
MultiSphere: Massively Parallel Tree Search for
Large Sphere Decoders

Konstantinos Nikitopoulos, Daniil Chatzipanagiotis, Chathura Jayawardena, and Rahim Tafazolli
Institute for Communication Systems (ICS)

Home of 5G Innovation Center
University of Surrey, Guildford, UK

Email: {k.nikitopoulos, dc00121, c.jayawardena, r.tafazolli}@surrey.ac.uk

Abstract—This work introduces MultiSphere, a method to
massively parallelize the tree search of large sphere decoders
in a nearly-independent manner, without compromising their
maximum-likelihood performance, and by keeping the overall
processing complexity at the levels of highly-optimized sequential
sphere decoders. MultiSphere employs a novel sphere decoder
tree partitioning which can adjust to the transmission channel
with a small latency overhead. It also utilizes a new method
to distribute nodes to parallel sphere decoders and a new tree
traversal and enumeration strategy which minimize redundant
computations despite the nearly-independent parallel processing
of the subtrees. For an 8 × 8 MIMO spatially multiplexed
system with 16-QAM modulation and 32 processing elements
MultiSphere can achieve a latency reduction of more than an
order of magnitude, approaching the processing latency of linear
detection methods, while its overall complexity can be even
smaller than the complexity of well-known sequential sphere
decoders. For 8×8 MIMO systems, MultiSphere’s sphere decoder
tree partitioning method can achieve the processing latency
of other partitioning schemes by using half of the processing
elements. In addition, it is shown that for a multi-carrier system
with 64 subcarriers, when performing sequential detection across
subcarriers and using MultiSphere with 8 processing elements
to parallelize detection, a smaller processing latency is achieved
than when parallelizing the detection process by using a single
processing element per subcarrier (64 in total).

Index Terms—Sphere Decoding, Parallel Processing, Large
Multiple-Input–Multiple-Output (MIMO), Lattice Search.

I. INTRODUCTION

The ever-increasing need for wireless capacity has re-
cently triggered a paradigm shift from orthogonal to non-
orthogonal signal transmission. By intentionally transmitting
non-orthogonal, and therefore, mutually interfering informa-
tion streams, substantial capacity gains can be achieved. How-
ever, to deliver the theoretical gains in practice, these streams
must be optimally demultiplexed. Sphere decoding is a well-
known technique that substantially reduces the complexity for
optimally (in the maximum likelihood (ML) sense) detecting
mutually interfering information streams, by translating the
ML detection problem into a tree search ([1], [2], [3]). While
the throughput gains of sphere decoding increase with the
number of the mutually interfering information streams the
corresponding processing requirements increase exponentially,
exceeding the processing capabilities of traditional processors.
These processing requirements, in combination with the reach-
ing of a plateau in the speed of traditional microprocessors [4]

prevent traditional systems from supporting large numbers of
mutually interfering streams and, therefore, from scaling the
achievable throughput gains.

At the same time, emerging system-on-chip architectures
promise tens or even hundreds of cores per chip [5]; something
which is already feasible in graphics processing units (GPUs).
In the presence of such multiple processing element (PE)
architectures the complexity problem translates into how to
efficiently utilize the available PEs or equivalently, into how
to efficiently parallelize the processing load. Parallelizing the
sphere decoder (SD) is a challenging task since its compu-
tational efficiency is determined by the ability to prune (i.e.,
exclude nodes from the tree search) large parts of the tree
at an early stage of the tree search without compromising
its algorithmic optimality. As a result, typical computationally
efficient solutions are sequential ([2], [3]).

An “ideal” SD parallelization method should be:

• scalable and able to consistently reduce latency when
increasing the number of PEs,

• complexity efficient and should not (substantially) in-
crease the overall processing load when increasing the
number of PEs,

• nearly “embarrassingly parallel” and therefore minimize
dependencies and communication overhead which in-
troduce latency and can moderate if not obliterate the
scalability and efficiency of parallelization [6],

• adjustable to the transmission conditions so that they
can efficiently allocate the processing power (PEs) to
minimize processing latency,

• applicable to all kinds of SDs, including breadth-first and
depth-first SDs, as well as exact (guaranteeing the ML
solutions) and approximate SDs.

With the above characteristics the processing latency reduction
can be maximized for a given transmission scenario. In addi-
tion, the latency gains can be efficiently translated into power
gains (by hardware clock reduction), and the system design
becomes very flexible since the parallel sub-tasks can even
run on individual processing blocks. Such a parallelization
method is also transparent to the choice of the implementation
platform. In Many-Processor systems on Chips (MPSoCs), for
example, a PE can be a different processor, in FPGA designs
it can be a specifically allocated part of the FPGA chip and

in GPU implementations the PE can be a separate thread.
Many SD implementations involve parallelism, but without

meeting the characteristics discussed above. For example, both
depth-first [2], [7] and breadth-first [8] SDs perform several
Euclidean distance calculations in parallel, at each level of the
SD tree, exploiting a limited level of data parallelism. How-
ever, after performing a set of parallel computations, before the
next set is processed in parallel, the sorting operations required
introduce significant dependencies. As a result, this kind of
parallelization is highly dependent on the specific hardware
realization, it is not flexible, and it cannot be efficiently used
for decreasing the latency requirements of large SDs.

In GPU implementations, Khairy et al. [9] concurrently run
multiple, low-dimensional (4×4) SDs but without parallelizing
each SD. Wu et al. [10] and Josza et al. [11] attempt to
also parallelize the low-dimensional MIMO detection process,
on GPUs. However, Wu et al. use a Trellis-decoder-like
approximation of the SD which is not efficient for dense mod-
ulations and large MIMO systems, and Jósza et al. perform
aggressive and nearly exhaustive parallel search of multiple
subtrees without accounting for the overall complexity and by
exhaustively trying different partitioning configurations. As a
result, their approach is not appropriate for MPSoC or FPGA
implementations and lacks theoretical reasoning.

Yang et al. [12], [13] propose a multi-core depth-first archi-
tecture for parallel high-dimensional SDs. To parallelize their
SD tree search, the SD tree is partitioned in subtrees which
consist of only one node on the higher layers, and all possible
nodes at the lower layers of the tree. Their SD partitioning
starts by first allocating to subtrees all the nodes of the higher
level, and if there are still available PEs each of the subtrees
is further partitioned using the same principles. This SD
partitioning is very practical in terms of implementation, but,
it cannot adjust to the transmission conditions. In addition, to
avoid visiting a node twice and control the overall complexity,
Yang et al. use an interconnection network which determines
which of the nodes will be processed from each PE and
it distributes the most promising solution from each of the
subtrees. This reduces the flexibility of the approach, and
therefore its efficiency when applied to implementations that
require nearly independent parallel processing, as in the case
of GPU implementations or implementations on individual
processing blocks.

The fixed complexity SD [14] sacrifices the ML optimality
for acquiring very good parallelization properties. However,
to efficiently run such an SD in parallel, the available number
of PEs should be a multiple of the order of the transmitted
constellation. In addition, the way it decides which tree paths
to run in parallel, is pre-defined and cannot be adjusted to the
transmission conditions. These weaknesses can be rectified by
the methods proposed in this paper.

This work proposes MultiSphere, a method to efficiently
split the SD tree search in nearly-embarrassingly parallel sub-
searches. MultiSphere is scalable to large numbers of PEs, and
preserves ML optimality with a small complexity overhead.
In addition, its tree partitioning can adjust to the transmission

channel, reducing substantially the processing latency for a
given number of PEs. In particular, MultiSphere consists of:
• A novel SD partitioning scheme adjustable to the trans-

mission channel: MultiSphere focuses the available pro-
cessing power (i.e., the PEs) on the paths of the SD tree
that are more likely to include the transmitted vector. To
achieve this MultiSphere’s partitioning can adjust to the
transmission channel or its statistics, and can take place
either offline (based on the channel statistics) or “on-the-
fly” any time the transmission channel changes.

• A novel complexity-efficient method to allocate symbols
to the parallel subtrees and allows nearly-embarrassingly
parallel processing while minimizing redundant calcula-
tions across the parallel subprocesses.

• A novel tree traversal and enumeration strategy that
minimizes unnecessary Euclidean distance calculations,
and in contrast to existing approaches ([3], [7], [15]) that
apply only to sequential SDs, it can also apply to both
sequential and parallel ones.

MultiSphere applies to any kind of SD. Still, this work focuses
on parallel depth-first SDs that can guarantee the ML solution
([2], [3]). This is probably the most challenging SD case
since such SDs owe their efficiency to their strictly-sequential
tree traversal and pruning. In addition, while MultiSphere ap-
plies to any system allowing mutually interfering information
streams this work focuses on MIMO systems.

II. SPHERE DECODING FOR MIMO SYSTEMS

For a spatially multiplexed MIMO system consisting of nt

transmit and nr receive antennae the received signal vector
is y = Hs + w, where H is the nr × nt MIMO channel
matrix, s is the transmitted symbol vector whose elements
belong to a constellation O of size |O| and w is the additive
white Gaussian noise vector. By QR decomposing the MIMO
channel matrix as H = QR the ML problem is translated into
finding [1], [2], [3]

ŝ = arg min
s∈Ont

‖ỹ− Rs‖2. (1)

with Rij being the elements of R, and ỹ = Q∗y. Since R
is an upper triangular matrix, finding the ML solution can
be transformed to a search tree of height nt and branching
factor |O|. Each node at a level l can be characterized by its
partial symbol vector s(l) = [sl, sl+1, . . . , snt

] which gives the
path from the root to these nodes, as well as from its partial
Euclidean distance (PD) which can be calculated recursively as
d(s(l)) = d(s(l+1)) + c(s(l)) where c(s(l)) is the non-negative
cost assigned to each branch,

c(s(l)) =

∣∣∣∣∣∣ỹl −
nt∑
j=l

Rljsj

∣∣∣∣∣∣
2

. (2)

Then, the ML problem is translated into finding the leaf-
node with the minimum d(s(1)). For depth-first SDs with
radius update and Schnorr-Euchner enumeration [2], [3], the
initial squared radius r2 is set to be infinite. Any time a leaf

node is reached with d(s(1)) < r2, r2 is updated to d(s(1)).
Upon meeting a node s(l), if d(s(l)) ≥ r2, this node, its
children nodes and its siblings with all their descendants are
excluded from the tree search (i.e., they are pruned). Following
the Schnorr-Euchner tree traversal [16] when expanding a
node, the nodes are visited in ascending order of their PDs.
Since depth-first SDs with radius update and Schnorr-Euchner
enumeration have been shown to be very efficient in practice
[2], [3] and capable of delivering the ML solutions, this is the
structure the we will adopt for all our parallel SDs.

III. MULTISPHERE DESIGN

MultiSphere consists of a new SD tree partitioning method,
which adjusts to the transmission channel without compromis-
ing the ML optimality (see Section III-A). The partitioning can
take place offline, based on the average channel characteristics,
or “on-the-fly”, when the transmission channel changes after
each QR decomposition. This adds preprocessing latency to
that of the QR decomposition. However, the partitioning
latency scales linearly with nt in contrast to the QR decompo-
sition latency which scales almost cubicly with the number of
transmit antennae. After SD partitioning, MultiSphere applies
a new symbol-to-subtree allocation method (see Section III-B)
which efficiently maps nodes to PEs without introducing
dependencies, in contrast to other schemes [12], and minimizes
the number of redundant calculations across PEs. Each PE
performs depth-first subtree traversal with Schnorr-Euchner
enumeration [16], according to which, nodes are visited in
ascending order of their PDs. Several approaches have been
proposed [2], [3], to avoid exhaustively calculating and sorting
the PDs. However, they are not applicable to MultiSphere since
their ordering is sequential (for finding the kth smallest PD,
the (k − 1)th smallest PD must be first found starting from
k = 1). In Section III-C a new tree traversal and enumeration
method is introduced for meeting MultiSphere’s needs.

MultiSphere runs the parallel SDs in a nearly independent
form. They interact only once, after they have all reached the
first leaf node. Then, the r2 of each subtree is replaced by the
value of the leaf node with the minimum PD across all parallel
SDs. The search is terminated when all parallel trees have been
searched. Then, the detection output is the leaf node with the
minimum PD across all subtrees and the overall processing
latency is determined by the slowest parallel SD.

A. MultiSphere’s SD Tree partitioning

MultiSphere’s SD partitioning consists of the seeds identi-
fication, which finds the NPE most promising paths (seeds)
to constitute the correct solution (i.e., to be the transmitted
vector) with NPE being the number of available PEs, as
well as of the subtrees construction, which assembles subtrees
around the seeds so that their union forms the original SD tree.

1) MultiSphere’s Seeds Identification: The relative position
vector (RPV) m describes a tree path by means of the
ordered (in terms of PDs) position of its nodes to the received
observable. In particular, if the lth element of m equals k,
then, for the corresponding path, its node at level l is the kth

closest node to the received ỹl. If, for example, m = [1, 2, 3]T

the path consists of the node with the third smallest PD at the
highest level of the tree, its child with the second smallest PD
at the second level of the tree, and its child with the smallest
PD at the lowest level of the SD tree.

Finding the exact probability for each path to include the
correct solution is clearly a non-trivial task and would require
difficult integrations with no obvious closed-form solutions.
In order to simplify the task we use a heuristic metric of
promise (MoP) M of probabilistic reasoning. Calculating
more accurate and efficient MoPs is part of our future research.
The proposed MoP is equal to the PD of a path in the nearly
noiseless case. In the absence of noise, the correct solution
would be the one with m = [1, 1, 1]T and the NPE − 1
paths with the smallest MoPs would be the ones closest to the
m = [1, 1, 1]T . Similarly, in the presence of noise, we assume
that the NPE most promising paths are the ones with the NPE

smallest MoPs. These MoPs are recursively calculated as

M(sl) =M(s(l+1)) + |Rll|2
∣∣∣s(c)l − sl

∣∣∣2 (3)

with M(s(nt+1)) = 0 and s
(c)
l being the symbol at level

l which is closest to the received point. Equation 3 shows
that these MoPs are not a function of the actual symbols but
of the ordered distances between transmitted symbols which
are known in advance and can be pre-calculated. Such a
metric also allows representing the MoPs by means of RPVs.
Also, Eq. 3 shows that in order to calculate the NPE most
promising paths |O| complex multiplications are required per
level l. Since its recursive structure is similar to the SD, but
with branches of equal weight, the most promising nodes are
found in K-Best manner with K = NPE , resulting in latency
requirements of the order of nt. Alternatively, the processing
can take place offline, by replacing Rll with its expected value.
In all cases, since the actual s(c)l is not known when calculating
the seeds, it is assumed to be an inner constellation symbol.

2) MultiSphere’s Subtrees Construction: After calculating
the NPE seeds with RPVs mi (i = 1, ..., NPE), each of them
is used to construct a corresponding subtree Ti so that the
union of all subtrees forms the original SD tree. The process
is designed in a way that PEs can independently construct
their subtrees in parallel in order to minimize the latency of
the procedure. For convenience the seeds mi are sorted in
ascending order of indices at level nt; seeds with the same
index at nt are in ascending order of indices at level nt−1 and
so on, e.g., m1 = [1, 1, 1]T , m2 = [1, 1, 2]T , m3 = [1, 2, 2]T ,
m4 = [1, 1, 3]T . For each mi the process is initiated at level
l = nt by checking if the element mi,l is unique across i at
level l (i.e., if mi,l 6= mk,l for k 6= i). If so, this node and its
descendants are included to subtree Ti. If mi,l is maximum
across i in l its sibling nodes to the right with indices up to
|O| and their descendants are also included to Ti. If mi,l is
not unique across i the indices k of the non-unique seeds are
saved in a (per level) buffer Bl as they will be needed later.
Traversing down the tree (l← l−1), the indices of non-unique
seeds at l from B(l+1) are saved in Bl until the paths of the

Fig. 1. Construction of subtrees for seeds m1 = [1, 1, 1]T , m2 = [1, 1, 2]T ,
m3 = [1, 2, 2]T , m4 = [1, 1, 3]T (bold lines) into the subtrees T1 (dashed-
dotted line), T2 (solid line), T3 (dotted line) and T4 (dashed line). Their union
it the full SD tree. Nodes may appear in several subtrees.

non-unique seeds “split” and a node is found to be unique to
seed i. Then it is examined if mi,l is the maximum across i
amongst the non-unique seeds in B(l+1). If it is not, the node,
its descendants and ancestors are included to Ti. If it is, the
node, its siblings to the right with indices up to |O| and all the
descendants are included to Ti and walking up the tree in a
similar way, the appropriate nodes are included by comparing
with the maximum in B(l+1) until the level nt is reached.
The pseudocode for this process is given in Algorithm 1. The
algorithm will, at the worst case, go to level l = 1 of the tree
to find a unique mi,1 value, and if mi,1 is the maximum at
l = 1 amongst seeds in B(l+1) it will have to go up to level
l = nt to allocate sibling nodes; resulting in a latency of 2nt.
However, in practice, seeds tend to be unique in the higher
levels of the tree, resulting in a smaller average latency.

B. MultiSphere’s Symbol-to-Subtree Allocation Method

MultiSphere’s tree partitioning gives the nodes to be pro-
cessed by each parallel SD as a function of their ordered
distance. In the example of Fig. 1, subtree T3 will consist of
the 2nd closest symbol at l = 3, its children which are 2nd, 3rd

and 4th closest at l = 2 and all their children at l = 1. Finding
the actual symbols would require exhaustive PD calculations
and sorting of the corresponding nodes multiple times across
the parallel SDs. To avoid these redundant calculations, Mul-
tiSphere uses an approximate predefined visiting order, based
on calculating minimum Euclidean distances depending on the
relative position of the received point and the constellation
geometry. In addition, it uses a symbol mapping of two-
dimensional zigzag coordinates. In one-dimensional symbol
constellations, the sorted order of the symbols in terms of
their distance to the received point can be easily found in a
zigzag manner [2], [3] after finding the closest constellation
symbol s

(c)
l to the “equivalent (in the constellation domain)

received point”. The equivalent received point is

yl =

ỹl −
nt∑

j=l+1

Rljsj

R−1ll . (4)

Using the zigzag concept each symbol in a two-dimensional
constellation can be mapped in terms of its zigzag coordinates
(zzx, zzy), as shown in Fig. 2. MultiSphere’s preordering is

Algorithm 1 Construction of subtrees
1: Inputs: seeds m, nt, |O|
2: l← nt where l denotes the current level
3: B(l+1) ← {1, ..., NPE} Bl is a buffer with indices k of non-

unique seeds at l (mil = mkl). Initialize B(nt+1) with all seeds
4: if mi,l is not unique (mil = mkl for k 6= i, k ∈ B(l+1)) then
5: save indices of non-unique seeds in buffer Bl

6: l← l − 1
7: go to step 4
8: else
9: if mi,l < max

k∈B(l+1)

mk,l then

10: limit(l)← m(i+1),l − 1
11: include nodes at l with indices mi,l ≤ j ≤ limit(l), all

their descendants and ancestors to subtree Ti

12: else
13: limit(l)← |O|
14: include nodes at l with indices mi,l ≤ j ≤ limit(l) and

all their descendants to subtree Ti

15: l← l + 1
16: while l ≤ nt do
17: include node at l with index mi,l to subtree Ti

18: if mi,l < max
k∈B(l+1)

mk,l then

19: limit(l)← m(i+1),l − 1
20: include nodes at l with indices mi,l < j ≤ limit(l),

their descendants and ancestors to subtree Ti

21: break
22: else
23: limit(l)← |O|
24: include nodes at l with indices mi,l ≤ j ≤ limit(l),

and their descendants to subtree Ti

25: end if
26: l← l + 1
27: end while
28: end if
29: end if
30: Output: Ti

(2,0) (0,0) (1,0) (3,0)

(2,2) (0,2) (1,2) (3,2)

(3,1)(0,1)(2,1)

(2,3)
(0,3) (1,3) (3,3)

14th 10th 13th 16th

12th4th2nd

3rd

7th

11th5th
1st

9th 6th 8th 15th
dmin(5)

x-zigzag

y-
 z

ig
za

g

(1,1)

Fig. 2. MultiSphere’s predefined order example for 16-QAM.

based on the relative position of yl (square point in Fig.
2) to s

(c)
l and consists of two cases, depending on whether

|Im{yl − s
(c)
l }| is larger or smaller than |Re{yl − s

(c)
l }|.

For each case the relative position of the received point
around s

(c)
l is known (shadowed triangle in Fig. 2). Thus, a

minimum Euclidean distance dmin from yl to any constellation
point can be calculated. Then, MultiSphere’s predefined order,
approximates the actual order, and is such that the constellation

symbols are in ascending order of their dmin. To calculate the
dmin values it is assumed that s

(c)
l is an inner constellation

symbol. Since the sequence is stored in zigzag coordinates,
mapping is feasible even if s(c)l is an outer constellation sym-
bol. Then, dmin is still a valid lower limit of the corresponding
Euclidean distance, since the zigzag from s

(c)
l will point to a

symbol which is even further than what was initially assumed.

C. MultiSphere’s Tree Traversal and Enumeration
When expanding a node, MultiSphere’s parallel SDs visit

children nodes in ascending order of their PDs (see Section
II). To avoid calculating and sorting all PDs at each level,
enumeration methods have been proposed [2], [3] which,
as discussed, are not applicable to MultiSphere since their
ordering is sequential. MultiSphere first checks the minimum
dmin of the symbols that need to be expanded. If it is larger
than r2, the descendants of this node, as well as its siblings
and all their descendants can be safely pruned. If not, from the
set of potential symbols to be visited at this specific tree level,
for each existing zzx zigzag coordinate, the symbols with the
minimum zzy are identified. This results in a subset of at most√
|O| symbols with unique zzx coordinates. From this subset,

the PD of the symbol with the minimum zzx value having
zzy = 0 is calculated, if it exists. In addition, the PDs of the
symbols with zzy 6= 0, are calculated and stored in a buffer
Q, of maximum size

√
|O|. The symbol with the smallest PD

in the buffer is the one to be visited first and removed from
the buffer. If (zzkx, zz

k
y) are the zigzag coordinates of the kth

removed symbol from the buffer, to find the next one, the PD
of the symbol with coordinates (zzkx, zz

k
y + 1) is calculated

(and put in the buffer). If zzky = 0 the symbol with zigzag
coordinates (zzkx + 1, zzky) is also computed. In the example
of Fig. 2, if the SD partition requires examining the symbols
with ordered positions from 12th to 16th, the symbols (1,3),
(2,3) and (3,1) are first put in Q. Since (1,3) is the one with the
smallest PD in Q, no new symbol is added because (1,4) does
not exist. Then, the symbol with the second smallest PD in
the buffer is visited, which is (3,1). After it is chosen, symbol
(3,2) is added to Q, and the process continues.

IV. SIMULATION EVALUATIONS

This Section evaluates MultiSphere’s performance via sim-
ulations1. Figure 3 shows MultiSphere’s processing latency
(in visited nodes)2 and complexity (in PD calculations) for
searching the SD tree and providing the ML solution. The
examined SNRs range from 10 dB to 16 dB, corresponding to
approximate symbol-error-rates (SERs) of 2·10−1 and 3·10−4
respectively. SD partitioning is performed based on the exact
transmission channel. MultiSphere’s latency and processing
requirements are compared to those of the well-known ETH-
SD [2] as well to those of the recently proposed Geosphere

1We assume an uncoded, 16-QAM modulated 8× 8 MIMO system using
multi-carrier transmission with 64 subcarriers. Each sub-channel between a
transmit-receive antenna pair is modeled as a 5 tap i.i.d. Rayleigh channel.

2We assume one-node-per-cycle architectures [2], therefore the latency can
be measured either in visited nodes or in processing cycles. The latency for
finding and distributing the minimum r2 across parallel SDs is ignored.

10 11 12 13 14 15 16
101

102

103

104

SNR (dB)C
om

pl
ex

ity
in

PD
ca

lc
ul

at
io

ns
(d

as
he

d
lin

es
)

L
at

en
cy

in
V

is
ite

d
N

od
es

(s
ol

id
lin

es
)

MultiSphere 8 PEs
MultiSphere 16 PEs
MultiSphere 32 PEs

ETH-SD
Geosphere

Fig. 3. MultiSphere’s complexity and latency requirements vs. ETH SD and
Geosphere SD.

10 11 12 13 14 15 16
101

102

103

104

SNR (dB)C
om

pl
ex

ity
in

PD
ca

lc
ul

at
io

ns
(d

as
he

d
lin

es
)

L
at

en
cy

in
V

is
ite

d
N

od
es

(s
ol

id
lin

es
)

MultiSphere 32 PEs
Method I 32 PEs
Method I 64 PEs

Fig. 4. MultiSphere’s complexity and latency requirrments vs. Parallel
Method I, with several numbers of PEs.

SD [3]. It is shown that, with 32 PEs, MultiSphere can achieve
a latency reduction of more than an order of magnitude with
overall complexity requirements similar to those of sequential
SDs. Note that ETH and Geosphere SDs have the same latency
requirements. MultiSphere is less complex than the ETH-SD
but more complex than the highly optimized sequential Geo-
sphere SD. In the high SNR regime, which is of higher interest
due to corresponding SERs, MultiSphere with 32 PEs reaches
a detection latency close to the one of linear detection methods
(i.e., latency of nt). Additionally, through SER simulations that
are not shown due to space limitations, it has been verified that
MultiSphere achieves the ML performance, in all shown cases.

To evaluate MultiSphere’s efficiency, comparison have been
performed using two SD partitioning methods. The same
processing flow as MultiSphere has been applied since the
authors are not aware of other nearly-embarrassingly parallel
exact SDs. Parallel Method I uses a partitioning method similar

to the one of fixed complexity SD [14] and of Yang et al.
[12]. Nodes with the smallest PDs at the highest tree level are
allocated to separate subtrees. If more PEs are available, nodes
of lower tree levels are allocated to separate subtrees, starting
from nodes whose parent has the smallest PD amongst its
siblings, and continuing with children nodes of other parents
in an ascending order of their PDs. Parallel Method II is a “K-
Best-like” approach, according to which the nodes with the
smallest PDs of the highest tree level are allocated to separate
subtrees, similarly to Method I. If more PEs are available,
Method II allocates equal number of children nodes from par-
ents in separate subtrees. The children with the smallest PDs
are allocated first. It is noted that when PD sorting is required
during the tree traversal, if it is sequential, the complexity
efficient method of Geosphere [3] SD is used for Methods
I and II. Otherwise, exhaustive enumeration and sorting is
performed. Figure 4 compares MultiSphere to Method I, and
shows that MultiSphere consistently outperforms Method I
both in terms of complexity and latency. Specifically in SNR
regimes of higher interest while the MultiSphere achieves the
latency of Method I with 64 PEs, by using half the PEs and an
overall complexity which is 3 times smaller. Similar results,
not shown here due to space limitations, hold for Method II.

For multi-carrier systems with a number of PEs smaller or
equal to the number of subcarriers (SCs), parallelization can
be traditionally performed by allocating one PE to each SC.
Instead of this, MultiSphere can be used to parallelize the
detection on each SC and then process SCs sequentially.

10 11 12 13 14 15 16
103

104

105

SNR (dB)

L
at

en
cy

in
V

is
ite

d
N

od
es

pe
r

m
ul

ti-
ca

rr
ie

r
bl

oc
k

MultiSphere 8 PEs
MultiSphere 16 PEs
MultiSphere 32 PEs

Single PE (ETH-SD)
64 PEs - one per SC

Fig. 5. Latency requirements for a multicarrier system with a PE per
subcarrier vs. MultiSphere with sequential subcarrier processing.

Figure 5 shows the average latency per multi-carrier block
(e.g., OFDM symbol) when using MultiSphere against a
system which allocates a single PE for each SC (therefore
uses 64 PEs). It can be seen that performing parallelization
per subcarrier is rather inefficient. MultiSphere can reach
smaller latencies by using less than 8 PEs, than by performing
parallelization at a subcarrier level and using 64 PEs.

V. CONCLUSIONS

This work proposes MultiSphere, a method to consistently
and massively parallelize large sphere decoders in a nearly-

embarrassingly manner, while accounting for the transmission
channel. It is shown that MultiSphere substantially reduces
latency at a small complexity overhead. As a result Multi-
Sphere finds applications in large MIMO systems and other
non-orthogonal schemes and can also be extended to soft-
input, soft-output sphere decoders with methods like [17].

ACKNOWLEDGMENT

The research leading to these results has been supported
from the UK’s Engineering and Physical Sciences Research
Council (EPSRC Grant EP/M029441/1). The Authors would
like to also thank the members of University of Surrey 5GIC
(http://www.surrey.ac.uk/5GIC) for their support.

REFERENCES

[1] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642,
1999.

[2] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE J. of Solid-State Circ., vol. 40, no. 7, pp.
1566–1577, 2005.

[3] K. Nikitopoulos, J. Zhou, B. Congdon, and K. Jamieson, “Geosphere:
Consistently turning MIMO capacity into throughput,” in Proc. of the
2014 ACM SIGCOMM, 2014, pp. 631–642.

[4] T. Skotnicki, J. A. Hutchby, T.-J. King, H. Wong, and F. Boeuf, “The
end of CMOS scaling: toward the introduction of new materials and
structural changes to improve MOSFET performance,” IEEE Circuits
and Devices Magazine, vol. 21, no. 1, pp. 16–26, 2005.

[5] G. Fettweis, “5G–what will it be: the tactile internet,” in Proc. of IEEE
ICC, 2013.

[6] D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
Fifth Edition: The Hardware/Software Interface, 5th ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2013.

[7] C. Hess et al., “Reduced-complexity MIMO detector with close-to-ML
error rate performance,” in Proc. of ACM Great Lakes VLSI Symp., 2008.

[8] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best
sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 3, pp. 491–503, 2006.

[9] M. S. Khairy, C. Mehlfhrer, and M. Rupp, “Boosting sphere decoding
speed through graphic processing units,” in Proc. of European Wireless
Conference (EW), April 2010, pp. 99–104.

[10] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU implementation
of a real-time MIMO detector,” in Proc. of IEEE Workshop on Signal
Processing Systems, Oct 2009, pp. 303–308.

[11] C. M. Józsa, G. Kolumbán, A. M. Vidal, F.-J. Martı́nez-Zaldı́var, and
A. González, “New parallel sphere detector algorithm providing high-
throughput for optimal MIMO detection,” Procedia Computer Science,
vol. 18, pp. 2432 – 2435, 2013.

[12] C.-H. Yang and D. Marković, “A multi-core sphere decoder VLSI ar-
chitecture for MIMO communications,” in Proc. of IEEE GLOBECOM.
IEEE, 2008, pp. 1–6.

[13] C. H. Yang and D. Marković, “A 2.89mW 50GOPS 16x16 16-core
MIMO sphere decoder in 90nm CMOS,” in Proc. of ESSCIRC, Sept
2009, pp. 344–347.

[14] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the
sphere decoder for MIMO detection,” IEEE Transactions on Wireless
Communications, vol. 7, no. 6, pp. 2131–2142, 2008.

[15] K. Nikitopoulos, A. Karachalios, and D. Reisis, “Exact max-log MAP
soft-output sphere decoding via approximate Schnorr–Euchner enumer-
ation,” IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp.
2749–2753, 2015.

[16] C. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems,” Math. Prog., vol. 66,
no. 2, pp. 181–191, 1994.

[17] K. Nikitopoulos et al., “Complexity-efficient enumeration techniques for
soft-input, soft-output sphere decoding,” IEEE Comms. L., vol. 14, no. 4,
pp. 312–314, 2010.

