ ∼:= Mr/(O(r) × O(r)), O(r) = {Y ∈ Rr×r :
Y TY = Ir} denote ther-orderorthogonal group.

Our algorithm is based on trust region method on Rieman-
nian manifold. The trust-region subproblem in the quotient
manifoldMr/ ∼ is horizontally lifted to thehorizontal space
HX , and formulated as

minimize
ξX∈HXMr

m(ξX )

subject to gX(ξX , ξX) ≤ δ2. (14)

The trust-region radius isδ and the cost function is given by

m(ξX ) = f(X) + gX(ξX , gradXf) +
1

2
gX(ξX ,HessXf [ξX ]). (15)

To develop an effective algorithm, we need to determine

• Riemannian metric:gX
• Riemannian gradient: gradXf
• Riemannian Hessian: HessXf [ξX ]

gradXf and HessXf are the generalization of Euclidean
gradient and Hessian to the Riemannian manifold [20].

1) Riemannian metric:The Riemannian metric must have
identical matrix representation along the equivalent class
[X]. By taking second-order derivative off(X), namely
LXX (X), we can induce its following Riemannian metric
from the approximation [15]

gX(ξX , ζX) ≈ 〈ξU , ζUΣΣ
T 〉+ 〈ξΣ, ζΣ〉

+〈ξV , ζV ΣT
Σ〉, (16)

in which ξX = (ξU , ξΣ, ξV ), ζX = (ζU , ζΣ, ζV ) ∈ TXMr

andX ∈ (U ,Σ,V ).
2) Riemannian gradient:Euclidean gradient is∇f(X) =

PΩ(X)−J . Riemannian gradient gradf(X) gives an orthog-
onal projection of∇f(X) to the tangent space, i.e.

gradf(X) = ΠTXMr
(∇f(X)) (17)

ΠTXMr
(G) : G  PUGPV + P⊥

U GPV + PUGP⊥
V , (18)

in which PU = UUT and P⊥
U = I − UUT for X =

Udiag(σ)V T andσ ∈ Rr.
3) Riemannian Hessian:Much like Riemannian gradient,

Riemannian Hessian has the form of

HessXf [ξX ] = ΠHXMr
(∇ξX

gradf(X)). (19)

Let us define theRiemannian connection∇ηX
ξX , and substi-

tute the Riemannian gradient and Riemannian connection into
(19). From theKoszul formula, its connection to Euclidean
directional derivativeDξX [ηX ]

∇ηX
ξX = DξX [ηX ] + (θU , θΣ, θV ), (20)



whereDξX denotes the Euclidean directional derivative,θ =
(θU , θΣ, θV ) is related to the solutions of Lyapunov equations.

With Riemannian metric, Riemannian gradient and Rieman-
nian Hessian defined, a fixed-rank Riemannian trust-region
algorithm has been well developed and can be implemented
in Manoptpackage [24].

B. Rank Increase Algorithm

To solve the rank minimization problem (11) with the
fixed rank trust-region algorithm, we develop a rank-increasing
strategy based on the closure of the set of fixed-rank matrices,
M≤r = {X ∈ RM×Q : rank(X) ≤ r}.

Algorithm 1: Riemannian Trust-Region Algorithm for
LRMC Problem (11)

1: Input: Ω,J , accuracyǫ.

2: Initialize: X [1]
0 ∈ Rm×n, (m,n) = size(J).

3: while rank-deficient and not convergeddo
4: Compute a solution to the trust-region

subproblemP with initial point X [r]
0 for fixed

rank r with Riemannian optimization.
5: Compute the value of cost functionf(X).
6: Update rankr to r + 1 with rank increase

strategy (22) in Section IV-B.
7: end
8: Output: X [r] and rankr.

Consider the(r+1)-th step of iteration where we compute
Xr+1 fromXr. To escape fromMr and embedXr toMr+1,
we can give a good initial point by using the linear-search
method

Xr+1 = Rr+1(Xr + αrΞr), (21)

where we choose the negative Euclidean gradient in the
tangent coneTXr

Mr+1 as our search directionΞr atXr [25]
with step-sizeαr and Rr+1 denotes the retraction to com-
putation spaceMr+1. ThenΞ = argminΞ∈TXrM≤r+1

‖ −

∇Xr
f − Ξ‖F = −gradXr

f + Ξ
(1)
r . Ξ

(1)
r is the orthogonal

projection on the tangent spaceTXr
Mr. Hence, our rank

updating strategy can be formulated as

Xr+1 = Rr+1(Xr + αr(Ξ
(1)
r − gradXr

f)), (22)

which keeps the cost functionf decreasing monotonically.
Thus far, through solving fixed-rank subproblem and rank

increase strategy, a complete Riemannian trust-region algo-
rithm can be used to solve the caching problem in Fog-RAN.

V. NUMERICAL RESULTS

In this section we first test the convergence rate of our trust-
region approach. We then show that our algorithm can achieve
optimality in cases that [21] refers to. Finally, we run the
whole simulation on20 messages and destination nodes with
3 data streams for varying cache size varies from no caching
to just one message needs to be transmitted. The following
two known algorithms are compared:

• EmbG: This algorithm [19] is developed on the embed-
ded manifold via fixed-rank optimization [26] with the
Riemannian pursuit rank increase strategy [19].

• LMaFit: This algorithm introduces the alternating mini-
mization scheme to solve problemP [17].

A. Convergence Rate

Consider a caching problem where the cache size is10 and
each message is exactly desired by one destination node, the
number of messages and destination nodes are both30 and
each message is split to5 data streams. We investigate the
convergence rate of all three algorithms given a fixed rankr =
40. Fig. 3 shows that the trust-region method outperforms the
two competing schemes in convergence rate and can achieve
a higher precision solution as expected. The convergence rate
of LMaFit is lower than other two manifold approach.
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Figure 1: Convergence rate when fixing the rank of as 40.

Fig. 3. Convergence rate when fixing the rank ofX as40.

B. Achieve the Existing Optimal DoF Results

In this part of experiments, we consider equivalent model
for topological interference management in [12] where optimal
DoF is given. To check whether or not the Riemannian trust-
region method achieves the optimal DoF, both of the unicast
cases with and without message splitting are tested. Table I
shows that the LRMC algorithm can numerically achieve all
of the optimal DoF results in [12].

C. Data Rates for Different Cache Size

In order to evaluate the performance of the Riemannian
trust-region method in caching networks with different cache
sizes, we test a simple unicast model with 20 messages and
users with 3 data streams for each message. The data rate we
can achieve is3/n wheren is the solution of algorithms. The
cache sizem varies from0 to 19 sincem = 20 represents
that no message is needed. The average data rates results
are shown in Fig. 4. In our tests, the side information is
generated randomly and 50 experiments for each cache size
are performed. When the cost falls belowǫ = 10−7, rank
increase strategy stops.

From the experimental result, we observe that Riemannian
trust-region approach can achieve a higher data rates than



TABLE I
RECOVER THEOPTIMAL DOF RESULTS IN CASES WITH/WITHOUT MESSAGESPLITTING IN [12] VIA LRMC

Network Topology in [12] Fig. 4 Fig. 6 Fig. 12(a) Fig. 12(b) Fig. 9(a) Fig. 10(a)

DoF in [12] 1/2 1/2 1/4 1/3 3/7 2/5

Number of Data Streams (Qi) 1 1 1 1 3 2

Optimal Rank by LRMC Approach (n) 2 2 4 3 7 5
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Figure 1: Average data rates varying from cache sizes. Each message has 3 data

streams. The cache size is normalized and tolerance of the cost is 10

Fig. 4. Average data rates varying from cache sizes. Each message has 3
data streams. The cache size is normalized and tolerance of the cost is10−7 .

two other algorithms. And EmbG outperforms alternating
projection method (LMaFit).

VI. CONCLUSIONS

In this paper, we propose a unified low-rank matrix com-
pletion approach for content delivering of caching problemin
Fog-RAN. We connected the caching problem with LRMC
problem, and presented a Riemannian trust-region algorithms,
solving the fixed-rank subproblem and giving an rank in-
crease strategy that can guarantee monotonic decrease of
objective function. Numerical results show that our approach
can achieve optimal solution in existing cases for which the
optimal value is known and outperforms algorithms such
as EmbG and LMaFit. One interesting future work is the
determination of conditions under which the Riemannian trust-
region algorithm can guarantee optimality.
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