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Abstract—This paper investigates the offline packet-delay-
minimization problem for an energy harvesting transmitter. To
overcome the non-convexity of the problem, we propose a C2-
diffeomorphic transformation and provide the necessary and
sufficient condition for the transformed problem to a standard
convex optimization problem. Based on this condition, a simple
choice of the transformation is determined which allows an
analytically tractable solution of the original non-convex problem
to be easily obtained once the transformed convex problem is
solved. We further study the structure of the optimal transmission
policy in a special case and find it to follow a weighted-directional-
water-filling structure. In particular, the optimal policy tends to
allocate more power in earlier time slots and less power in later
time slots. Our analytical insight is verified by simulation results.

Index Terms—Energy harvesting, offline transmission policy,
packet delay minimization, weighted-directional-water-filling.

I. INTRODUCTION
A. Motivation and Related Work

Energy harvesting is recognized as a key enabling tech-
nology for self-sustainable communication networks. It also
brings in significant and necessary changes in the design of
the communication protocol when energy harvesting becomes
the main or sole source of energy supply for the communi-
cation nodes [1]-[3[]. By focusing on the design of an energy
harvesting transmitter, the existing studies can be categorized
into offline and online scenarios. For offline scenarios, all
future information (such as the energy arrival process, data
arrival process and channel fading process) is assumed to
be predictable or completely deterministic. Hence, the trans-
mission policy is designed offline by using the available
knowledge about the future. For online scenarios, although the
exact future behaviors of the energy arrival, data arrival and
channel fading processes are not known, the existing literature
have considered different levels of statistical knowledge: the
statistics of the processes in the future are exactly known
(e.g., [4]), partly known (e.g., [5]) or completely unknown
(e.g., [6]).

The importance of studying the offline design for energy
harvesting transmitters is two-fold [7]-[9]: (i) The offline
design tells the fundamental performance limit of an energy
harvesting communication system. It serves as a benchmark
for any online algorithm. Methods such as competitive anal-
ysis [7] can be used to derive and analyze online algorithms
once the performance of the offline design is known. (ii) The
offline solution often helps one to gain insights on the design
problem and the behavior of the optimal transmission policy,

which inspire possible online design solutions (e.g., Section
VLB in [§] and Section VII in [9]). As a result, a significant
effort has been made into the study of offline designs in the
past few years.

The objective of energy harvesting transmission design
has been defined from a range of perspectives, includ-
ing throughput maximization (e.g., [S]-[9]), remaining en-
ergy maximization (e.g., [9]]), completion time minimiza-
tion (e.g., [6]], [8]-[12]), and packet delay minimization [4],
[13], [14]. In particular, efficient offline designs have
been found for the throughput-maximization, remaining-
energy-maximization and completion-time-minimization prob-
lems [8]-[10]. However, effective solutions to the offline
packet-delay-minimization problem are still yet to be found.
A very recent study in [14] considered the packet-delay-
minimization problem in a non-fading channel and obtained
a deep insight of the solution structure given through the
KKT conditions. However, the optimal solution was derived
for the dual problem rather than the original problem. Since
the original problem is non-convex, there is a duality gap [[15]]
between the original and dual problems.

Another interesting issue is the relationship among the pa-
cket-delay-minimization, completion-time-minimization, and
throughput-maximization problems. For the last two problems,
they are linked through the maximum departure curve (see
Section V in [8]). However, it is unclear whether the first
problem has any correlation with the last two problems.
Intuitively, the first two problems are related: the quicker the
transmission is completed, the smaller the packet delay is. A
similar observation was also made in the literature (e.g., [9],
[16]). Then, through the maximum departure curve, all these
three problems appear to be highly related. Nevertheless, there
has not been any analytical studied on the extent to which the
three problems are related and, more importantly, whether the
optimal offline transmission designs for the three problems
have the similar behaviors.

B. Our Contribution

In this work, we tackle the aforementioned challenge
of finding an effective solution to the offline packet-delay-
minimization problem in a general fading channel. We con-
sider a time-slotted system and use the average data queue
length to measure delay, which is a commonly adopted delay
metric in the literature [4], [13[]. Although the formulated
delay-minimization problem is non-convex, we are able to



transform it into a single convex optimization problem, which
can be solved very efficiently.

In order to obtain insights into the behavior of the optimal
offline delay-minimizing transmission policy, we focus on a
special case where the battery energy is insufficient to clear
the data queue in all time slots. In this case, we analytically
show that the optimal transmission policy has a weighted-
directional-water-filling structure for the power allocation. In
particular, the optimal policy tends to allocate more power in
earlier time slots and less power in later time slots. This result
is further verified by simulations in more general cases.

The insights obtained from the optimal transmission policy
also allow us to investigate the relationship and difference
among the delay-minimization problem studied in this work,
the completion-time minimization problem in [10]], and the
throughput-maximization problem in [8]]. Surprisingly, the
optimal offline solution to the delay-minimization problem
is found to be fundamentally different: the delay-minimizing
solution tends to reduce the transmit power over time, while
the completion-time-minimizing and throughput-maximizing
solutions trend to increase the transmit power over time.

C. Paper Organization and Notation

The system model and problem description are given in
Section [[T] and Section [} respectively. In Section the
delay-minimization problem is efficiently solved and the struc-
ture of the optimal solution is studied. Simulation results are
presented in Section [V]to corroborate our analysis. Finally, the
concluding remarks are given in Section

II. SYSTEM MODEL

We consider a point-to-point communication system with an
energy harvesting transmitter (see Fig. [T). The time is slotted,
and t € {1,...,T} =: T stands for the t® time slot, where
T € Z is the total number of slots. For each time slot, the
battery energy of the transmitter is F; € R, and is determined
by the battery energy equation:

E,=FE 1 +H, —p, teT, (D

where H; € R, is the harvested energy and p; € R, is
the transmit power. Note that Fy € R, represents the initial
battery energy. The data queue length of the transmitter is
Q: € R, determined by the data queue equation:

Qt = Q-1+ Dy —1(pt,ge), teT, 2)

where D; € @Jr is the amount of data arrived and 7(p¢, g+)
is the rate function, which is only dependent on the transmit
power p; and the power gain of the communication channel
gt € Ry. We label r(pi,g:) = 74, (p:) and assume that
: Ry — Ry is strictly increasing and concave, and has
a contmuous second derivative, e.g., for fading channel with
Gaussian white noise 7, (p;) = log(1+ gip;). Also, Qo € Ry
is the initial data queue length.
Note that £ and Q; for any ¢ € T can be totally determined
by @, @I), Ey and Qq. Since we consider an offline scenario,
the energy arrival H,, data arrival D, and channel gain g,
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Fig. 1. The point-to-point communication system with an energy harvesting
transmitter.

are known in advance. This completes the description of the
system model.

III. PROBLEM DESCRIPTION: MINIMIZING THE AVERAGE
DATA QUEUE LENGTH

In this paper, we use the average data queue length as the
delay metric, which is commonly adopted in the literature [4],
[13]]. The average data queue length L is given by

1 T
=70 Q (3)
t=1

The average-data-queue-minimization problem is to find p; to
minimize £ in with constraints from the battery energy
equation () and the data queue length equation (2). Since (3)
does not explicitly contain p;, we rewrite L as

1 & (a) 1 T 2
+3°0.2 110 S5}
t=1

t=1 i=1

“)
1 I
=Qo+ T;(T+1—t) [Dy =g, (p1)],
where (a) follows from
%+Z —rg,(pi)], teT. ©)

We also rewrite (I) and (Z) to obtain the battery energy
and data queue constraints for the optimization problem. More
specifically, the battery energy equation (I) can be rewritten
as a series of inequalities, called the battery energy constraints

E0+Z

Similarly, we can get the data queue constraints from the data
queue equation as

0+Z

Also note that p; should be non-negative for t € 7. To sum
up, we can write the offline average-data-queue-minimization
problem into an explicit form whose optimization variables
are p; (t € T), which is given as follows:

)>0,teT. (6)

p;)) >0, teT. @)



Problem 1 (Average-Data-Queue-Minimization Problem).
The average-data-queue-minimization problem is

Qo+ 1 Xiey (T +1=1) [Dy = 14, (p)]

Zzzl pi < Ep + 22:1 Hi,teT,

Z§=1 7g:(pi) < Qo + Zﬁle Di, teT,
pt Z 07 t S T7

minimize
pe, t€T
subject to

®)

where the optimal solution and optimal objective are labelled
as pf (t € T) and L*, respectively.

Remark 1. It should be noted that Problem [Il is not a
convex optimization problem, since the data queue constraints
correspond to the intersection of non-convex regions w.r.t. p;.
Nevertheless, in Section [IV-A] we will show that Problem [I|
can be converted to a standard convex optimization problem
with transformation on the optimization variables.

IV. OPTIMAL SOLUTION FOR THE
AVERAGE-DATA-QUEUE-MINIMIZATION PROBLEM

This section is divided into two parts. In Section we
discuss how to efficiently solve Problem [I] by transforming it
into a standard convex optimization problem. In Section
we provide insights into the structure of the optimal solution.

A. Solving the Average-Data-Queue-Minimization Problem

In this subsection, we discuss how to convert Problem [i]
into a standard convex optimization problem such that it can
be solved efficiently.

Let map ¢; : R, — Ry (t € T) be C>-diffeomorphid}
With the transformation p; = :(qt), Problem [l can be
rewritten as

Qo+ 430 (T+1—1)[Dy — 7y, (0e(qr))]

minimize
qt, t€T
subject to S\ wi(q) < Eo+ 30 _ Hi, t €T,

Zﬁzl 74, (i(gi)) < Qo + 22:1 D, teT,
@t(Qt) 2 07 te 7-7
&)

where 7,4, (0:(g¢)) is twice continuously differentiable, since
both 74, and ¢, are twice continuously differentiable.

The following theorem gives the necessary and sufficient
condition for guaranteeing the convexity of (9).

Theorem 1 (Necessary and Sufficient Condition for Convexity
of Transformed Problem). Problem (9) is a standard convex
optimization problem if and only if V't € T,

wi(q) = T;tl(at%s + bt), (10)

where a; € Ry and b, € R.

Proof: The proof is divided into three steps. In the first
step, we show that the condition ¢;(gq;) > 0 is equivalent to
g+ > O forallt € T.In the second step, we prove the necessary
and sufficient condition for the convexity of Problem (Q) is that

For each t € T, ¢ is bijective and twice continuously differentiable, and
the inverse ¢, s also twice continuously differentiable.

the map ¢, is convex and the composition 74, o ¢ is affine.
In the third step, we show that (I0) holds.

i) Since, for each ¢ € T, y; is bijective from R, to R, we
can derive that if p, = ¢;(q;) € Ry, then ¢; € R, vice versa.
Thus, the domains of ¢;(q;) > 0 and ¢; > 0 are totally the
same, and Problem (9) is equivalent to the following problem

Qo+ 4 Ximy (T +1=1) [Dy =14, (pe(ar))]

minimize
qe, t€T : ;
subject to >, i(q;) < Eo+ Y, Hi, teT,

22:1 Tgi(‘pi(Qi)) < QO + 22:1 Div te T’
qt 2 O, te T
(1D

ii) Now, we prove the necessary and sufficient condition for
the convexity of Problem instead of Problem (9).

Necessity. If Problem (TI) is a standard convex optimiza-
tion problem, then the objective function and the inequality
constraints are convex (see Chapter 4.2 in [15])). Firstly, we
focus on the battery energy constraints (the first row of the
constraints in (I1))). For ¢ = 1, we have ¢1(q1) < Eo + H;
and this means that ;(q;) is convex w.r.t. ¢;. For t = 2, we
have ©1(q1)+ p2(g2) is convex w.r.t. g1 and g2, which implies
va2(ge) is convex Ww.r.t. go, since @1(g1) is convex w.r.t. ¢j.
Likewise, we can derive that ¢; is convex for all ¢t € T.

Similarly, the data queue constraints (the second row of the
constraints in (II))) tell that r,, o ¢; is also convex for all
teT.

Furthermore, with convex 74, o ¢, we see that the objective
function is concave, which implies it is affine (both convex
and concave), so does the map ry, o ;. This completes the
necessity.

Sufficiency. If ¢; is convex and 7,4, o ¢, is affine (affinity
also means convexity) for ¢ € 7, then the objective function
as well as all the inequality constraints are convex. Therefore,
Problem (TI)) is a convex optimization problem.

iii) Since the composition 74, o ¢y is affine and invertible,
we have rg, (pi(q:)) = arge + by, where a; € R\ {0} and
b € R. This means ¢;(q;) = rg:l(atqt + b¢). Note that rg’tl
is convex, and to make ¢; convex, a; should be greater than
0. To sum up, condition (I0) is established. |

Theorem (1| gives an important guideline for selecting the
transformation ;. With this guideline, we further choose
a; = 1 and b, = 0 for all ¢ € T such that the transformation
is oy = rg_tl, which can largely reduce the complexity of
the transformed problem. Therefore, we obtain the following
transformed problem by applying the transformation p, =
75,1 (q;) for Problem

Problem 2 (Transformed Problem). With p, = rg_tl(qt) for all
t € T, Problem[l| is transformed into the following convex
optimization problem

Qo+%2?:1 (T+1—1t) (D —qt)

minimize
qi, teT
subject to  Y'_, 7o (gi) < Eo + S Hi teT,

S < Qo+ DiteT,
qt Z Oa t € 7-7
(12)



where the optimal solution is q; (t € T), but not necessarily
uniqueﬂ The optimal objective is the same as that in Prob-
lem[l] i.e., L*

Remark 2 (Solving the Original Problem with the Solution of
the Transformed Problem). The optimal solution of Problem|]
can be derived in the following way

pi =714, (q), teT, (13)
where qf is the optimal solution to Problem {2} This implies
that we can use (13) to obtain the optimal solution of Prob-
lem [1| after deriving the optimal solution of Problem 2] Since
Problem[2is convex, it can be solved efficiently (e.g., using the
interior-point method [|15|]). Therefore, the optimal solution of
Problem |l| can also be derived efficiently.

B. Discussions on the Structure of the Optimal Solution

In general, it is difficult to derive the structure of the optimal
solution of Problem [2| by its KKT conditions. However, the
KKT conditions can give insights into the structure of the
optimal solution when @); > O for all ¢ € 7. Such a case
happens when the transmitter does not have sufficient energy
in the battery to completely clear the data queue in all time
slots. In order to shed light on the structure of the delay-
minimization transmission policy, we study this special case
using the original problem (Problem [I)) rather than Problem [2]

In this special case, since QQ; > 0 for all ¢ € T, the data
queue constraints in Problem |I| can be removed. We further
assume the channel is a fading channel with Gaussian white
noise, and the rate function is 74, (p:) = log(1 + g;p;), which
achieves the channel capacity. Noting that to minimize Qo +
T S (T +1—1)[D; — 4, (p:)] is equivalent to maximize
Zle(T + 1 —t)ry,(pt), we can rewrite Problem |1 as the
following problem.

Problem 3 (Weighted-Throughput-Maximization Problem).

S (T +1 =) log(1 + gipy)

22:1 pi < Eo+ 25:1 Hi, teT,
Dt Z 07 te T

maximize
pe, tET

subject to (14)

Interestingly, Problem [3 maximizes the throughput over all
time slots with a weighting factor (T + 1 — t) applied to
each time slot. It is a convex optimization problem and has
a unique maximizer, because log(1 + g:p¢) is strictly concave
for all £ € T and the constraints are all affine. We claim that
the solution to Problem [3] has a weighted-directional-water-
filling structureﬂ which is an extension of the directional-
water-filling structure in [8]].

2Since the objective of Problem [2|is not strictly convex, we cannot ensure
that it always has a unique global minimizer under any given H:, D¢, Ep
and Q. However, since this problem is convex, we can still get at least one
global minimizer using an efficient method, e.g., interior-point method.

3Note that the mathematical form of Problemis similar to (38a) and (38b)
in [17], where the weights are preferences to broadcast channels. However,
our solution has a more explanation (see Fig. .

Applying KKT conditions to Problem [I| we can derive the
structure of the optimal power as

+
N T+1-1 1
o=\ | >
¢ ZZ:t )\z — Nt gt
where \; and 7; correspond to the battery energy constraints
(the first row of the constraints in (I4)) and p, > 0. Defining
1
Z?:t /\i — Tt ’
we have the following theorem.

15)

(16)

Vg =

Theorem 2 (Nondecreasing Property of Water Levels). Let
the time set 7Ty contains those t corresponding to p; = 0,
ie, To ={t:pf =0,t € T} We have vy > v; for all
te{l,...,T—1}\To. Furthermore, ¥t € {1,...,T —1}\To,
if the battery energy constraint (the first row of the constraints
in (T4)) is satisfied without equality, then viy1 = vy

Proof: When pf > 0, it follows the complementary
slackness (see Chapter 5.5.2 in [15]) that n; = 0, and v
becomes v; = 1/Zith ;. Observing that Ay, > 0, we
have 1441 > 1y for all t € {1,...,T — 1}\7o. Moreover,
Vt € {1,...,T — 1}\To, if the battery energy constraint (the
first row of the constraints in (T4)) is satisfied without equality,
then A\; = 0, which implies v;11 = v;. |

Theorem [2] tells that the optimal solution p; has the
weighted-directional-water-filling structure, and »; is exactly
the water level in the t" time slot. The water depth d; is

dt Z:$:(l/t—5t)+, tGT
where 6; = 1/[(T + 1 — t)g:]. Therefore, the weighted-
directional-water-filling algorithm can be derived, which is
illustrated in Fig. 2|
In Fig. 2(a) the white blocks at the bottom are the ground
with levels §, = 1/[(T'+ 1 —t)g.], corresponding to the effect
of the channel gain. The above dash lines complement the
shape of the water tank, where the widths (T"+ 1 — t) are
decreasing linearly with ¢. The walls between any adjacent
time slots are right permeable [§], which means the water can
flow to the right if the water in the left slot has a higher level,
but the water cannot flow back to the left in all cases. In
Fig. the shaded blocks are water, which is determined
by Ey as well as H; arriving in each time slot. In this
particular example, the water depths in time slots 1, 4, and
5are d = (Ey + Hy)/T, dy = Hy/T and dy = H5/T,
respectively. Thus, the water levels in these three time slots
can be calculated by v; = §; + d;. On the other hand, the
energy arrived is zero in time slots 2, 3, and 6, and hence,
no water exists in those time slots. In Fig. the water is
filled across time slots, and the final water volume for each
time slot is exactly the power allocation. The new water level,
after using the weighted-directional-water-filling algorithm, is
vy = 0 +d; for all t € T. In this example, time slots 1, 2 and
4 share a same water level, since the original water level 1/
in slot 1 is higher than v/, and v/}, so is the water level in time

a7
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Fig. 2. An illustration of the weighted-directional-water-filling algorithm. The ¢-axis refers to the time slot, and the w-axis stands for the weight 7'+ 1 — ¢.
(a) The shape of the water tank and the levels of the ground. (b) The original water levels, which are determined by the initial battery energy and energy
arrival process. (c¢) The new water levels after applying the weighted-directional-water-filling algorithm.

slots 5 and 6. However, there is no water pouring from time
slot 5 to 4, even though v} < v, because the walls are right
permeable. This completes the description of the weighted-
directional-water-filling algorithm in this example.

Remark 3. From Fig. 2| we observe that the weight (T +1—t)
is initially large and decreases as time goes by. As a result, the
optimal solution of Problem 3| tends to allocate more transmit
power in the earlier time slots, which implies the transmit
power is more likely to decrease with t. Furthermore, if Hy =
Oforte{2,...,T} and g, = 1 for t € T, we can prove that
the transmit power pq is linearly decreasing with t.

As mentioned in Section the delay-minimization prob-
lem studied in this work was previously considered to be
highly related to the completion-time-minimization problem,
and the throughput-maximization problem. However, Re-
mark [3| tells a fact that the completion-time-minimization and
throughput-maximization problems are inherently different
from the delay-minimization problem. This is because the
allocated transmit power in the solutions to the completion-
time-minimization and throughput-maximization problems (if
the battery storage is infinite and the channel is non-fading)
are increasing with time ¢ (see [10] and Theorem 1 in [8]),
while the optimal power allocation in the delay-minimization
problem tends to decrease with ¢.

V. SIMULATION RESULTS

In this section, firstly, we numerically illustrate that the opti-
mal solution to the delay-minimization problem is fundamen-
tally different from that to the completion-time-minimization
and throughput-maximization problems. Note that the simu-
lations contain more cases than that in Section e.g.,
not limited to the case that the transmitter has insufficient
energy in the battery to clear the data queue. The Monte
Carlo method is employed to investigate the behavior of the
optimal solution to Problem [T which can be efficiently solved
by our results in Section Secondly, we compare the
packet delay between our delay-minimization algorithm and

the throughput-maximization algorithm to stress the optimality
of our algorithm.

To focus on the decreasing or increasing property of the
power allocation over time, we introduce a concept, named
the inversion number. The inversion number for a sequence of
power values (p;):e7 is defined as

inv((pe)ier) = #A(PerPey) 111 <ta Apy, > py}, (18)

where # returns the cardinality of a finite set, and A means
the logical “and”. It can be observed that: if a sequence is non-
decreasing, then the inversion number is 0; while, if a sequence
is strictly decreasing, the inversion number is T(T + 1)/2.
Thus, the larger the inversion number is, the more likely a
sequence (p¢)ie7 is decreasing with ¢.

The simulation parameters are given as follows. The number
of time slots is 7" = 10, i.e., the simulations are done within
the time horizon {1,...,10}. The initial battery energy and
the initial data queue length are £y = 1 and @y = 1,
respectively. We set the power gain of the channel as g; = 1,
with the rate function given by log(1 + g¢:p;), in order to
compare with the power allocation solution to the completion-
time-minimization problem derived in [[10]]. The energy arrival
process H; follows an independent and identically distributed
(i.i.d.) uniform distribution, so does the data arrival process
D,. Additionally, the mean values E[H;| and E[D;] are set
within {0,0.5,...,5} and {0,1,2}, respectively (see Fig. [3).
Each point in Fig. 3] is obtained from averaging over 10,000
simulation runs.

From Fig. 3] we have the following observations: For a
fixed E[D,], the average inversion number decreases with
E[H¢]. More importantly, the case E[H;] = 0 corresponds
to a strictly decreasing sequence of power values, since the
average inversion number is exactly T'(T 4 1)/2 = 45. Note
that, in this case (E[H;] = 0 means H; = 0), the decreasing
property has been explained analytically in Remark [3] When
E[H¢| goes large enough, the average inversion number for a
fixed E[D;] gradually converges to a constant. This is because,
in every time slot, there is sufficient battery energy to clear
the data queue with high probability, and hence, the sequence
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Fig. 3. Average inversion numbers.

of power values is largely dependent on D;, and independent
of H;. We can see that for E[D,] € {0,1,2}, the average
inversion numbers converge to 31.8, 27.9, and 24.7, respec-
tively, which are far from 0. According to the results in [10]
and [§]], the sequences of power values of the completion-
time-minimization and the throughput-maximization solutions
are non-decreasing, hence their inversion numbers are 0. This
confirms that the optimal solution of the delay-minimization
problem has a very different behavior from those of the
completion-time-minimization and throughput-maximization
problems.

Using the same simulation parameters but with the
channel power gain g¢; following i.i.d. Nakagami-2 fad-
ing, we compare our delay-minimization algorithm with the
throughput-maximization algorithm (adopted from [8]). The
results are shown in Fig. ] and we can see that the
delay-minimization algorithm performs much better, and the
throughput-maximization algorithm does not give good de-
lay performance. This result again confirms the fundamental
difference between the delay-minimization and throughput-
maximization problems.

A —e—DME[D]=0
—B—TME[D] =0
—A—DME[D] =1

——T™ E[Dt] =1

Average Data Queue Length L

0 o5 1 15 2 25 3 35 4 45 5
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Fig. 4. Packet delay comparisons between the delay-minimization algorithm
(labeled by DM) and the throughput-maximization algorithm (labeled as TM).

VI. CONCLUSION

The offline packet-delay-minimization problem for an en-
ergy harvesting transmitter has been investigated in a time-
slotted system. We have proposed an effective transforma-
tion that converts the original non-convex problem into a
convex problem, which then can be solved very efficiently.
We have found that the optimal offline transmission policy
of the packet-delay-minimization design is fundamentally dif-
ferent from those of the completion-time-minimization and
throughput-maximization designs reported in the literature.
The former one tends to decrease the allocated power as time
increases, while the latter two allocate more power as time
increases.
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