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Abstract—Mobile-edge computation offloading (MECO) offloads
intensive mobile computation to clouds located at the edges of
cellular networks. Thereby, MECO is envisioned as a promising
technique for prolonging the battery lives and enhancing the
computation capacities of mobiles. In this paper, we consider
resource allocation in a MECO system comprising multiple users
that time share a single edge cloud and have different computation
loads. The optimal resource allocation is formulated as a convex
optimization problem for minimizing the weighted sum mobile
energy consumption under constraint on computation latency and
for both the cases of infinite and finite edge cloud computation
capacities. The optimal policy is proved to have a threshold-based
structure with respect to a derived offloading priority function,
which yields priorities for users according to their channel gains
and local computing energy consumption. As a result, users with
priorities above and below a given threshold perform complete
and minimum offloading, respectively. Computing the threshold
requires iterative computation. To reduce the complexity, a sub-
optimal resource-allocation algorithm is proposed and shown by
simulation to have close-to-optimal performance.

I. INTRODUCTION

The realization of Internet of Things (IoT) will connect tens
of billions of resource-limited mobiles, e.g., mobile devices,
sensors and wearable computing devices, to Internet via cellu-
lar networks. The finite battery lives and limited computation
capacities of mobiles pose challenges for designing IoT. One
promising solution is to leverage mobile-edge computing [1]
and offload intensive mobile computation to nearby clouds
at the edges of cellular networks, called edge clouds, with
short latency, referred to as mobile-edge computation offloading
(MECO). In this paper, we consider a MECO system with a
single edge cloud serving multiple users and investigate the
energy-efficient resource allocation.

Mobile computation offloading (MCO) (or mobile cloud
computing) has been extensively studied in computer science,
including system architectures [2], virtual machine migration
[3] and server consolidation [4]. It is commonly assumed that
the implementation of MCO relies on a network architecture
with a central cloud (e.g., a data center). This architecture has
the drawbacks of high overhead and long backhaul latency [5]
and will soon encounter the performance bottleneck of finite
backhaul capacity in view of exponential mobile traffic growth.
These issues can be overcome by MECO based on a network
architecture supporting distributed mobile-edge computing.

Energy efficient MECO requires the joint design of MCO
and wireless communication techniques. Recent years have
seen research progress on this topic. For a single-user MECO
system, the optimal offloading decision policy was derived

in [6] by comparing the energy consumption of optimized
local computing (with variable CPU cycles) and offloading
(with variable transmission rates). This framework was fur-
ther developed in [7] and [8] to enable adaptive offloading
powered by wireless energy transfer and energy harvesting,
respectively. In [9], also for a single-user MECO system,
dynamic offloading was integrated with adaptive LTE/WiFi
link selection. Moreover, resource allocation for MECO has
been studied for various types of multiuser systems [10]–
[12]. In [10], considering a multi-cell MECO system, the
radio and computation resources were jointly allocated to min-
imize the mobile energy consumption under offloading latency
constraints. With the coexistence of central and edge clouds,
the optimal user scheduling for offloading to different clouds
was studied in [11]. In addition, the distributed offloading for
multiuser MECO was designed in [12] using game theory for
both energy-and-latency minimization. Prior work on MECO
resource allocation focuses on complex algorithmic designs
and yields little insight into the optimal policy structures. In
contrast, for a multiuser MECO system based on time-division
multiple access (TDMA), the optimal resource-allocation pol-
icy is shown in current work to have a simple threshold-based
structure with respect to a derived offloading priority function.

Resource allocation has been widely studied for vari-
ous types of multiuser communication systems, e.g., TDMA
(see e.g., [13]), orthogonal frequency-division multiple access
(OFDMA) (see e.g., [14]) and code-division multiple access
(CDMA) (see e.g., [15]). Note that all of them only focus on
the radio resource allocation. In contrast, for newly proposed
MECO systems, both the computation and radio resource
allocation at edge clouds need to be jointly optimized for the
maximum mobile energy savings, which makes the algorithmic
design more complex.

This paper considers a multiuser MECO system based on
TDMA. Consider both the cases of infinite and finite cloud
computation capacities. The optimal resource-allocation policy
is derived by solving a convex optimization problem that mini-
mizes the weighted sum mobile energy consumption. Note that
the consideration of MECO simplifies the problem formulation
since the long backhaul latency and heavy overhead in central
clouds can be neglected. To solve the problem, an offloading
priority function is derived that yields priorities for users and
depends on their channel gains and local computing energy
consumption. Based on this, the optimal policy is proved to
have an insightful threshold-based structure that determines
complete or minimum offloading for users with priorities above
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or below a given threshold, respectively. Moreover, to reduce
the complexity for computing the threshold, a simple sub-
optimal resource-allocation algorithm is designed and shown
to have close-to-optimal performance by simulation.

II. SYSTEM MODEL

Consider a multiuser MECO system shown in Fig. 1(a) that
comprises K single-antenna mobiles, indexed as 1, 2, · · · ,K,
and one single-antenna base station (BS) that is the gateway of
an edge cloud. Time is divided into slots each with a duration
of T seconds. As shown in Fig. 1(a), each slot comprises two
sequential phases for 1) mobile offloading or local computing
and 2) cloud computing and downloading of computation
results from the edge cloud to mobiles. Cloud computing
has small latency; the downloading does not consume mobile
energy and furthermore is much faster than offloading due to
relative smaller sizes of computation results. For these reasons,
the second phase is assumed to have a negligible duration
compared with the first phase and not considered in resource
allocation. Considering an arbitrary slot, the BS schedules
a subset of users for complete/partial offloading based on
TDMA. The user with partial or no offloading computes a
fraction of or all input data, respectively, using a local CPU.
Moreover, the BS is assumed to have perfect knowledge of
multiuser channel gains, local computing energy per bit and
sizes of input data at all users. Using these information, the
BS selects offloading users, determines the offloaded data
sizes and allocates fractions of the slot to offloading users
with the criterion of minimum weighted sum mobile energy
consumption. In addition, channels are assumed to remain
constant within each slot.

The model of local computing is described as follows.
Assume that the CPU frequency is fixed at each user and
may vary over users. Consider an arbitrary time slot. Following
the model in [12], let Ck denote the number of CPU cycles
required for computing 1-bit of input data at the k-th mobile,
and Pk the energy consumption per cycle for local computing
at this user. Then the product CkPk gives computing energy per
bit. As shown in Fig. 1(b), mobile k is required to compute Rk-
bit input data within the slot, out of which `k-bit is offloaded
and (Rk − `k)-bit is computed locally. Then the total energy
consumption for local computing at mobile k, denoted as
Eloc,k, is given by Eloc,k = (Rk − `k)CkPk. Let Fk denote
the computation capacity of mobile k that is measured by the
number of CPU cycles per second. Under the computation
latency constraint, Ck(Rk − `k) ≤ FkT . As a result, the
offloaded data at mobile k has the minimum size of `k ≥ m+

k

with mk = Rk− FkT
Ck

, where the function (x)+ = max{x, 0}.
Next, the energy consumption for offloading is modeled. Let

hk denote the channel gain and pk the transmission power for
mobile k. Then the achievable rate, denoted by rk, is given as:

rk = B log

(
1 +

pkh
2
k

N0

)
(1)

where N0 is the variance of complex white Gaussian channel
noise. The fraction of slot allocated to mobile k for offloading
is denoted as tk with tk ≥ 0, where tk = 0 corresponds to no
offloading. For the case of offloading (tk > 0), the transmission
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Figure 1. (a) Multiuser MECO system and (b) mobile computation offloading.

rate is fixed as rk = `k/tk since this is the most energy-
efficient transmission policy under a deadline constraint. Define
a function f(x) = N0(2

x
B − 1). It follows from (1) that the

energy consumption for offloading at mobile k is

Eoff,k = pktk =
tk
h2k
f

(
`k
tk

)
. (2)

Note that if either `k = 0 or tk = 0, Eoff,k is equal to zero.
Last, consider the edge cloud. It is assumed that the edge

cloud has finite computation capacity, denoted as F , measured
as the maximum CPU cycles allowed for computing the sum
offloaded data in each slot:

∑K
k=1 Ck`k ≤ F . This constraint

ensures low latency for cloud computing.

III. MULTIUSER MECO: PROBLEM FORMULATION

In this section, resource allocation for multiuser MECO
is formulated as an optimization problem. The objective is
to minimize the weighted sum mobile energy consumption:∑K
k=1 βk(Eoff,k + Eloc,k), where the positive weight factors

{βk} account for fairness among mobiles. Under the con-
straints on time-sharing, cloud computation capacity and com-
putation latency, the resource allocation problem is formulated
as follows:

min
{`k,tk}

K∑
k=1

βk

[
tk
h2k
f

(
`k
tk

)
+ (Rk − `k)CkPk

]

s.t.
K∑
k=1

tk ≤ T,
K∑
k=1

Ck`k ≤ F,

tk ≥ 0, m+
k ≤ `k ≤ Rk, ∀ k.

(P1)



Several basic characteristics of Problem P1 are given in the
following two lemmas.

Lemma 1. Problem P1 is a convex optimization problem.

Proof: See Appendix A. �

Lemma 2. The feasibility condition for Problem P1 is:∑K
k=1m

+
k Ck ≤ F .

Proof: See Appendix B. �

Lemma 2 shows that whether the cloud computation capacity
constraint is satisfied determines the feasibility of this opti-
mization problem, while the time-sharing constraint can always
be satisfied and only affects the mobile energy consumption.

Assume that Problem P1 is feasible. The direct solution
of Problem P1 using the dual-decomposition approach (the
Lagrange method) requires iterative computation and yields no
insight into the structure of the optimal policy. To address these
issues, we adopt a two-stage solution approach that requires
first solving Problem P2 below that relaxes Problem P1 by
removing the constraint on the cloud computation capacity:

min
{`k,tk}

K∑
k=1

βk

[
tk
h2k
f

(
`k
tk

)
+ (Rk − `k)CkPk

]

s.t.
K∑
k=1

tk ≤ T,

tk ≥ 0, m+
k ≤ `k ≤ Rk, ∀ k.

(P2)

If the solution for Problem P2 violates the constraint on cloud
computation capacity, Problem P1 is then incrementally solved
building on the solution for Problem P2. This approach allows
the optimal policy to be shown to have the said threshold-based
structure and also facilitates the design of low-complexity
close-to-optimal resource-allocation algorithm. It is interesting
to note that Problem P2 corresponds to the case where the
edge cloud has infinite computation capacity. The detailed
procedures for solving Problems P1 and P2 are presented in
the subsequent two sections.

IV. MULTIUSER MECO: INFINITE CLOUD CAPACITY

In this section, by solving Problem P2 using the Lagrange
method, we derive a threshold-based policy for the optimal
resource allocation. Moreover, the policy is simplified for
several special cases.

To solve Problem P2, the Lagrange function is defined as

L =

K∑
k=1

βk

[
tk
h2k
f

(
`k
tk

)
+ (Rk − `k)CkPk

]
+λ

(
K∑
k=1

tk − T
)

where λ ≥ 0 is the Lagrange multiplier associated with the
time-sharing constraint. For ease of notation, define a function
g(x) = f(x) − xf ′(x). Let {`∗(2)k , t

∗(2)
k } denote the solution

for Problem P2 that always exists according to Lemma 2. Then
applying KKT conditions leads to the following necessary and
sufficient conditions:

∂L

∂`
∗(2)
k

=

βkf
′
(
`
∗(2)
k

t
∗(2)
k

)
h2k

−βkCkPk


> 0, `

∗(2)
k =m+

k

= 0, `
∗(2)
k ∈ (m+

k , Rk)

< 0, `
∗(2)
k = Rk

,∀k.,

(3a)

∂L

∂t
∗(2)
k

=

βkg

(
`
∗(2)
k

t
∗(2)
k

)
h2k

+ λ∗

{
> 0, t

∗(2)
k = 0

= 0, t
∗(2)
k > 0

,∀k., (3b)

K∑
k=1

t
∗(2)
k ≤ T, λ∗

(
K∑
k=1

t
∗(2)
k − T

)
= 0. (3c)

Based on these conditions, the optimal policy for resource
allocation is characterized in the following sub-sections.

A. Offloading Priority Function

Define an (mobile) offloading priority function, which is
essential for the optimal resource allocation, as follows:

ϕ(βk, Ck, Pk, hk)=


βkN0

h2k
(υk ln υk−υk+1) , υk ≥ 1

0, υk < 1
, (4)

with the constant υk defined as

υk =
BCkPkh

2
k

N0 ln 2
. (5)

This function is derived by solving a useful equation as
shown in the following lemma.

Lemma 3. Given υk ≥ 1, the offloading priority function
ϕ(βk, Ck, Pk, hk) in (4) is the root of the equation with respect
to x:

f
′−1(CkPkh2k)=g−1(−h2kxβk

)
.

Proof: See Appendix C. �

The function generates an offloading priority value, ϕk =
ϕ(βk, Ck, Pk, hk), for mobile k depending on corresponding
variables quantifying fairness, local computing and channel.
The amount of offloaded data by a mobile grows with an
increasing offloading priority as shown in the next sub-section.
It is useful to understand the effects of parameters on the
offloading priority that are characterized as follows.

Lemma 4. Given υ ≥ 1, ϕ(β,C, P, h) is a monotone
increasing function for β, C, P and h.

Lemma 4 can be easily proved by deriving the first deriva-
tives of ϕ with respect to each parameter. Moreover, it is
consistent with the intuition that, to reduce energy consumption
by offloading, the BS should schedule those mobiles having
high computing energy consumption per bit (i.e., large C and
P ) or good channels (i.e., large h).

Remark 1 (Effects of parameters on the offloading priority).
It can be observed from (4) and (5) that the offloading priority
scales with local computing energy per bit CP approximately
as (CP ) ln(CP ) and with the channel gain h approximately
as lnh. The former scaling is much faster than the latter. This
shows that the computing energy per bit is dominant over the
channel on determining whether to offload.



B. Optimal Resource-Allocation Policy

Based on conditions in (3a)-(3c) and Lemma 3, the main
result of this section is derived, given in the following theorem.

Theorem 1 (Optimal Resource-Allocation Policy). Consider
the case of infinite cloud computation capacity. The optimal
policy solving Problem P2 has the following structure.

1) If υk ≤ 1 and the minimum offloaded data size m+
k = 0

for all k, none of these users performs offloading, i.e.,

`
∗(2)
k = t

∗(2)
k = 0 ∀k.

2) If there exists mobile k such that υk > 1 or m+
k > 0,

for k = 1, 2, · · · ,K,

`
∗(2)
k


= m+

k , ϕk < λ∗

∈ [m+
k , Rk], ϕk = λ∗

= Rk, ϕk > λ∗
,

and

t
∗(2)
k =

ln 2

B
[
W0

(
λ∗h2

k/βk−N0

N0e

)
+ 1
] × `∗(2)k

where W0(x) is the Lambert function and λ∗ is the
optimal value of the Lagrange multiplier. Furthermore,
the time-sharing constraint is active:

∑K
k=1 t

∗(2)
k = T .

Proof: See Appendix D. �

Theorem 1 reveals that the optimal resource-allocation pol-
icy has a threshold-based structure when offloading saves
energy. In other words, since the exact case of ϕk = λ∗ rarely
occurs in practice, the optimal policy makes a binary offloading
decision for each mobile. Specifically, if the corresponding
offloading priority exceeds a given threshold, the mobile should
offload all input data to the edge cloud; otherwise, the mobile
should offload only the minimum amount of data under the
computation latency constraint. This result is consistent with
the intuition that the greedy method can lead to the optimal
resource allocation.

Remark 2 (Offloading or not?). For a conventional TDMA
communication system, continuous transmission by at least one
mobile is always advantageous under the criterion of minimum
sum energy consumption [13]. However, this does not always
hold for a TDMA MECO system where no offloading for all
users may be preferred as shown in Theorem 1. There are
two cases where offloading is necessary. First, there exists at
least one mobile whose input data size is too large such that
complete local computing fails to meet the latency constraint.
Second, some mobile has a sufficient high value for the product
CkPkh

2
k, indicating that energy savings can be achieved by of-

floading because of high channel gain or large local computing
energy consumption.

Remark 3 (Offloading rate). It can be observed from The-
orem 1 that the offloading rate, defined as `

∗(2)
k /t

∗(2)
k for

mobile k, is determined only by the channel gain and fairness
weight factor while other factors, namely Ck and Pk, affect the
offloading decision. The rate increases with a growing channel
gain and vice versa since a large channel gain supports a

higher transmission rate or reduces transmission power, making
offloading desirable for reducing mobile energy consumption.

Remark 4 (Algorithm computation complexity). The tradi-
tional method for solving Problem P2 is the block-coordinate
descending which performs iterative optimization of the two
sets of variables, {`k} and {tk}, resulting in high computation
complexity. In contrast, by exploiting the threshold-based struc-
ture of the optimal resource-allocation policy in Theorem 1, the
proposed solution approach, described in Algorithm 1, needs
to perform only a one-dimension search for λ∗, reducing the
computation complexity significantly. To facilitate the search,
next lemma gives the range of λ∗, which can be easily proved
from Theorem 1 and omitted for simplicity.

Lemma 5. When there is at least one offloading mobile, the
optimal Lagrange multiplier λ∗ satisfies:

0 ≤ λ∗ ≤ λmax = max
k

ϕk.

Algorithm 1 Optimal Algorithm for Problem P2.
• Step 1 [Initialize]:

Let λ` = 0 and λh = λmax. According to Theorem 1,
obtain T` =

∑K
k=1 t

∗(2)
k,` and Th =

∑K
k=1 t

∗(2)
k,h , where

{t∗(2)k,` } and {t∗(2)k,h } are the allocated fractions of slot for
the cases of λ` and λh, respectively.

• Step 2 [Bisection search]:
While T` 6= T and Th 6= T , update {λ`, λh} as follows.
(1) Define λm = (λ` + λh)/2 and compute Tm.
(2) If Tm = T , then λ∗ = λm and the optimal policy can
be determined. Otherwise, if Tm < T , let λh = λm and
if Tm > T , let λ` = λm.

C. Special Cases

The optimal resource-allocation policies for several special
cases considering equal weight factors are discussed as follows.

1) Uniform channels and local computing: Consider the
simplest case where {hk, Ck, Pk} are identical for all k. Then
all mobiles have uniform offloading priorities. In this case,
for optimal resource allocation, different mobiles can offload
arbitrary data sizes so long as the sum offloaded data size
satisfies the following constraint:

K∑
k=1

`
∗(2)
k ≤ TB log2

(
BCPh2

N0 ln 2

)
.

2) Uniform channels: Consider the case of h1 = h2 · · · =
hK . The offloading priority for each mobile, say mobile k, is
only affected by the corresponding local-computing parameters
Pk and Ck. Without loss of generality, assume that P1C1 ≤
P2C2 · · · ≤ PKCK . Then the optimal resource-allocation
policy is given in the following corollary of Theorem 1.

Corollary 1. Assume infinite cloud computation capacity,
h1 = h2 · · · = hK and P1C1 ≤ P2C2 · · · ≤ PKCK . Let kt
denote the index such that ϕk < λ∗ for all k < kt and ϕk > λ∗

for all k ≥ kt. The optimal resource-allocation policy is given



as follows:

`
∗(2)
k =

{
Rk, k ≥ kt
m+
k , otherwise

,

and

t
∗(2)
k =

ln 2

B
[
W0

(
λ∗h2/β−N0

N0e

)
+ 1
] × `∗(2)k .

The result shows that the optimal resource-allocation policy
follows a greedy approach that selects mobiles in a descending
order of energy consumption per bit for complete offloading
until the time-sharing duration is fully utilized.

3) Uniform local computing: Consider the case of C1P1 =
C2P2 · · · = CKPK . Similar to the previous case, the optimal
resource-allocation policy can be shown to follow the greedy
approach that selects mobiles for complete offloading in the
descending order of channel gain.

V. MULTIUSER MECO: FINITE CLOUD CAPACITY

In this section, we consider the case of finite cloud com-
putation capacity and analyze the optimal resource-allocation
policy for solving Problem P1. The policy is shown to also have
a threshold-based structure as the infinite-capacity counterpart
derived in the preceding section. Both the optimal and sub-
optimal algorithms are presented for policy computation.

A. Optimal Resource-Allocation Policy

To solve the convex Problem P1, the corresponding La-
grange function can be written as

L̃ =

K∑
k=1

βk

[
tk
h2k
f

(
`k
tk

)
+ (Rk − `k)CkPk

]

+ λ

(
K∑
k=1

tk − T
)

+ µ

(
K∑
k=1

Ck`k − F
)
.

where µ ≥ 0 is the Lagrange multiplier corresponding to
the cloud computation capacity constraint. Using the above
Lagrange function, it is straightforward to show that the
corresponding KKT conditions can be modified from their
infinite-capacity counterparts in (3a)-(3c) by replacing Pk with
P̃k = Pk−µ, called the effective computation energy per cycle.
The resultant effective offloading priority function, denoted as
ϕ̃k, can be modified accordingly from that in (4) as

ϕ̃(βk, Ck, Pk, hk, µ)=


βkN0

h2k
(υ̃k ln υ̃k−υ̃k+1) , ṽk ≥ 1

0, ṽk < 1
, (6)

where υ̃k =
BCk(Pk − µ)h2k

N0 ln 2
. Based on above discussion, the

main result of this section follows as shown below.

Theorem 2 (Optimal Resource-Allocation Policy). Consider
the case of finite cloud computation capacity. The optimal
policy solving Problem P1 has the same structure as that in
Theorem 1 and is expressed in terms of the priority function
ϕ̃k in (6) and the optimized Lagrange multipliers {λ∗, µ∗}.

Computing the threshold for the optimal resource-allocation
policy requires a two-dimension search over the Lagrange mul-
tipliers {λ∗, µ∗}, using Algorithm 2. For an efficient search, it
is useful to limit the range of λ∗ and µ∗ as follows.

Lemma 6. When there is at least one offloading mobile, the
optimal Lagrange multipliers {λ∗, µ∗} satisfy:

0 ≤ λ∗ ≤ λmax,

0 ≤ µ∗ ≤ µmax = max
k

{
Pk −

N0 ln 2

BCkh2k

}
where λmax has been defined in Lemma 5.

Proof: See Appendix E �

Note that µ∗ = 0 corresponds to the case of infinite cloud
computation capacity and µ∗ = µmax to the case where
offloading yields no energy savings for any mobile.

Algorithm 2 Optimal Algorithm for Solving Problem P1.
• Step 1[Check solution for Problem P2]:

Perform Algorithm 1. If
∑K
k=1 `

∗(2)
k ≤ F , the optimal

policy is given in Theorem 1. Otherwise, go to Step 2.
• Step 2 [Initialize]:

Let µ` = 0 and µh = µmax. Based on Theorem 2, obtain
F` =

∑K
k=1 Ck`

∗
k,` and Fh =

∑K
k=1 Ck`

∗
k,h, where {`∗k,`}

and {`∗k,h} are the offloaded data sizes for µ` and µh,
respectively, involving the one-dimension search for λ∗.

• Step 3 [Bisection search]:
While F` 6= F and Fh 6= F , update {µ`, µh} as follows.
(1) Define µm = (µ` + µh)/2 and compute Fm.
(2) If Fm = F , then µ∗ = µm and the optimal policy can
be determined. Otherwise, if Fm < F , let µh = µm and
if Fm > F , let µ` = µm.

B. Sub-Optimal Resource-Allocation Policy

To reduce the computation complexity of Algorithm 2 due
to the two-dimension search, one simple sub-optimal policy is
designed using Algorithm 3. The key idea is to decouple the
computation and radio resource allocation. In Step 2, based
on the approximated offloading priority in (4) for the case of
infinite cloud computation capacity, we allocate the computa-
tion resource to mobiles with high offloading priorities. Step 3
optimizes the corresponding fractions of slot given offloaded
data. This sub-optimal algorithm has low complexity requiring
only a one-dimension search. Moreover, its performance is
shown by simulation to be close-to-optimal in the sequel.

VI. SIMULATION RESULTS

The simulation settings are as follows unless specified
otherwise. The MECO system comprises K = 30 mobiles
with equal fairness weight factors, namely that βk = 1 for
all k such that the weighted sum mobile energy consumption
represents the total mobile energy consumption. The time
slot T = 100 ms and channels are modeled as independent
Rayleigh fading with average power loss set as 10−6. In
addition, the variance of complex white Gaussian channel noise
is N0=10−9 W and the bandwidth B = 10 Mhz. Consider
mobile k. The CPU computation capacity Fk is uniformly



Algorithm 3 Sub-optimal Algorithm for Solving Problem P1.

• Step 1: Perform Algorithm 1. If
∑K
k=1 `

∗(2)
k ≤F , Theo-

rem 1 gives the optimal policy. Otherwise, go to Step 2.
• Step 2: Based on offloading priorities in (4), offload the

data from mobiles in the descending order of offloading
priority until the cloud computation capacity is fully
occupied, i.e.,

∑K
k=1 Ck`

∗
k=F.

• Step 3: With {`∗k} derived in Step 2, search for λ∗ such

that t∗k=
`∗k ln 2

B[W0(
λ∗h2

k/βk−N0

N0e
) + 1]

satisfying
∑K
k=1 t

∗
k=T .

selected from the set {0.1, 0.2, · · · , 1.0} Ghz and the local
computing energy per cycle Pk follows a uniform distribution
in the range (0, 20 × 10−11) J/cycle. For the computing task,
both the data size and required number of CPU cycles per
bit follow the uniform distribution with Rk ∈ [100, 500] KB
and Ck ∈ [500, 1500] cycles/bit. All random variables are
independent for different mobiles, modeling heterogeneous
mobile computing capabilities. Last, the cloud computation
capacity is set as F = 6× 109 cycles per slot.

For performance comparison, a baseline equal resource-
allocation policy is considered, which allocates equal offload-
ing duration for mobiles satisfying υk > 1 and based on this,
the offloaded data sizes are optimized.

Fig. 2 shows the curves of total mobile energy consumption
versus the time slot duration T . Several observations can be
made. First, the total mobile energy consumption reduces as
the slot duration grows. Next, the sub-optimal policy com-
puted using Algorithm 3 is found to have close-to-optimal
performance and yields total mobile energy consumption less
than half of that for the equal resource-allocation policy.
The energy reduction is more significant for a shorter slot
duration since without the optimization on fractions of slot,
the offloading energy of baseline policy grows exponentially
with the decrease of allocated time fractions.

The curves of total mobile energy consumption versus the
cloud computation capacity are displayed in Fig. 3. It can
be observed that the performance of the sub-optimal policy
approaches to that of the optimal one when the cloud computa-
tion capacity increases and achieves substantial energy savings
gains over the equal resource-allocation policy. Furthermore,
the total mobile energy consumption is invariant after the cloud
computation capacity exceeds some threshold (about 6× 109).
This suggests that there exists some critical value for the cloud
computation capacity, above which increasing the capacity
yields no reduction on the total mobile energy consumption.

VII. CONCLUSION

Consider a multiuser MECO system based on TDMA.
This work shows that the optimal energy-efficient resource-
allocation policy for clouds with infinite or finite computa-
tion capacities, is featured with a threshold-based structure.
Specifically, the BS makes a binary offloading decision for
each mobile, where users with priorities above or below a
given threshold will perform complete or minimum offloading.
Moreover, a simple sub-optimal algorithm is proposed to
reduce the complexity for computing the threshold.
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Figure 2. Total mobile energy consumption vs. time slot duration.
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Figure 3. Total mobile energy consumption vs. cloud computation capacity.

APPENDIX

A. Proof of Lemma 1

Since f(x) is a convex function, its perspective function,
defined as tkf( `ktk ), is still convex. Thus, the objective function,
the summation of a set of convex functions, preserves the
convexity. Combining it with the linear convex constraints
leads to the desired result. �

B. Proof of Lemma 2

Whether Problem P1 is feasible depends on the following
two key constraints:

∑K
k=1 Ck`k ≤ F and m+

k ≤ `k ≤ Rk.
Assume m+

k ≤ `k ≤ Rk is satisfied. Then it has

K∑
k=1

Ckm
+
k ≤

K∑
k=1

Ck`k ≤
K∑
k=1

CkRk.

Thus, only when
∑K
k=1 Ckm

+
k ≤ F , Problem P1 is feasible.�

C. Proof of Lemma 3

First, we derive a general result that is the root of equation:
f
′−1(p) = g−1(y) with respect to y as follows.
According to the definitions of f(x) and g(x), it has

f
′
(x) =

N0 ln 2

B
2

x
B and f

′−1(y) = B log2

(
By

N0 ln 2

)
. (7)



Thus, the solution for the general equation is

y = g(f
′−1(p)) = f(f

′−1(p))− f ′−1(p)× f ′(f ′−1(p))
= f(f

′−1(p))− f ′−1(p)× p

=
Bp

ln 2
−N0 − pB log2

(
Bp

N0 ln 2

)
. (8)

Note that to ensure `
∗(2)
k ≥ 0 in Problem P1, we need

f
′−1(CkPkh

2
k)≥0, which is equivalent to vk≥1 derived from

(7). Then, by substituting p = CkPkh
2
k and y =

−h2
kx

βk
to (8)

and making arithmetic operations gives the desired result. �

D. Proof of Theorem 1

First, to prove this theorem, we need the following lemmas.

Lemma 7. The function g−1(y) can be expressed as

g−1(y) =
B
[
W0(

y+N0

−N0e
) + 1

]
ln 2

. (9)

Proof: Since g−1(y) denotes the root of equation g(x) = y
for x ≥ 0, it has

y = g(x) =

[
N0 −

(ln 2)N0x

B

]
× 2

x
B −N0

= (−N0e)×
[(

x ln 2

B
− 1

)
e

x ln 2
B −1

]
−N0.

Thus, based on the definition for Lambert function, we have
x ln 2

B
−1=W0

(
y +N0

−N0e

)
. Then the desired result follows. �

Lemma 8. The function g−1(y) is a monotone decreasing
function for y < 0.

Proof: From (9), for y ≤ 0, it has y+N0

−N0e
≥ −1/e. Since the

single-valued Lambert function W0(x) is monotone increasing
for x ≥ −1/e, we can easily obtain the desired result. �

Then, consider case 1) in Theorem 1. Note that for mobile
k, if m+

k = 0 and υk ≤ 1, it results in `∗(2)k = 0 derived from
(3a). Thus, if these two conditions are satisfied for all k, it leads
to `∗(2)k = t

∗(2)
k = 0. For case 2), if there exists mobile k such

that υk > 1 or m+
k > 0, it ensures `∗(2)k > 0. And the time-

sharing constraint should be active since remaining time can
be used for offloading so as to reduce the transmission energy.
Moreover, consider each user k = 1, 2, · · ·K. If υk ≥ 1, from
(3a) and (3b), {`∗(2)k , t

∗(2)
k } should satisfy the following:

`
∗(2)
k

t
∗(2)
k

= min

{
max

[
m+
k

t
∗(2)
k

, f
′−1(CkPkh2k)

]
,
Rk

t
∗(2)
k

}
(10a)

= max

{
m+
k

t
∗(2)
k

,min

[
f
′−1(CkPkh2k) , Rk

t
∗(2)
k

]}
(10b)

= g−1
(−h2kλ∗

βk

)
. (10c)

Using Lemma 3 and Lemma 8, we have the following:

1) If ϕk > λ∗ ≥ 0, it has −h2kϕk < −h2kλ∗ ≤ 0. Then,
from (10a), it gives

max

[
m+
k

t
∗(2)
k

, f
′−1(CkPkh2k)

]
≥ f ′−1

(
CkPkh

2
k

)
= g−1

(−h2kϕk
βk

)
> g−1

(−h2kλ∗
βk

)
. (11)

From (10a), (10c) and (11), it follows that `∗(2)k = Rk.
2) If ϕk = λ∗, it has f

′−1(CkPkh2k) = g−1
(
−h2

kλ
∗

βk

)
.

3) If 0 ≤ ϕk < λ∗, it has −h2kϕk > −h2kλ∗. Combining it
with (10b) leads to

min

[
f
′−1(CkPkh2k) , Rk

t
∗(2)
k

,

]
≤ f ′−1

(
CkPkh

2
k

)
= g−1

(−h2kϕk
βk

)
< g−1

(−h2kλ∗
βk

)
. (12)

From (10b), (10c) and (12), it follows that `∗(2)k = m+
k .

Furthermore, if υk< 1, it has `∗(2)k =m+
k . Note that this case

can be included in the scenario of ϕk<λ∗ with the definition
of ϕk in (4).

Last, from (10c), it follows that

t
∗(2)
k =

`
∗(2)
k

g−1
(
−h2

kλ
∗

βk

) (a)
=

`
∗(2)
k ln 2

B
[
W0(

λ∗h2
k/βk−N0

N0e
) + 1

]
where (a) is derived using Lemma 7, completing the proof. �

E. Proof of Lemma 6

If there exists offloading mobile k, it must satisfy λ∗ ≤ ϕ̃k
and 1 ≤ υ̃k. Thus, considering all mobiles, it follows λ∗ ≤
maxk{ϕ̃k} = λmax and 1 ≤ maxk{BCk(Pk−µ∗)h2

k

N0 ln 2 }. The latter
condition is equivalent to µ∗ ≤ µmax, completing the proof.�
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