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Abstract

Small operators who take part in secondary wireless spectrum markets typically have strict budget

limits. In this paper, we study the bidding problem of a budget constrained operator in repeated secondary

spectrum auctions. In existing truthful auctions, truthful bidding is the optimal strategy of a bidder.

However, budget limits impact bidding behaviors and make bidding decisions complicated, since bidders

may behave differently to avoid running out of money. We formulate the problem as a dynamic auction

game between operators, where knowledge of other operatorsis limited due to the distributed nature

of wireless networks/markets. We first present a Markov Decision Process (MDP) formulation of the

problem and characterize the optimal bidding strategy of anoperator, provided that opponents’ bids

are i.i.d. Next, we generalize the formulation to a Markov game that, in conjunction with model-free

reinforcement learning approaches, enables an operator tomake inferences about its opponents based

on local observations. Finally, we present a fully distributed learning-based bidding algorithm which

relies only on local information. Our numerical results show that our proposed learning-based bidding

results in a better utility than truthful bidding.
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I. INTRODUCTION

Spectrum scarcity has become a major challenge due to the rapid growth in mobile wireless

communications. Several measurement studies indicate that the problem lies in inefficient use
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of the available wireless spectrum rather than scarcity of the spectrum [1]. Secondary spectrum

markets have emerged to improve the spectrum utilization, where a primary license owner (PO)

can lease its idle spectrum band(s) to unlicensed secondaryusers (SU) for a short period of time.

A common approach for leasing the spectrum is holding an auction among SUs.

Several auction mechanisms have been proposed in the literature for re-allocating the spectrum

in secondary markets that mostly focus on a single round of auction (one-shot mechanisms) [2],

[3]. However, secondary spectrum auctions repeat frequently, since spectrum access is granted

for a short period of time. The difficulty arises as the SUs canlearn some information about

their opponents and the environment over time, which consequently complicate their bidding

decisions.

In a repeated auction environment, the major problem of an SUis to find an optimal bidding

strategy that maximizes its long-term utility. The decision making process of SUs in a repeated

spectrum auction is studied in [4]. In their model, SUs choose between participating in the

auction by bidding their true valuations, or staying out of the auction to just monitor the results.

Assuming independent and identically distributed (i.i.d.) SUs’ valuations, a threshold is derived

for SUs above which they should participate in the auction. In a more general context, [5] utilizes

Bayesian auction games for resource allocation in wirelessnetworks, which entails maintaining

beliefs about private information of others. Similarly, [6] presents a multi-stage double auction

game, however, it only solves for a single round of auction. [7] presents a sequential bandwidth

and power auction among SUs. A unique equilibrium is guaranteed for the case of two SUs,

provided that full information about private valuations are available. From a PO perspective, the

spectrum pricing competition has been studied extensively[8]–[11]. In such models, SUs choose

a spectrum provider solely based on the offered price, then bid their true valuations.

We study repeated spectrum auctions in presence of budget constrained SUs, since in real

world scenarios, bidders have limits on the amount of money they can spend. According to an

analysis of FCC’s spectrum auctions [12], many local wireless operators have budget limits, and

these limits affect their bidding behaviors. Each operatortypically starts with an initial budget

to invest in the spectrum market. The operator improves its utility after winning an auction and

getting high quality channel access for its services. In case of losing an auction, the operator

may resort to opportunistic generalized access mode which does not provide a quality of service

guarantee, [13]. Therefore, an operator needs to bid wiselyand plan its budget to get the most
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value from its participation in multiple rounds of auction.It should be noted that we use the

terms operator and SU interchangeably in this paper.

Our goal is to characterize an optimal bidding strategy for abudget constrained SU in repeated

secondary spectrum auctions. To the best of our knowledge, optimizing the bidding strategy of

an SU in presence of budget limits has not been previously considered in the literature. The

challenge presented by budget limits is that it makes the bidding decisions complex, since an

SU needs to take into account both the competition in the market and its own budget constraints.

Truthful bidding is no longer the optimal bidding strategy when SUs are budget constrained, as

SUs may behave differently to avoid running out of money.Thus, in contrast with prior works

[4], [14] that assume SUs always bid their true valuations, budget constrained SUs have a wide

variety of strategies for bidding. Therefore, SUs face a budget planning problem and they need

to find utility-maximizing bids without exceeding their budgets.

The significance of our work is that we propose solutions for the bidding problem of a budget

constrained SU, with and without i.i.d competing bids. We characterize the optimal bidding

strategy of an SU, when opponents’ bids are i.i.d. For the case when no information about

other SUs is available, we present a learning-based biddingalgorithm that relies only on local

information, and is well-suited to wireless environments/markets. It is worth noting that budget

optimization has been studied in the context of online keyword advertising. For instance, [15] and

[16] analyze random bids and present bidding heuristics foradvertisers to maximize their return

on investments. Also, [17] proposes a greedy algorithm for budget optimization with a single

keyword and a single advertising slot. Similarly, [18] studies the bidding problem for a single

keyword assuming a bidder faces large (theoretically infinite) number of i.i.d bidders. However,

such an assumption does not typically hold in the context of wireless spectrum markets, since

there are limited number of competing SUs.

It should also be noted that our approach is different from the literature of dynamic auction

design, where the objective is to design efficient or revenue-optimal mechanisms in dynamic

environments (e.g. [19]). Instead of designing a complex mechanism that focuses on the PO’s

side, we consider repetition of simple auction mechanisms,and we study the dynamics of such

a system from SUs’ point of view. In this setting, we analyze the bidding strategies of an SU. In

fact, an SU is faced with a trade-off between the possibilityof getting a surplus in the current

auction and the possibility of getting a larger but uncertain surplus in future auctions, subject to
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its budget limit.

In this paper, we make the following contributions. We formulate the budget-constrained

spectrum sharing problem as a repeated auction game in whichSUs compete to get one of

the available channels. We first present a Markov Decision Process (MDP) formulation of the

problem and characterize the optimal bidding strategy of anSU, assuming that opponents’

bids are i.i.d. Next, we generalize the formulation to a Markov game, where an SU can make

inferences about its competitors based on its local observations, and i.i.d. bids assumption is not

required. Finally, we present a fully distributed learning-based bidding algorithm which relies

only on local information.

The rest of this paper is organized as follows. Section II presents the system model used in

this paper. In Section III, we present a formulation of the optimal bidding problem of a budget

constrained SU. We characterize the optimal bidding strategy of an SU, assuming that the SU

faces i.i.d opponent bids in Section IV. In Section V, we present a fully distributed learning-

based bidding algorithm for an SU, which does not require i.i.d. bids assumption. Numerical

results are presented in Section VI. Finally, Section VII concludes the paper and outlines possible

avenues for future work.

II. SYSTEM MODEL

We consider a network consisting of a set of secondary users/operators (SUs) who are willing

to buy channel access for their services from a primary spectrum owner (PO). SUs are budget

constrained and compete with other SUs in a repeated auctionwhere the PO acts as the auctioneer,

and SUs are the bidders. The auction is repeated over time which is indexed byt = 0, 1, 2, · · · .

We assume that each SU can get at most one of thek available channels, and that each channel

can be leased to one SU at each time slot.

An SU’s valuation for a channel is the benefit for that specificSU of obtaining that channel.

Similar to [2], [7], [11], the SUs’ valuations for a channel can be related to the achievable

capacity of that channel. LetW be the channel bandwidth,P0 be the transmission power,N0

be the power spectral density of the additive noise, and letGi denote the channel gain for SU

i. The valuation of SUi for channel access,vi, can be defined as:

vi , θi W log(1 +
P0 Gi

N0 W
), (1)
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whereθi is a real number which reflects the urgency of channel access for SU i, the more urgent

the channel access to SUi; the higher the monetary valueθi. SUs can set theirθs based upon

their service types. For delay sensitive multimedia applications they have a different urgency

than delay tolerant services.

It is worth noting that the model presented in this paper works with other valuation functions,

and (1) is one example of such a function. We assume that at each time step, each SU can observe

its current valuation, and that valuations evolve according to a Markov probability model. Let

vti denote the valuation of SUi at time t, thenP (vt+1
i |vti , v

t−1
i , · · · , v0i ) = P (vt+1

i |vti). Each SU

knows its own valuation probability transition model whichcan be learnt over time. [19] presents

a model in which SUs learn their valuations over time.

In this paper, we utilize the well-known Vickrey-Clarke-Groves (VCG) auction [20] in each

round. At time stept, the VCG mechanism takes the SUs’ bids as input and determines the

output for each SU as

oti = {(xt
i, p

t
i)|x

t
i ∈ {0, 1} ∧

∑

i

xt
i ≤ k}, ∀i, (2)

where the output consists of the allocation indicator, which determines whether a channel is

allocated to SUi or not, and the payment that SUi needs to make.

According to the VCG mechanism,k identical channels are allocated to the SUs withk highest

bids. The winning SUs need to pay the externality1 that they cause on other SUs. Since channels

are identical, the winners pay the(k+1)th highest bid. Therefore, we havepti = pt = (k+1)th

highest bid ifxt
i = 1, and pti = 0 otherwise. In such an auction,(k + 1)th highest bid is a

thresholdbid for winning the auction and winners pay that threshold.

The auction mechanism in each step can be summarized as follows. First, SUi observes

its valuationvti . Second, SUi decides what to bid in the current round which is denoted by

bti. Third, The PO holds the auction based on the VCG mechanism. Finally, SU i observes its

bidding resultoti, defined in (2).

We focus on the bidding problem faced by an SU in the describedrepeated auction environ-

ment. At each time step, an SU’s bid depends not only on its valuation, but also on its remaining

budget and the behavior of its competitors. In conventionalauction settings, where SUs are not

1In other words, an SU pays the difference between the social welfare of the others with and without its participation [20].
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Time 

Fig. 1. Three budget constrained operators compete for a single channel in a repeated auction. If an operator wins, it can

exploit the channel and earn an income. By participating in several rounds of auction, operators get the chance to explore and

learn about their opponent’s bids.

budget constrained, it is in SUs’ best interest to bid their true valuations. Thus, truthful bidding

is the best strategy of an SU regardless of its opponents. However, in presence of budget limits,

truthful bidding is no longer the best strategy. For instance, consider an SU with valuation of6

and budget of6 at timet, when the winning threshold is5. Following truthful bidding, the SU

bids 6, wins the channel and gets a utility of1. Assuming the SU makes a fixed income of1,

its remaining budget for timet+ 1 equals2. Suppose at timet+ 1, the SU’s valuation and the

winning threshold are7 and3, respectively. Obviously, the SU does not have enough budget to

win in this round. However, the SU could have underbid at timet to save its budget for time

t + 1, where it could get a utility of4. In fact, this simple example shows that an SU needs to

plan its budget and find its optimal bidding strategy accordingly. In addition, the SU needs to

take into account the behavior of its opponents in its decision making process. However, due

to the distributed nature of network, knowledge about otherSUs is limited, and each SU may

learn some information about its opponents by repeatedly participating in the auction.

An instance of the problem setting is depicted in Figure 1 where three secondary operators

compete for channel access in a repeated auction. Each SU typically starts with an initial budget
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to invest in the spectrum market. An SU improves its utility after winning an auction and getting

channel access for its services. At each time step, an SU can explore and learn more information

about its opponents or exploit the current information and bid to win a channel.

III. OPTIMAL BIDDING PROBLEM FORMULATION

In this section, we formulate the optimal bidding problem ofa budget constrained SU in the

repeated auction environment described in Section II. Letmt
i be the remaining budget of SUi at

time t. SU i observes its valuation at timet and places a bidbti, which results in an immediate

utility of (vti − pt)1pt<bt
i
≤mt

i
. The SU’s problem is to find a bidding strategy that maximizesits

long-term discounted utility. The SU’s objective at timet can be written as:

E
[

∞
∑

t′=t

δt
′−t (vt

′

i − pt′)1p
t′
<bt

′

i
≤mt′

i

]

(3)

where the expectation is taken over the winning threshold,pt′ , and0 ≤ δ < 1 is the discount

factor that controls how important future rewards are in current decisions (with larger values of

δ giving more weight to future situations, as opposed to immediate rewards).

The bidding problem of SUi can be modeled as a Markov decision process (MDP) that is

described by a quadruple< Si, Bi, qi, ri >. Si corresponds to a finite set of states of SUi, where

state of an SU is specified by its valuation and its remaining budget. Formally, the state of SU

i at time t is defined assti = (mt
i, v

t
i). Bi denotes a finite set of actions for SUi, where an

action corresponds to placing a bid,bti. State transition probability for SUi is represented byqi.

Therefore,qi(s
t+1
i |sti, o

t
i) is the probability that the state of SUi changes fromsti to st+1

i when

the auction output isoti. State of an SU transitions as follows. SUi’s valuation is drawn i.i.d

over time, and its budget evolves according to the followingequation

mt+1
i =











mt
i + ai − pt, xt

i = 1

mt
i, Otherwise

(4)

whereai denotes a fixed income that the SU earns from getting channel access permission, and

pt is the threshold amount that the SU pays for winning the auction at timet.

The immediate reward of SUi in an auction round is denoted byri, which is the difference

between SU’s valuation and its payment if the SU wins a channel.

February 13, 2018 DRAFT



8

rti(s
t
i, b

t
i, o

t
i) =











vti − pt, xt
i = 1

0, Otherwise
(5)

With the MDP formulation, the SUi’s objective is to find a stationary strategyπi that maps its

current state (valuation and remaining budget) into a bid tomaximize its long-term discounted

utility given by

max
πi∈Πi

E
[

∞
∑

t′=t

δt
′−t rt

′

i (s
t′

i , b
t′

i , o
t′

i )]. (6)

IV. OPTIMAL BIDDING WITH I .I .D SUS

In this section, we characterize the optimal bidding strategy of an SU assuming that bids

of SUs are independent and identically distributed (i.i.d.). This assumption implies that the SU

knows the probability distribution of the winning threshold. While the assumption of i.i.d bidders

is common in the prior work [4], in Section V, we present a learning-based approach that does

not require i.i.d opponent bids.

We define the value function of the described MDP as the maximum (over all bidding

strategies) expected discounted utility of an SU. LetU(m) be the value function starting with

budgetm, using the dynamic programming principle we can write

U(m) = Ev

[

max
b≤m

Ep

[

(v − p + δU(m − p + a))1p<b + δU(m)1p≥b

]

]

(7)

The SU wins if it bids strictly more than the winning threshold p. In this case, the SU gets an

immediate reward ofv − p in addition to the discounted expected future utility of starting with

budgetm − p + a. If the SU loses the auction, it gets the discounted expectedutility with the

same initial budget. It is worth noting that since we consider the bidding problem of a typical

SU, we omit the SU index for simplicity of notation. Also, we leave out the time index in the

above recursive formula.

For every possible winning thresholdp, the SU’s optimal bid can be found by simulating a

single-shot VCG auction in which the winning threshold is represented by a functionf defined

as:
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f(p,m) = p+ δ(U(m)− U(m− p+ a)). (8)

The functionf defines the costs associated with winning a round of auction.The first termp is

the immediate cost that the winning SU needs to pay. The second term in (8) is the exploitation

cost which is incurred when the SU wins the current round of auction and starts the next round

with budgetm− p+ a, compared to the case of losing the current auction and starting the next

round with the same budget. In fact, exploitation cost is thediscounted utility difference between

winning and not winning the current round of auction.

Now, the optimal bid can be defined as a function of the currentstate (consisting of budget

and valuation) as follows:

b∗(m, v) = argmax
b≤m

Ep

[

(v − f(p,m))1p<b≤m

]

. (9)

In the following theorem, we characterize the optimal bid ofan SU.

Theorem 1:The optimal bidding strategy of a budget constrained SU in the described repeated

VCG auction (Section II) is characterized as

b∗(m, v) = min(m, f−1(v,m))

wheref−1(v,m) is thez such thatf(z,m) = v.

Proof: The main idea is to transform the current auction round into asingle-shot VCG

auction where the winning threshold is represented by the functionf(p,m) (8). It should be noted

that by definition,f(p,m) is strictly increasing inp. Therefore, the following two conditions are

equal,

1p<b≤m = 1f(p,m)<f(b,m)≤f(m,m).

Now we can rewrite the optimal bid function (9) as

b∗(m, v) = argmax
b

Ep

[

(v − f(p,m))1f(p,m)<f(b,m)≤f(m,m)

]

(10)

The optimal bid of an SU in a single-shot VCG auction is the SU’s valuation subject to its

budget limit which can be represented bymin(v,m). Therefore, for a single-shot VCG, we can

write

argmax
b

Ep

[

(v − p)1p<b≤m

]

= min(v,m). (11)
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We can replacem by f(m,m) andp by f(p,m) in (11),

argmax
b

Ep

[

(v − f(p,m))1f(p,m)<b≤f(m,m)

]

= min(v, f(m,m)).

After replacing the bid withf(b,m),

argmax
b

Ep

[

(v − f(p,m))1f(p,m)<f(b,m)≤f(m,m)

]

= z

wheref(z,m) = min(v, f(m,m)). If min(v, f(m,m)) = v, thenz = f−1(v,m). On the other

hand, if min(v, f(m,m)) = f(m,m), then z = m. Since f is strictly increasing, we have

z = min(f−1(v,m), m). Therefore, according to (10) the optimal bid is

b∗(m, v) = min(f−1(v,m), m)

The specified optimal bid in Theorem 1 depends on the value function (7) of the MDP.

Therefore, in order to calculate the optimal bid, the SU needs to computeU(m). Let U t be the

value function at timet, we can findU t for t = 1, 2, · · · iteratively as follows:

U t+1(m) = δU t(m) + E
[

v − (p+ δ(U t(m)− U t(m− p+ a)))
]+

,

with the initial value ofU0(m) = 0 for ∀m. It is worth noting that the above equation is another

form of the value function defined in (7). If the SU loses the auction, the expectation term is

zero in the above equation and the SU getsδU t(m). When the expectation term is positive and

the SU wins the auction,δU t(m) terms cancel out and the SU getsv − p+ δU t(m− p+ a).

V. LEARNING-BASED OPTIMAL BIDDING STRATEGY

In this section, we find an optimal bidding strategy of an SU without the i.i.d bids requirement.

For this purpose, we formulate the bidding problem as a Markov game (also called a stochastic

game)2 [21].

An n-user stationary Markov game can be described by a tuple< S, B1, · · · , Bn, r1, · · · , rn, q >

whereS is the state space,Bi is the set of actions,ri is the reward function for useri, i = 1, · · · , n

2The theory of MDP focuses on a single-user stationary environment. Game theory, on the other hand, studies the interaction

of multiple users. Markov games extend game theory to MDP-like environments. In other words, Markov games generalize

MDP to environments with multiple interacting users.
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and q determines the state transition probabilities. Given state s ∈ S, each user independently

chooses an actionbi ∈ Bi, and receives a rewardri. Then, the state transitions to the next state

based on transition probability functionq which follows the Markov property.

It is worth noting that in a Markov game, states are defined globally and for the environment.

That is, all users make their decisions based on a common environment state, and the system

state evolves as a result of joint actions. In accordance with Section III, we consider a local

state spaceSi for each SUi. We define the global state space asS = S1 × · · · × Sn, and we let

S−i = ×j 6=iSj be the joint state of all SUs other thani. The global state of the system at time

slot t is defined asst = (sti, s
t
−i).

Also, in such a Markov game, each SU reward depends on the global state and the joint

action of all SUs. However, due to the distributed nature of wireless networks/markets, exact

information about other SUs is not available. Therefore, anSU needs to learn about its opponents

through observations made from participating in the auction.

It should be noted that, in contrast with [4] that assumes SUscan stay out of the auction and

monitor the results, we assume that an SU can make observations only through participating in

the auction. Also, since the auction is sealed-bid, SUs cannot observe each other’s bids, and no

information is exchanged among SUs. Thus, we define the observation of an SU as its previous

states, bids, and auction outcomes for that SU, in addition to the SU’s current state. Formally, we

define the observation of SUi at time t as (st
′′

i , b
t′

i , o
t′

i ) for t′ = 0, · · · , t− 1 and t′′ = 0, · · · , t.

We utilize model-free reinforcement learningapproaches in which an SU learns its optimal

bidding strategy without knowing the state transition probabilities. Q-learning [22], [23] is a well-

known example of model-free reinforcement learning algorithms. The main idea of Q-learning

is to define a Q-function that represents the quality of a state-action pair. Then, for a given state,

the optimal strategy would be to choose an action that gives the highest value for Q-function.

A. State Space Classification

In a Markov game, Q-functions are defined over the global state and joint actions of all SUs.

However, as mentioned earlier SUs cannot observe states andactions of each other. Thus, SU

i needs to approximate the state of othersS−i. Since the winning threshold fully represents

the state and behavior of other SUs, it suffices for an SU to keep an estimate of the winning

threshold. Therefore, winning threshold can be used as the representative state of competing
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SUs. In order to reduce the time and space complexity of learning, we use a similar state

classification as in [14] to classify the representative state space. LetT be the maximum value

for the winning threshold. SUi uniformly decomposes the range[0, T ] into Ni intervals as

[T0, T1), [T1, T2), · · · , [TNi−1, TNi
], whereT0 ≤ T1 ≤ · · · ≤ TNi

= T .

Depending upon the outcome of the auction, SUi gets to know different information about

its competitors. Let̃st−i be the approximated state of other SUs at timet, we have the following

two cases:

1) If SU i wins the auction at timet, the winning threshold can be observed. Therefore, the

representative state of other SUs is determined as

s̃t−i = n, if pt ∈ [Tn−1, Tn)

2) When SUi loses the current round of auction, the only information available to the SU is

that its bid was lower than the winning threshold. Thus, the representative state of other

SUs can be chosen as

s̃t−i = n, if bti ∈ [Tn−1, Tn)

It is worth noting that the choice ofNi leaves a tradeoff between complexity and performance

for SU i. Higher values ofNi results in more accurate approximation ofS−i, but at the cost of

increased complexity.

B. Transition Probability Estimation

SU i also needs to estimate the transition probabilities for representative state of other SUs.

For this purpose, SUi maintains anNi×Ni matrixY . Each elementyn,m of the matrix indicates

the number of transitions from̃st−i = n to s̃t+1
−i = m. SU i can update the matrixY through

its observations and state space approximation described in previous subsection. Then, we can

approximate the transition probabilities as follows:

q−i(s̃
t+1
−i = m|s̃t−i = n) =

yn,m
∑

m yn,m
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C. The Learning Algorithm

In this section, we present a learning-based bidding algorithm for an SU which depends

only on the local observations of the SU. The learning algorithm is similar to the well-known

Q-learning [23] method, except that we include budget constraints of SUs, and we use state

classification and transition probability approximation of other SUs, since the information about

other SUs are limited in the network.

We define the Q-function of SUi at time t as follows. The quality of actionbi, when state

of SU i is si and the representative state of others iss̃−i, equals

Qt
i(si, s̃−i, bi) =







































(1− αt
i)Q

t−1
i (si, s̃−i, bi) + αt

i(r
t
i + δV t

i (si, s̃−i)),

if sti = si, s̃
t
−i = s̃−i, b

t
i = bi

Qt−1
i (si, s̃−i, bi) Otherwise

(12)

where 0 ≤ αt
i < 1 is the SU’s learning rate,rti is the immediate reward as defined in (5).

The functionV t
i (si, s̃−i) represents the value of the joint state(si, s̃−i), which is the expected

discounted utility starting from that state.

V t
i (s

t
i, s̃

t
−i) =

∑

st+1

i
,s̃t+1

−i

[

qi(s
t+1
i |sti, o

t
i)q−i(s̃

t+1
−i |s̃

t
−i) max

bi≤mt+1

i

{

Qt−1
i (st+1

i , s̃t+1
−i , bi)

}

]

(13)

In other words, the quality of a state-action pair (12) is theimmediate utility plus the discounted

expected value of future states, and the value of a joint state (13) is the quality of the best action

for that state. The results in [23] show that the estimated values forQ andV converge to their

true values if learning rates satisfy certain conditions. Therefore, if an SU learns the Q values,

it can specify its optimal strategy, which is choosing the bid (action) with the highest Q value

subject to its budget constraints. Thus, SUi chooses its bid at timet according to the following

strategy:

π∗
i (s

t
i, s̃

t−1
−i ) = arg max

bi≤mt

i

{

∑

s̃t
−i

q−i(s̃
t
−i|s̃

t−1
−i )Q

t−1
i (sti, s̃

t
−i, bi)

}

(14)
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Algorithm 1 Learning-based bidding for SUi
1: Initialize theQi values to zero for all possible states and bids

2: Initialize n(s) values to zero for all possible joint statess

3: for Each time stept do

4: Observe the current statesti

5: With probability ǫ(sti, s̃
t−1
−i ) = c/n(sti, s̃

t−1
−i ) choose a random bid, and with probability

of 1− ǫ(sti, s̃
t−1
−i ) use the greedy strategy in (14) to place a bid

6: n(sti, s̃
t−1
−i ) + +

7: Observe the auction outcomeoti and receive the immediate rewardrti

8: Estimate the state of other SUss̃t−i and update the corresponding transition probabilities

as described in Sections V-B and V-A

9: Compute the value of statesti, s̃
t
−i using (13)

10: Update the Q valueQt
i(s

t
i, s̃

t
−i, b

t
i) according to (12)

11: end for

The SU chooses a bid that maximizes its expected Q value, where the expectation is taken over

the possible representative state of other SUs for the current time step. This is because SUi

can learn about other SUs’ state only after bidding and observing the auction results. Given the

information from previous time step and with the aid of transition probability approximation

(Section V-B), the SU can find the expected current state of other SUs.

The results in [24] indicate that the greedy strategy that always chooses an action which

maximizes the Q values may not provide enough exploration for the user to guarantee optimal

performance. A very common approach is to add some randomness to the policy. We useǫ-

greedy with decaying exploration in which, the SU chooses a random exploratory bid at the

joint states with probability ǫ(s) = c/n(s), where0 < c < 1 andn(s) is the number of times

the joint states has been observed so far. The SU chooses the greedy Q-maximizing bid (i.e.

(14)) with probability of1 − ǫ(s). In this approach the probability of exploration decays over

time as the SU learns more.

The learning-based bidding algorithm for SUi is summarized in Algorithm 1. The time

complexity of the algorithm is dominated by learning state values (13) which can be done in
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Fig. 2. The proposed learning-based bidding algorithm outperforms truthful bidding after the first 300 rounds.

O(|Si| × Ni × |Bi|), where |Si| is the state space size for SUi, Ni is the number of classes

for other SUs’ states, and|Bi| is the bid space for SUi. In terms of space complexity, the SU

needs to keep a table of size|Si| ×Ni × |Bi| for Q values.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposedbidding algorithm. We compare

our learning-based bidding algorithm (Algorithm 1) versustruthful bidding which is known to

be the optimal bidding strategy without budget limits. Whentruthful bidding is used with budget

constraints, an SU bids its true valuation when the budget allows, and bids zero if the remaining

budget is lower than the true valuation. Since bidding algorithms intend to maximize utility of

an SU, our performance metric of interest is the utility thatan SU obtains over time.

The parameters in our numerical evaluations are set as follows. The SU starts with initial

budget of 100, its valuation at each time slot is drawn randomly from discrete uniform distribution

with maximum of 10, and SU’s budget evolves according to (4).The discount factorδ is set to

0.8, the fixed income of SU for getting channel access,a, is 2, the learning rateα is constant

over time and equals 0.5. We set the number of classes (intervals) for representing other SUs to

N = 5, and we choose 0.2 for the constantc in Algorithm 1. The auction is repeated for 2000

rounds.
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Fig. 3. The proposed learning-based bidding algorithm performs well after it learns about the competition in the beginning

rounds of auction.

Fig. 2 shows the accumulated utility of an SU using our learning-based bidding versus truthful

bidding. As can be seen, our proposed algorithm outperformstruthful bidding after the first 300

rounds. This is due to the fact that truthful bidding does nottake into account budget planning.

Therefore, the SU bids aggressively at first, which significantly reduces its remaining budget

to the extent that the SU does not have enough competitive ability for the remaining auction

rounds. On the other hand, our learning-based bidding method considers the effect of bids on

the future and plans the budget wisely, which results in a better performance in the long run.

The utility of an SU using our learning-based bidding algorithm at each round of auction is

shown in Fig. 3. It can be seen that our proposed learning-based algorithm performs well after

it learns about the competition in the beginning rounds of auction. On the other hand, as Fig. 4

shows, the performance of the truthful bidding algorithm isonly desirable for the first 200 rounds

of auction. Although aggressive bidding in the truthful bidding algorithm brings large utilities

at first, it leads to budget shortage very soon which consequently results in poor performance

over time.

Fig. 5 and Fig. 6 show the evolution of an SU’s budget over timeusing our learning-based

bidding algorithm and truthful bidding, respectively. Fig. 5 illustrates that our learning-based

bidding algorithm plans the budget wisely and maintains a good remaining budget over time.
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Fig. 4. Truthful bidding performs well for the first 200 rounds, but its performance degrades afterwards.
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Fig. 5. Our learning-based bidding algorithm plans the budget wisely and maintains a good remaining budget over time.

In contrast, the truthful bidding policy depletes the initial budget quickly which is due to its

aggressive bidding style and lack of budget planning.

VII. CONCLUSION

In this paper, we studied the bidding problem of a budget constrained SU in repeated secondary

spectrum auctions. We presented an MDP formulation of the problem and characterized the
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Fig. 6. Truthful bidding depletes its initial budget quickly, due to the lack of budget planning.

optimal bidding strategy of an SU, assuming that opponents’bids are i.i.d. Then, we generalized

the formulation to a Markov game that allows an SU to make inferences about its opponents

based on local observations. Using model-free reinforcement learning approaches, we proposed

a fully distributed learning-based bidding algorithm which relies only on local information.

Through numerical evaluations, we showed that our learning-based bidding method outperforms

truthful bidding, in terms of utility.
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