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Abstract

Small operators who take part in secondary wireless spaatnarkets typically have strict budget
limits. In this paper, we study the bidding problem of a budgmnstrained operator in repeated secondary
spectrum auctions. In existing truthful auctions, truthfidding is the optimal strategy of a bidder.
However, budget limits impact bidding behaviors and makielinig decisions complicated, since bidders
may behave differently to avoid running out of money. We folate the problem as a dynamic auction
game between operators, where knowledge of other operatdirited due to the distributed nature
of wireless networks/markets. We first present a Markov §leni Process (MDP) formulation of the
problem and characterize the optimal bidding strategy obperator, provided that opponents’ bids
are i.i.d. Next, we generalize the formulation to a Markowngathat, in conjunction with model-free

reinforcement learning approaches, enables an operatoake inferences about its opponents based
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on local observations. Finally, we present a fully disttéulilearning-based bidding algorithm which
relies only on local information. Our numerical results whihat our proposed learning-based bidding

results in a better utility than truthful bidding.
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[. INTRODUCTION

Spectrum scarcity has become a major challenge due to tiek gegwth in mobile wireless

communications. Several measurement studies indicatetitbgoroblem lies in inefficient use

February 13, 2018 DRAFT


http://arxiv.org/abs/1608.07357v1

of the available wireless spectrum rather than scarcitjhefdpectrum/[1]. Secondary spectrum
markets have emerged to improve the spectrum utilizatidvgreva primary license owner (PO)
can lease its idle spectrum band(s) to unlicensed secondarg (SU) for a short period of time.
A common approach for leasing the spectrum is holding ani@uetmong SUSs.

Several auction mechanisms have been proposed in theuiterfar re-allocating the spectrum
in secondary markets that mostly focus on a single round cti@u(one-shot mechanisms) [2],
[3]. However, secondary spectrum auctions repeat fretjyesihce spectrum access is granted
for a short period of time. The difficulty arises as the SUs marn some information about
their opponents and the environment over time, which camseity complicate their bidding
decisions.

In a repeated auction environment, the major problem of ans3u find an optimal bidding
strategy that maximizes its long-term utility. The deamsimaking process of SUs in a repeated
spectrum auction is studied in/[4]. In their model, SUs cleobstween participating in the
auction by bidding their true valuations, or staying outlod fiuction to just monitor the results.
Assuming independent and identically distributed (i)iSUs’ valuations, a threshold is derived
for SUs above which they should participate in the auctiora more general context, [5] utilizes
Bayesian auction games for resource allocation in wirehesaorks, which entails maintaining
beliefs about private information of others. Similarly] fresents a multi-stage double auction
game, however, it only solves for a single round of aucti@hpresents a sequential bandwidth
and power auction among SUs. A unique equilibrium is guaeuhtfor the case of two SUs,
provided that full information about private valuationg available. From a PO perspective, the
spectrum pricing competition has been studied extens[@h11]. In such models, SUs choose
a spectrum provider solely based on the offered price, thernheir true valuations.

We study repeated spectrum auctions in presence of budgstramed SUs, since in real
world scenarios, bidders have limits on the amount of mohey tan spend. According to an
analysis of FCC’s spectrum auctions [12], many local wssleperators have budget limits, and
these limits affect their bidding behaviors. Each oper#ygpically starts with an initial budget
to invest in the spectrum market. The operator improvestitsyuafter winning an auction and
getting high quality channel access for its services. Ireaaslosing an auction, the operator
may resort to opportunistic generalized access mode whiek dot provide a quality of service

guarantee [ [13]. Therefore, an operator needs to bid wesedlyplan its budget to get the most
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value from its participation in multiple rounds of auctidh.should be noted that we use the
terms operator and SU interchangeably in this paper.

Our goal is to characterize an optimal bidding strategy foudget constrained SU in repeated
secondary spectrum auctions. To the best of our knowledgénizing the bidding strategy of
an SU in presence of budget limits has not been previouslgidered in the literature. The
challenge presented by budget limits is that it makes thdibgddecisions complex, since an
SU needs to take into account both the competition in the etankd its own budget constraints.
Truthful bidding is no longer the optimal bidding strateghem SUs are budget constrained, as
SUs may behave differently to avoid running out of moméys, in contrast with prior works
[4], [14] that assume SUs always bid their true valuationgiget constrained SUs have a wide
variety of strategies for bidding. Therefore, SUs face agetigplanning problem and they need
to find utility-maximizing bids without exceeding their byets.

The significance of our work is that we propose solutions ler idding problem of a budget
constrained SU, with and without i.i.d competing bids. Werelaterize the optimal bidding
strategy of an SU, when opponents’ bids are i.i.d. For the aasen no information about
other SUs is available, we present a learning-based bidalopgyithm that relies only on local
information, and is well-suited to wireless environmemigrkets. It is worth noting that budget
optimization has been studied in the context of online kegvaalvertising. For instance, [15] and
[16] analyze random bids and present bidding heuristicaflvertisers to maximize their return
on investments. Also/ [17] proposes a greedy algorithm faiget optimization with a single
keyword and a single advertising slot. Similarly, [18] seslthe bidding problem for a single
keyword assuming a bidder faces large (theoretically t#)mumber of i.i.d bidders. However,
such an assumption does not typically hold in the context iofless spectrum markets, since
there are limited number of competing SUs.

It should also be noted that our approach is different fromliferature of dynamic auction
design, where the objective is to design efficient or revespténal mechanisms in dynamic
environments (e.g! [19]). Instead of designing a complexhaaism that focuses on the PO’s
side, we consider repetition of simple auction mechanisand,we study the dynamics of such
a system from SUs’ point of view. In this setting, we analylze bidding strategies of an SU. In
fact, an SU is faced with a trade-off between the possibditgetting a surplus in the current

auction and the possibility of getting a larger but uncer&irplus in future auctions, subject to
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its budget limit.

In this paper, we make the following contributions. We fofate the budget-constrained
spectrum sharing problem as a repeated auction game in v@tlichcompete to get one of
the available channels. We first present a Markov Decisiatdds (MDP) formulation of the
problem and characterize the optimal bidding strategy ofSah assuming that opponents’
bids are i.i.d. Next, we generalize the formulation to a Marigame, where an SU can make
inferences about its competitors based on its local ob8eng and i.i.d. bids assumption is not
required. Finally, we present a fully distributed learnimagsed bidding algorithm which relies
only on local information.

The rest of this paper is organized as follows. Sedtion Ik@nés the system model used in
this paper. In Section I, we present a formulation of théiropl bidding problem of a budget
constrained SU. We characterize the optimal bidding gyatd an SU, assuming that the SU
faces i.i.d opponent bids in Sectién]IV. In Sectioh V, we prasa fully distributed learning-
based bidding algorithm for an SU, which does not requir€.ilbids assumption. Numerical
results are presented in Section VI. Finally, Secfion Vh@dades the paper and outlines possible

avenues for future work.

[I. SYSTEM MODEL

We consider a network consisting of a set of secondary wgersdtors (SUs) who are willing
to buy channel access for their services from a primary specbwner (PO). SUs are budget
constrained and compete with other SUs in a repeated aweliere the PO acts as the auctioneer,
and SUs are the bidders. The auction is repeated over timehvidhindexed by =0,1,2,---.
We assume that each SU can get at most one of tnailable channels, and that each channel
can be leased to one SU at each time slot.

An SU’s valuation for a channel is the benefit for that specfi¢ of obtaining that channel.
Similar to [2], [7], [11], the SUs’ valuations for a channehrc be related to the achievable
capacity of that channel. Lél’ be the channel bandwidtt}, be the transmission powel,
be the power spectral density of the additive noise, and-Jetlenote the channel gain for SU
7. The valuation of SU for channel access;,, can be defined as:

By G;
No W

v; £ 6; Wlog(1 + ) 1)
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whered; is a real number which reflects the urgency of channel acoessU i, the more urgent
the channel access to StJthe higher the monetary val#g. SUs can set thei#s based upon
their service types. For delay sensitive multimedia appions they have a different urgency
than delay tolerant services.

It is worth noting that the model presented in this paper wavkh other valuation functions,
and [1) is one example of such a function. We assume that httieae step, each SU can observe
its current valuation, and that valuations evolve accaydim a Markov probability model. Let
v! denote the valuation of SWat timet, then P(v! vt vl - [ 0?) = P(vf™|o!). Each SU
knows its own valuation probability transition model whicéin be learnt over time. [19] presents
a model in which SUs learn their valuations over time.

In this paper, we utilize the well-known Vickrey-Clarke-gwes (VCG) auction [20] in each
round. At time stept, the VCG mechanism takes the SUs’ bids as input and detesntires

output for each SU as
of = {(}, p}) |z} € {0, 1} A Y af <k}, Vi, (2)

where the output consists of the allocation indicator, Whiletermines whether a channel is
allocated to SU or not, and the payment that Slheeds to make.

According to the VCG mechanisrh,identical channels are allocated to the SUs withghest
bids. The winning SUs need to pay the extern@ltt)at they cause on other SUs. Since channels
are identical, the winners pay thi& + 1)th highest bid. Therefore, we haye= p' = (k + 1)th
highest bid ifz! = 1, andp! = 0 otherwise. In such an auctiofk + 1)th highest bid is a
thresholdbid for winning the auction and winners pay that threshold.

The auction mechanism in each step can be summarized asvgolkerst, SU: observes
its valuationv!. Second, SU; decides what to bid in the current round which is denoted by
bt. Third, The PO holds the auction based on the VCG mechanigmallf; SU i observes its
bidding resulto}, defined in [(2).

We focus on the bidding problem faced by an SU in the descnibpdated auction environ-
ment. At each time step, an SU’s bid depends not only on itsadi@n, but also on its remaining

budget and the behavior of its competitors. In conventi@uaition settings, where SUs are not

In other words, an SU pays the difference between the sociihre of the others with and without its participation][20]
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Fig. 1. Three budget constrained operators compete for@esthannel in a repeated auction. If an operator wins, it can
exploit the channel and earn an income. By participatingeivesal rounds of auction, operators get the chance to expliod

learn about their opponent’s bids.

budget constrained, it is in SUs’ best interest to bid theie tvaluations. Thus, truthful bidding
is the best strategy of an SU regardless of its opponentsekkawin presence of budget limits,
truthful bidding is no longer the best strategy. For insegreonsider an SU with valuation 6f
and budget of at timet, when the winning threshold & Following truthful bidding, the SU
bids 6, wins the channel and gets a utility of Assuming the SU makes a fixed income1of
its remaining budget for timé+ 1 equals2. Suppose at timé+ 1, the SU’s valuation and the
winning threshold ar& and 3, respectively. Obviously, the SU does not have enough hiudge
win in this round. However, the SU could have underbid at tinte save its budget for time
t + 1, where it could get a utility oft. In fact, this simple example shows that an SU needs to
plan its budget and find its optimal bidding strategy acaaghyi. In addition, the SU needs to
take into account the behavior of its opponents in its desishaking process. However, due
to the distributed nature of network, knowledge about o®gs is limited, and each SU may
learn some information about its opponents by repeatediycpating in the auction.

An instance of the problem setting is depicted in Figure 1 nehbree secondary operators

compete for channel access in a repeated auction. Each $taltystarts with an initial budget
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to invest in the spectrum market. An SU improves its utilfgeawinning an auction and getting
channel access for its services. At each time step, an SUxgdore and learn more information

about its opponents or exploit the current information artitb win a channel.

III. OPTIMAL BIDDING PROBLEM FORMULATION

In this section, we formulate the optimal bidding problemadbudget constrained SU in the
repeated auction environment described in Se¢fion Ilrklebe the remaining budget of Slat
time t. SU ¢ observes its valuation at timeand places a bid’, which results in an immediate
utility of (v! — pt) 1y, <pt<mt- The SU’s problem is to find a bidding strategy that maximizes
long-term discounted utility. The SU’s objective at timean be written as:

E [ Z 5t/_t (Ufl . pt’)lpt,<b§'§m§/] (3)

t'=t
where the expectation is taken over the winning threshald,and0 < § < 1 is the discount
factor that controls how important future rewards are irrenir decisions (with larger values of
0 giving more weight to future situations, as opposed to imatedrewards).

The bidding problem of SU can be modeled as a Markov decision process (MDP) that is
described by a quadrupte S;, B;, g;, r; >. S; corresponds to a finite set of states of §Where
state of an SU is specified by its valuation and its remainindglet. Formally, the state of SU
i at timet is defined ass! = (m!,v!). B; denotes a finite set of actions for Siwhere an
action corresponds to placing a big, State transition probability for SWis represented by;.
Therefore,q; (s |st, o) is the probability that the state of Schanges frons! to si*! when
the auction output i®!. State of an SU transitions as follows. S valuation is drawn i.i.d
over time, and its budget evolves according to the follonaggation

t t __
m;+a; —p, ;=1

m';f“ _ (4)
mi, Otherwise
wherea; denotes a fixed income that the SU earns from getting chaoeka permission, and
p; is the threshold amount that the SU pays for winning the anddt timet.
The immediate reward of SWin an auction round is denoted by, which is the difference

between SU's valuation and its payment if the SU wins a chlanne
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t t_
v; —py, T; =1

ri(st, bt ol) =

) Vi Ve

(5)

0, Otherwise
With the MDP formulation, the SWs objective is to find a stationary strategythat maps its
current state (valuation and remaining budget) into a bich&ximize its long-term discounted
utility given by

o

vt #t gt
i?eaﬁiE[;é 7 (87,65 ,0;)] (6)

IV. OPTIMAL BIDDING WITH 1.1.D SUS

In this section, we characterize the optimal bidding sgwtef an SU assuming that bids
of SUs are independent and identically distributed ().i.@his assumption implies that the SU
knows the probability distribution of the winning threstioWhile the assumption of i.i.d bidders
is common in the prior worki [4], in SectidnlV, we present a @ag-based approach that does
not require i.i.d opponent bids.

We define the value function of the described MDP as the maxinfaver all bidding
strategies) expected discounted utility of an SU. Uéin) be the value function starting with

budgetm, using the dynamic programming principle we can write

Um) = E,\max E,(J(v — p + 0Um — p + a)lyey + SUm)L]| (7)

b<m

The SU wins if it bids strictly more than the winning thresthpl In this case, the SU gets an
immediate reward ob — p in addition to the discounted expected future utility ofrgtey with
budgetm — p + a. If the SU loses the auction, it gets the discounted expeatiity with the
same initial budget. It is worth noting that since we consiithe bidding problem of a typical
SU, we omit the SU index for simplicity of notation. Also, wealve out the time index in the
above recursive formula.

For every possible winning threshold the SU’s optimal bid can be found by simulating a
single-shot VCG auction in which the winning threshold ipresented by a functioli defined

as.
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f(p,m)=p+0(U(m) —U(m —p+a)). (8)

The functionf defines the costs associated with winning a round of aucliba.first termp is
the immediate cost that the winning SU needs to pay. The setmvm in [8) is the exploitation
cost which is incurred when the SU wins the current round ctiao and starts the next round
with budgetm — p + a, compared to the case of losing the current auction andrgjatie next
round with the same budget. In fact, exploitation cost isdiseounted utility difference between
winning and not winning the current round of auction.

Now, the optimal bid can be defined as a function of the curstatie (consisting of budget

and valuation) as follows:

b*(m,v) = arg rbn<z;ur>b(Ep [(v = f(p,m))Lpctem]. 9
In the following theorem, we characterize the optimal bidaof SU.

Theorem 1:The optimal bidding strategy of a budget constrained SUedscribed repeated

VCG auction (Sectiofll) is characterized as
b*(m, v) = min(m, f~(v,m))

where f~!(v, m) is the z such thatf(z,m) = v.

Proof: The main idea is to transform the current auction round insngle-shot VCG
auction where the winning threshold is represented by thetion f(p, m) (8). It should be noted
that by definition,f (p, m) is strictly increasing irp. Therefore, the following two conditions are
equal,

Lychb<m = Lipm)<fom)<f(mm)-

Now we can rewrite the optimal bid functioh| (9) as

b (m, v) = arg max By [(v = £ (5, 1)) Lstpm)< 001 mm (10)

The optimal bid of an SU in a single-shot VCG auction is the sStluation subject to its
budget limit which can be represented toyn(v, m). Therefore, for a single-shot VCG, we can
write

arg max E,[(v = p)Llpct<m| = min(v, m). (11)
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We can replacen by f(m,m) andp by f(p,m) in (11),

arg max B, [(v = f(p, m)) L. m) << smm)| = min(v, f(m,m)).

After replacing the bid withf (b, m),

argmax By [(v = f(p,m)) L om)< pom)< fmm)] = 2

where f(z,m) = min(v, f(m,m)). If min(v, f(m,m)) = v, thenz = f~1(v,m). On the other
hand, if min(v, f(m,m)) = f(m,m), thenz = m. Since f is strictly increasing, we have

z = min(f~!(v,m),m). Therefore, according td_(1L0) the optimal bid is
b*(m,v) = min(f~ (v, m), m)

u
The specified optimal bid in Theorem 1 depends on the valuetiim (7) of the MDP.
Therefore, in order to calculate the optimal bid, the SU seedcomputd/(m). Let U* be the

value function at time, we can findU* for ¢t = 1,2, -- - iteratively as follows:

U (m) = 6U (m) + E[v — (p+ 8(U(m) — Ul(m — p +a)))] ",

with the initial value ofU°(m) = 0 for Ym. It is worth noting that the above equation is another
form of the value function defined ifl(7). If the SU loses thetan, the expectation term is
zero in the above equation and the SU g#té(m). When the expectation term is positive and

the SU wins the auctiomiU*(m) terms cancel out and the SU gets- p + éU'(m — p + a).

V. LEARNING-BASED OPTIMAL BIDDING STRATEGY

In this section, we find an optimal bidding strategy of an Sthaut the i.i.d bids requirement.
For this purpose, we formulate the bidding problem as a Magame (also called a stochastic
gameE [21].

An n-user stationary Markov game can be described by atagdle By, ---, B,, 71, -, Tn, ¢ >

whereS is the state spacé; is the set of actions; is the reward function for uséri =1, --- ,n

2The theory of MDP focuses on a single-user stationary enmient. Game theory, on the other hand, studies the interacti
of multiple users. Markov games extend game theory to MR@-&nvironments. In other words, Markov games generalize

MDP to environments with multiple interacting users.
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11

and ¢ determines the state transition probabilities. Givenestat S, each user independently
chooses an actioly € B;, and receives a rewarng. Then, the state transitions to the next state
based on transition probability functianwhich follows the Markov property.

It is worth noting that in a Markov game, states are definethajlg and for the environment.
That is, all users make their decisions based on a commomoament state, and the system
state evolves as a result of joint actions. In accordanck @éction[Ill, we consider a local
state space; for each SUi. We define the global state space®s- S; x --- x S,,, and we let
S_i = X,25; be the joint state of all SUs other thanThe global state of the system at time
slott is defined ass’ = (st, s',).

Also, in such a Markov game, each SU reward depends on thelgstate and the joint
action of all SUs. However, due to the distributed nature oklss networks/markets, exact
information about other SUs is not available. ThereforeSaimeeds to learn about its opponents
through observations made from participating in the anctio

It should be noted that, in contrast with [4] that assumes &sstay out of the auction and
monitor the results, we assume that an SU can make observaiidy through participating in
the auction. Also, since the auction is sealed-bid, SUs @aoibserve each other’s bids, and no
information is exchanged among SUs. Thus, we define the wdits@n of an SU as its previous
states, bids, and auction outcomes for that SU, in additdhea SU’s current state. Formally, we
define the observation of SUat timet as (st b, 0! ) for ' =0,--- ,t — 1 andt” =0, --- , .

We utilize model-free reinforcement learningpproaches in which an SU learns its optimal
bidding strategy without knowing the state transition @ioiities. Q-learning [22],[23] is a well-
known example of model-free reinforcement learning alpons. The main idea of Q-learning
is to define a Q-function that represents the quality of asdation pair. Then, for a given state,

the optimal strategy would be to choose an action that giveshighest value for Q-function.

A. State Space Classification

In a Markov game, Q-functions are defined over the globakstatl joint actions of all SUs.
However, as mentioned earlier SUs cannot observe stateadimhs of each other. Thus, SU
i needs to approximate the state of oth&rs. Since the winning threshold fully represents
the state and behavior of other SUs, it suffices for an SU t@ lkeeestimate of the winning

threshold. Therefore, winning threshold can be used asdpeesentative state of competing
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SUs. In order to reduce the time and space complexity of iegyrwe use a similar state
classification as in_[14] to classify the representativéesspace. Lef be the maximum value
for the winning threshold. SU uniformly decomposes the randge, 7] into N; intervals as
(76, T2). [T, Ta)s -+, [Tars T, where Ty < T3 < - < Ty, = T

Depending upon the outcome of the auction, Sgets to know different information about
its competitors. Let" ; be the approximated state of other SUs at timee have the following
two cases:

1) If SU ¢ wins the auction at time, the winning threshold can be observed. Therefore, the

representative state of other SUs is determined as
sti=mn, if p€(T,Tn)

2) When SUi loses the current round of auction, the only informationilaizée to the SU is
that its bid was lower than the winning threshold. Thus, #eresentative state of other
SUs can be chosen as

§.=mn, if e[l 1,T)

(2

It is worth noting that the choice a¥; leaves a tradeoff between complexity and performance
for SU 7. Higher values oflV; results in more accurate approximation%f;, but at the cost of

increased complexity.

B. Transition Probability Estimation

SU i also needs to estimate the transition probabilities forasgntative state of other SUs.
For this purpose, SWmaintains anV; x N; matrix Y. Each elemeng,, ,, of the matrix indicates
the number of transitions froré’ ; = n to 3'%' = m. SU 4 can update the matriX through
its observations and state space approximation descrbedevious subsection. Then, we can

approximate the transition probabilities as follows:

Yn,m

> o Ynum

¢ (8% =m[sL; =n) =
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C. The Learning Algorithm

In this section, we present a learning-based bidding dlyarifor an SU which depends
only on the local observations of the SU. The learning atgaoriis similar to the well-known
Q-learning [23] method, except that we include budget cairgs of SUs, and we use state
classification and transition probability approximatidrother SUs, since the information about
other SUs are limited in the network.

We define the Q-function of SW at timet¢ as follows. The quality of action;, when state

of SU ¢ is s; and the representative state of others_ig equals

;

(1—ah)Qi " (si, 5, bi) + al(rl 4+ 6V} (si, 524)),
if st =s;,8,.=5, 0 =b
Q;(Slﬁ §—i7 bz) = (12)
Qi (54,54, b;) Otherwise

where0 < o! < 1 is the SU’s learning rate;! is the immediate reward as defined [d (5).
The functionV/(s;, 5_;) represents the value of the joint stdte, 5_;), which is the expected

discounted utility starting from that state.

‘/;t(8§7‘§t—1) = Z |:QZ( H—l‘sw z)q (t—t1|§ max {Qt 1 l?+17~t—t17bi>} (13)

t+1
t+1 ~t+1

In other words, the quality of a state-action phirl (12) isithenediate utility plus the discounted
expected value of future states, and the value of a joing $1&) is the quality of the best action
for that state. The results in [23] show that the estimatddegafor @ and V' converge to their
true values if learning rates satisfy certain conditionsergfore, if an SU learns the Q values,
it can specify its optimal strategy, which is choosing the @ction) with the highest Q value
subject to its budget constraints. Thus, Sthooses its bid at timeaccording to the following

strategy:

W?(SESt_)—argbr@f{Zq SLISEQ (505 br) | (14)

—1
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Algorithm 1 Learning-based bidding for SU
1: Initialize the Q); values to zero for all possible states and bids

2: Initialize n(s) values to zero for all possible joint states

3: for Each time step do

4. Observe the current staté

5. With probability e(s, 33') = ¢/n(st, 5') choose a random bid, and with probability
of 1 —e(st,5") use the greedy strategy in(14) to place a bid

6 n(sh, 5N ++

7: Observe the auction outconaé and receive the immediate rewarfd

8: Estimate the state of other SWs, and update the corresponding transition probabilities

as described in Sectiohs V-B ahd V-A
Compute the value of staté, 5 ; using [13)

10: Update the Q valu€)(s, 5 ;, bt) according to[(1R)

—19 71

©

11: end for

The SU chooses a bid that maximizes its expected Q value ewherexpectation is taken over
the possible representative state of other SUs for the mutime step. This is because SU
can learn about other SUs’ state only after bidding and efbsgthe auction results. Given the
information from previous time step and with the aid of titina probability approximation
(SectionV-B), the SU can find the expected current state loérobUs.

The results in[[24] indicate that the greedy strategy thatagé chooses an action which
maximizes the Q values may not provide enough exploratiorihfie user to guarantee optimal
performance. A very common approach is to add some randantoethe policy. We use-
greedy with decaying exploration in which, the SU choosesralom exploratory bid at the
joint states with probability ¢(s) = ¢/n(s), where0 < ¢ < 1 andn(s) is the number of times
the joint states has been observed so far. The SU chooses the greedy Q-miaxjrbid (i.e.
(T4)) with probability of 1 — ¢(s). In this approach the probability of exploration decaysrove
time as the SU learns more.

The learning-based bidding algorithm for SUis summarized in Algorithni]l. The time

complexity of the algorithm is dominated by learning staédues [(1B) which can be done in
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Fig. 2. The proposed learning-based bidding algorithm eréisoms truthful bidding after the first 300 rounds.

O(]Si| x N; x |B;|), where|S;| is the state space size for SUN; is the number of classes
for other SUs’ states, and3;| is the bid space for SUW. In terms of space complexity, the SU
needs to keep a table of siz&| x N; x |B;| for Q values.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our propbsgding algorithm. We compare
our learning-based bidding algorithm (Algoritim 1) versughful bidding which is known to
be the optimal bidding strategy without budget limits. Wherthful bidding is used with budget
constraints, an SU bids its true valuation when the buddetval and bids zero if the remaining
budget is lower than the true valuation. Since bidding algors intend to maximize utility of
an SU, our performance metric of interest is the utility taatSU obtains over time.

The parameters in our numerical evaluations are set asv®lldhe SU starts with initial
budget of 100, its valuation at each time slot is drawn rarlgdram discrete uniform distribution
with maximum of 10, and SU’s budget evolves accordind to T4e discount factob is set to
0.8, the fixed income of SU for getting channel accesss 2, the learning rater is constant
over time and equals 0.5. We set the number of classes @dé¢for representing other SUs to
N =5, and we choose 0.2 for the constann Algorithm[1. The auction is repeated for 2000

rounds.
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Fig. 3. The proposed learning-based bidding algorithmaoeré well after it learns about the competition in the begign
rounds of auction.

Fig.[2 shows the accumulated utility of an SU using our leggrdased bidding versus truthful
bidding. As can be seen, our proposed algorithm outperforatisful bidding after the first 300
rounds. This is due to the fact that truthful bidding doesta&e into account budget planning.
Therefore, the SU bids aggressively at first, which signifilyareduces its remaining budget
to the extent that the SU does not have enough competititidyatair the remaining auction
rounds. On the other hand, our learning-based bidding rdetloosiders the effect of bids on
the future and plans the budget wisely, which results in éebgerformance in the long run.

The utility of an SU using our learning-based bidding alfori at each round of auction is
shown in Fig[8. It can be seen that our proposed learningebakyorithm performs well after
it learns about the competition in the beginning rounds atian. On the other hand, as Fid. 4
shows, the performance of the truthful bidding algorithronéy desirable for the first 200 rounds
of auction. Although aggressive bidding in the truthful difty algorithm brings large utilities
at first, it leads to budget shortage very soon which consgtjueesults in poor performance
over time.

Fig. [ and Fig[ b show the evolution of an SU’s budget over timig our learning-based
bidding algorithm and truthful bidding, respectively. Fg illustrates that our learning-based

bidding algorithm plans the budget wisely and maintains adgemaining budget over time.
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Fig. 4. Truthful bidding performs well for the first 200 rowdout its performance degrades afterwards.
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Fig. 5. Our learning-based bidding algorithm plans the letidgisely and maintains a good remaining budget over time.

In contrast, the truthful bidding policy depletes the mlitbudget quickly which is due to its
aggressive bidding style and lack of budget planning.

VIlI. CONCLUSION

In this paper, we studied the bidding problem of a budgettramed SU in repeated secondary

spectrum auctions. We presented an MDP formulation of tloblpm and characterized the
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Fig. 6. Truthful bidding depletes its initial budget quigktue to the lack of budget planning.

optimal bidding strategy of an SU, assuming that oppondntts are i.i.d. Then, we generalized
the formulation to a Markov game that allows an SU to makererfees about its opponents
based on local observations. Using model-free reinforceearning approaches, we proposed
a fully distributed learning-based bidding algorithm whicelies only on local information.

Through numerical evaluations, we showed that our learbamed bidding method outperforms

truthful bidding, in terms of utility.
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