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Abstract— Heterogenous wireless networks (Hetnets) provide a
powerful approach to meet the massive growth in traffic demands,
but also impose a significant challenge on backhaul. Cachingat
small base stations (BSs) and wireless small cell backhaul have
been proposed as attractive solutions to address this new challenge.
In this paper, we consider the optimal caching and user association
to minimize the total time to satisfy the average demands in
cached-enabled Hetnets with wireless backhaul. We formulate
this problem as a mixed discrete-continuous optimization for
given bandwidth and cache resources. First, we characterize the
structure of the optimal solution. Specifically, we show that the
optimal caching is to store the most popular files at each pico
BS, and the optimal user association has a threshold form. We
also obtain the closed-form optimal solution in the homogenous
scenario of pico cells. Then, we analyze the impact of bandwidth
and cache resources on the minimum total time to satisfy the
average demands. Finally, using numerical simulations, weverify
the analytical results.

I. I NTRODUCTION

The rapid proliferation of smart mobile devices has triggered
an unprecedented growth of the global mobile data traffic.
Heterogenous wireless networks (Hetnets) have been proposed
as an effective way to meet the dramatic traffic growth by
deploying short range small base stations (BSs) together with
traditional macro BSs [1]. Significant increase in network
capacity is possible mainly because the small cells can oper-
ate simultaneously, providing better time or frequency reuse.
However, this approach imposes a significant challenge of
providing expensive high-speed backhaul links for connecting
all the small BSs to the core network. The backhaul capacity
requirement can be enormously high during peak traffic hours.

Caching at small BSs is a promising approach to alleviate the
backhaul capacity requirement in Hetnets. Many existing works
have focused on optimal cache placement at small BSs, which
is of critical importance in cache-enabled Hetnets. For example,
[2] and [3] consider caching at small BSs in a single macro cell
with multiple small cells where the coverage areas of small
cells are overlapping. File requests which cannot be satisfied
locally at small BSs are served by the macro BS. Specifically,
in [2], the authors consider the optimal caching design to
minimize the expected delay for downloading uncached files
from the macro BS. In [3], the authors consider the optimal
caching to minimize the requests served by the macro BS.
The optimization problems in [2] and [3] are NP-hard, and

simplified caching solutions are proposed with approximation
guarantees.

Backhaul limitation is a critical problem in Hetnets. In [4]–
[7], the authors consider caching at small BSs in Hetnets with
backhaul constraints. Small BSs retrieve uncached files via
wireline backhaul from the core network and then transmit to
local users. Thus, the service rate of uncached files at small
BSs is also limited by the backhaul capacity. Specifically,
[4]–[6] consider caching the most popular files at each small
BS and focuses on analyzing the network performance. [7]
considers least frequently used caching policy and studiesthe
optimal user association. Wireless backhaul is an attractive
option for small BSs in Hetnets as it is easier to deploy and is
more cost effective than fiber based backhaul. When wireless
backhaul is considered, it is essential to optimally allocate
time or frequency resources between wireless backhaul for file
retrievements and small BSs for file transmissions.

To avoid inter-tier interference and increase the spatial reuse
in Hetnets, the well known techniques of intercell interference
coordination using almost blanking subframes (ABS slots) and
cell range expansion (CRE) have been developed. The joint
optimization of ABS slots and CRE in a dynamic traffic
scenario has been studied in [8], without considering cache
resource and backhaul limitation. In cache-enabled Hetnets with
wireless backhaul, caching, ABS slots and CRE should be
jointly optimized under wireless backhaul constraints, inorder
to fully exploit the bandwidth and cache resources to improve
network capacity. Note that CRE is not considered in [2], [3],
and optimal caching is not studied in [4] and [7]. In this paper,
we consider the joint optimization of caching, ABS slots and
CRE in a cache-enabled Hetnet consisting of a single macro
cell containing multiple pico BSs with wireless backhaul.
We formulate a mixed discrete-continuous optimization of the
caching and user association to minimize the total time to
satisfy the average demands in a dynamic traffic scenario. Note
that the user association reflects control of ABS slots and CRE.
We show that the optimal caching is to store the most popular
files at each pico BS, and the optimal user association for both
cached and uncached files has a threshold form resulting in two
pico serving regions. The pico serving region for cached files is
larger and contains the pico serving region for uncached files.
Both ranges are adaptive to the traffic density, cache resource
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Fig. 1. System model.

and bandwidth resource. The range difference comes from the
difference in backhaul consumption. We also obtain the closed-
form optimal solution in the homogenous scenario of pico cells.
Then, we analyze the impact of bandwidth and cache resources
on the minimum total time to satisfy the average demands.
Finally, using numerical simulations, we verify the analytical
results.

II. SYSTEM MODEL

We consider a cache-enabled Hetnet consisting of a single
macro cell containingL ∈ N+ pico BSs, as illustrated in
Fig. 1.1 LetL , {1, 2, · · · , L} denote the set ofL pico BSs. Let
K ⊂ R

2 denote the (compact) coverage area of the macro BS,
while Kl ⊂ K, l ∈ L denote the respective coverage areas of
the pico BSs. The pico BS coverage areas are assumed disjoint
such that a user at a location inKl can obtain service from both
the macro BS and the pico BSl. Let K0 , K−∪L

l=1Kl denote
the set of locations not covered by any pico BS. Any user at a
location inK0 will obtain all its support from the macro BS.

Let N , {1, · · · , N} denote the set ofN files (contents) in
the network. For ease of illustration, we assume that all files
have the same size.2 All the files are available at the macro
BS. Each pico BSl is equipped with a cache, which can store
Cl ∈ {0, 1, · · · , N} files. DenoteC , (Cl)l∈L. Let sl,n ∈
{0, 1} represent the caching state for filen at pico BSl, where
sl,n = 1 if file n is cached at pico BSl, andsl,n = 0 otherwise.
Denotesl , (sl,n)n∈N . Note thatsl satisfies

∑N
n=1 sl,n ≤ Cl.

For ease of illustration, we assume each pico BSl can retrieve
uncached files from the macro BS via a wireless backhaul. Note
that our formulation and solution hold when pico BSs retrieve
uncached files from any connection point to the core network.

Users want to download files from the network. We assume
that the file popularity distributionp , (pn)n∈N is identical
among all users and is known apriori, wherepn ∈ [0, 1] is the
popularity of filen andp satisfies

∑

n∈N pn = 1. In addition,
without loss of generality, we assumep1 ≥ p2 . . . ≥ pN . We
assume that file requests arrive as a Poisson process with arrival

1The network topology and traffic model are similar to those in[8]. However,
[8] does not consider file popularity, cache and wireless backhaul.

2Files of different sizes can be divided into chunks of the same length. Thus,
the results in this paper can be extended to the case of different file sizes.

rateλS files/sec and that an arrival is for filen with probability
pn. The locations of the arrivals are chosen independently at
random according to a continuous densityη(dξ) with support
on K and bounded uniformly away from 0. Users remain fixed
at their initial locations until they obtain their files. Hence, the
expected number of requests per second at the vicinity of a
point ξ ∈ K is given byλ(dξ) = λS × η(dξ).

The macro BS is assumed to use a much higher transmit
power than the pico BSs, to allow it to provide full coverage
of the regionK. We will therefore only consider control policies
in which macro time and pico times are disjoint, to avoid
excessive interference at the users from the macro BS when
being served by pico BSs. During macro time, the macro BS
can transmit to a user or a pico BS. On the other hand, pico
BSs are spatially separated and use much lower power. We will
therefore consider control policies in which the pico BSs are
allowed to operate simultaneously during pico time. Let the
time allocated to the pico cells be denoted byf seconds.

The transmission rate of a user is determined by the transmit-
ting BS and the user’s fixed locationξ.3 All locations are in the
macro BS coverage area, and the corresponding rate provided
by the macro BS to locationξ ∈ K, if scheduled, isR0(ξ)
file/sec/Hz. If the location is within the coverage area of pico
BS l, then an alternative rate provided by pico BSl to location
ξ ∈ Kl, if scheduled, isRl(ξ) file/sec/Hz. Assume that rates
depend continuously on location with0 < Rl,min ≤ Rl(ξ) ≤
Rl,max for pico cell rates, whereξ ∈ Kl and l ∈ L, and with
0 < R0,min ≤ R0(ξ) ≤ R0,max for the macro cell rates, where
ξ ∈ K. In addition, the rate of the wireless backhaul from the
macro BS to pico BSl, if scheduled, isBl file/sec/Hz. Since
a pico BS has a much larger receive antenna gain than a user,
we assumeR0(ξ) < Bl for all ξ ∈ Kl and l ∈ L. The total
bandwidth isW > 0 Hz.

Note that any user at a location inK0 is only served by the
macro BS during macro time. A user at a location inKl can
receive a file together from the macro BS and pico BSl during
macro time and pico time, respectively. Consider locationξ ∈
Kl in the coverage area of pico BSl. Letxl,n(ξ) ∈ [0, 1] denote
the fraction of filen delivered by pico BSl to locationξ ∈ Kl

at rateRl(ξ) during pico time. If filen is not stored at pico BS
l, i.e.,sl,n = 0, then thisxl,n(ξ) fraction of filen has to be first
delivered from the macro BS to pico BSl at rateBl via the
wireless backhaul during macro time; otherwise, the delivery
of this xl,n(ξ) fraction of filen will not consume macro time.
The remaining1 − xl,n(ξ) fraction of file n will be delivered
by the macro BS to locationξ ∈ Kl at rateR0(ξ) during macro
time. Denotexl(ξ) , (xl,n(ξ))n∈N for all ξ ∈ Kl and l ∈ L.
Note that association{xl(ξ) : ξ ∈ Kl, l ∈ L, } reflects control
of ABS slots and CRE.

3We assume that the duration of a file transmission is long enough to average
the small-scale channel fading process.



III. PROBLEM FORMULATION

The time that the HetNet must be active in order to satisfy
given traffic demands is an important performance metric. Our
goal is to find the optimal pico timef∗, caching{s∗l : l ∈ L}
and association{x∗

l (ξ) : ξ ∈ Kl, l ∈ L} to minimize the total
time that the HetNet must be active in order to satisfy the
average requests, under given system resources, i.e., bandwidth
resourceW and cache resourceC.

Problem 1 (Optimal Caching and Scheduling):

τ∗ = min
f,{sl:l∈L},

{xl(ξ):ξ∈Kl,l∈L}

f +

N
∑

n=1

∫

K0

1

WR0(ξ)
pnλ(dξ)

+

L
∑

l=1

N
∑

n=1

∫

Kl

1− xl,n(ξ)

WR0(ξ)
pnλ(dξ)

+

L
∑

l=1

N
∑

n=1

∫

Kl

(1− sl,n)xl,n(ξ)

WBl

pnλ(dξ)

s.t.

N
∑

n=1

∫

Kl

xl,n(ξ)

WRl(ξ)
pnλ(dξ) ≤ f, l ∈ L

0 ≤ xl,n(ξ) ≤ 1, l ∈ L, n ∈ N

sl,n ∈ {0, 1}, l ∈ L, n ∈ N
N
∑

n=1

sl,n ≤ Cl, l ∈ L.

Note that
∑N

n=1

∫

K0

1
WR0(ξ)

pnλ(dξ) =
∫

K0

1
WR0(ξ)

λ(dξ) ,
τ0 represents the macro time to satisfy the average requests
from K0,4

∑N
n=1

∫

Kl

1−xl,n(ξ)
WR0(ξ)

pnλ(dξ) represents the macro
time to directly satisfy the average requests fromKl, while
∑N

n=1

∫

Kl

(1−sl,n)xl,n(ξ)
WBl

pnλ(dξ) represents the macro time
to satisfy the average requests fromKl indirectly, by first
delivering the uncached files to pico BSl via the wireless
backhaul.

∑N
n=1

∫

Kl

xl,n(ξ)
WRl(ξ)

pnλ(dξ) represents the pico time
to satisfy the average requests fromKl. If pico BS l carries
all the average requests fromKl, then it needs timef̄l ,
∑N

n=1

∫

Kl

1
WRl(ξ)

pnλ(dξ) =
∫

Kl

1
WRl(ξ)

λ(dξ). The maximum

of such time over all pico BSs is̄f , maxl∈L f̄l.
Problem 1 is one in the calculus of variations over function

xl,n(ξ) ∈ [0, 1], l ∈ L, n ∈ N . It also has a continuous variable
f ≥ 0 andLN discrete variablessl,n ∈ {0, 1}, l ∈ L, n ∈ N .
Note that the space ofxl,n(ξ) ∈ [0, 1], l ∈ L, n ∈ N is
compact,f ≥ 0 can be taken no greater than̄f , i.e., f ∈
[0, f̄ ], without affecting the optimality. In addition, the space
of sl,n ∈ {0, 1}, l ∈ L, n ∈ N is finite, and the map from
xl,n(ξ) ∈ [0, 1], l ∈ L, n ∈ N andf ∈ [0, f̄ ] to the objective
function in Problem 1 is continuous for anysl,n ∈ {0, 1},
l ∈ L, n ∈ N . Therefore, the minimum is achieved.

4Note thatτ0 is irrelevant to the optimization in Problem 1. We include itin
the objective function for ease of the investigation of the impact of the system
parameters on the optimal total timeτ∗.

Using decomposition, Problem 1 can be equivalently trans-
formed into the following master problem withL subproblems.

Problem 2 (Master Problem of Problem 1):

τ∗ = min
f

τ(f)

s.t. f ≥ 0

whereτ(f) , f + τ0 +
∑L

l=1 τl(f) andτl(f) is given by the
optimal value of Subprobleml for given f ≥ 0.

Problem 3 (Subproblem l of Problem 1): For f ≥ 0,

τl(f) = min
sl,

{xl(ξ):ξ∈Kl}

N
∑

n=1

∫

Kl

1− xl,n(ξ)

WR0(ξ)
pnλ(dξ)

+

N
∑

n=1

∫

Kl

(1 − sl,n)xl,n(ξ)

WBl

pnλ(dξ)

s.t.

N
∑

n=1

∫

Kl

xl,n(ξ)

WRl(ξ)
pnλ(dξ) ≤ f (1)

0 ≤ xl,n(ξ) ≤ 1, n ∈ N (2)

sl,n ∈ {0, 1}, n ∈ N (3)
N
∑

n=1

sl,n ≤ Cl. (4)

Note thatτ0 denotes the macro time to satisfy the average
requests fromK0 and τl(f) denotes the optimal macro time
to satisfy the average requests fromKl directly and indirectly,
given that the pico time is no greater thanf . Therefore,τ(f)
represents the total time to satisfy the average requests inthe
HetNet given that the pico time is no greater thanf .

Problem 3 for pico BSl is a mixed discrete continuous opti-
mization. Similarly, it can be easily verified that the minimum is
achieved. Problem 2 is a continuous optimization problem over
a single variablef ≥ 0. Later, we shall show that Problem 2
is convex.

IV. OPTIMALITY PROPERTIES

A. Optimal Solution

In this part, we characterize the optimal solution to Prob-
lem 1. We first characterize the optimal solution to the sub-
problem for pico BSl in Problem 3 for any givenf ≥ 0.
Then, we characterize the optimal solution to Problem 2.

To solve Problem 3, we first solve the continuous relaxation
of Problem 3 wheresl,n ∈ {0, 1} is relaxed tosl,n ∈ [0, 1]. We
show that the optimal solution to the relaxed problem satisfies
sl,n ∈ {0, 1}, and hence it is also the optimal solution to
Problem 3. Defineρl(ξ, s) ,

Rl(ξ)
R0(ξ)

− (1−s)Rl(ξ)
Bl

(ξ ∈ Kl),

ρl , inf{ρl(ξ, 0) : ξ ∈ Kl}, ρ̄l , sup{ρl(ξ, 1) : ξ ∈ Kl},
Al(ρ, s) , {ξ ∈ Kl : ρl(ξ, s) > ρ}, and SCl

,
∑Cl

n=1 pn.
Note thatAl(ρ, 0) ⊆ Al(ρ, 1) ⊆ Kl. Suppose

∫

Al(ρ,s)
dξ is

continuous inρ.



Lemma 1: For any givenf ≥ 0, the optimal solution to
Problem 3 is given by

s∗l,n =

{

1, n = 1, · · · , Cl

0, otherwise
(5)

x∗
l,n(ξ, f) =

{

1, ρl(ξ, s
∗
l,n) > ρl(f)

0, otherwise
(6)

whereρl(f) satisfies

SCl

∫

Al(ρl(f),1)

1

WRl(ξ)
λ(dξ)

+ (1− SCl
)

∫

Al(ρl(f),0)

1

WRl(ξ)
λ(dξ) = f (7)

if f ≤ f̄l, andρl(f) = 0 otherwise. In addition, the optimal
value of Problem 3 is given by

τl(f) =SCl

∫

Kl−Al(ρl(f),1)

1

WR0(ξ)
λ(dξ)

+ (1− SCl
)

∫

Kl−Al(ρl(f),0)

1

WR0(ξ)
λ(dξ)

+ (1− SCl
)

∫

Al(ρl(f),0)

1

WBl

λ(dξ). (8)

Proof: Please refer to Appendix A.
Remark 1 (Optimal Structure): For any given pico timef ≥

0, the optimal caching is to cache the most popularCl files.
Thus,SCl

reflects the cache hit probability. Given pico time
f ≥ 0, the optimal associationx∗

l,n(ξ, f) takes the threshold
form where the thresholdρl(f) depends on the pico timef .
Note thatρl(f) also depends onW andCl, which are assumed
to be fixed for now. The impact ofW andCl on ρl(f) will
be studied later in Section IV-B. Specifically, for any cached
file n = 1, · · · , Cl, the optimal associationx∗

l,n(ξ, f) = 1 if
ρl(ξ, 1) > ρl(f); for any uncached filen = Cl+1, · · · , N , the
optimal associationx∗

l,n(ξ, f) = 1 if ρl(ξ, 0) > ρl(f). In other
words, the thresholdρ(f) determines two pico serving regions
Al(ρl(f), 1) ⊆ Kl and Al(ρl(f), 0) ⊆ Kl for the cached
files and uncached files, respectively, whereAl(ρl(f), 0) ⊆
Al(ρl(f), 1). For any cached filen = 1, · · · , Cl, the optimal
associationx∗

l,n(ξ, f) = 1 if ξ ∈ Al(ρl(f), 1); for any uncached
file n = Cl +1, · · · , N , the optimal associationx∗

l,n(ξ, f) = 1
if ξ ∈ Al(ρl(f), 0). Each pico BS is more willing to serve
requests for cached files, as no macro time is consumed for
fetching these files from the macro BS via wireless backhaul.

From Lemma 1, we have the following corollary.
Corollary 1: When f = 0 (no pico time), we have

x∗
l,n(ξ, f) = 0 for all ξ ∈ Kl and τl(f) =

∫

Kl

1
WR0(ξ)

λ(dξ).
When f ≥ f̄l, we havex∗

l,n(ξ, f) = 1 for all ξ ∈ Kl and
τl(f) = (1− SCl

)
∫

Kl

1
WBl

λ(dξ).
Note thatf̄l can be interpreted as the largest pico time needed

for pico BS l to satisfy the average requests fromKl. When

f ∈ [0, f̄l], ρl(f) satisfying (7) is strictly decreasing inf . Thus,
whenf ∈ [0, f̄l], τl(f) given by (8) is strictly decreasing inf .
Whenf > f̄l, ρl(f) = 0 andτl(f) = (1−SCl

)
∫

Kl

1
WBl

λ(dξ),
which is the average macro time to satisfy the average requests
from Kl indirectly, and does not change withf . In addition,
by the structure of Problem 3, we can easily see thatτl(f) is
convex overf .

Next, we characterize the optimal solution to Problem 2.
Based on the properties ofτl(f) discussed above, we know
that τ(f) = f + τ0 +

∑L
l=1 τl(f) is strictly convex inf over

[0, f̄ ], and is strictly increasing inf when f > f̄ . Then, we
have the following lemma.

Lemma 2: The optimal solutionf∗ to Problem 2 exists and
is unique. In addition,f∗ satisfies: if

∑L
l=1 ρ̄l ≤ 1, f∗ = 0 (no

pico time) is optimal;
∑L

l=1 ρl(f̄) ≥ 1, f∗ = f̄ (all pico time)
is optimal; otherwise,f∗ ∈ (0, f̄) satisfies

∑L
l=1 ρl(f

∗) = 1,
whereρl(f) is given by Lemma 1.

Proof: Please refer to Appendix B.
Based on Lemma 1 and Lemma 2, we characterize the

optimal solution to Problem 1 in the following theorem.
Theorem 1: The optimal solution to Problem 1 is given by

s∗l,n =

{

1, n = 1, · · · , Cl

0, otherwise
(9)

x∗
l,n(ξ) =

{

1, ρl(ξ, s
∗
l,n) > ρl(f

∗)

0, otherwise
(10)

where f∗ given by Lemma 2 satis-
fies SCl

∫

Al(ρl(f∗),1)
1

WRl(ξ)
λ(dξ) + (1 −

SCl
)
∫

Al(ρl(f∗),0)
1

WRl(ξ)
λ(dξ) ≤ f∗ for all l ∈ L. In

addition, the optimal value to Problem 1 is given by
τ∗ = f∗ + τ0 +

∑L
l=1 τl(f

∗), where τl(f) is given by
Lemma 1.

1) Homogenous Scenario: Now, we consider the homoge-
nous scenario across all the pico cells. Specifically, in this
scenario, we haveCl = C, Bl = B, ρ̄l = ρ̄, ρl = ρ, f̄l =
f̄ =

∫

Kl

1
WRl(ξ)

λ(dξ), and ρl(f) = ρ(f) for all l ∈ L, and
∫

Al(ρ,s)
1

WRl(ξ)
λ(dξ) is the same for alll ∈ L. By Lemma 2,

we have the following corollary.
Corollary 2: In the homogenous case, the optimal solution

f∗ to Problem 2 satisfies: if̄ρ ≤ 1
L

, f∗ = 0 (no pico
time) is optimal;ρ ≥ 1

L
, f∗ = f̄ (all pico time) is optimal;

otherwise,ρ(f∗) = 1
L

and f∗ ∈ (0, f̄) is given by f∗ =
SC

∫

Al(
1

L
,1)

1
WRl(ξ)

λ(dξ) + (1− SC)
∫

Al(
1

L
,0)

1
WRl(ξ)

λ(dξ).
Note that in the homogenous case, the optimal threshold

ρ(f∗) = 1
L

(ρ < 1
L
< ρ̄) reflects the resource reuse with reuse

factor L in the Hetnet withL pico BSs which are spatially
separated and can be operated at the same time without mutual
interference. Interestingly, the optimal thresholdρ(f∗) = 1

L
no

longer depends onW andC. Thus, the two pico serving regions
for cached and uncached files in each pico cell do not change
with W andC. In the homogenous scenario, we can directly



obtain the closed-form optimal solution from Theorem 1 and
Corollary 2, without solvingρl(f) from (7).

B. Impact of Bandwidth and Cache Size

Problem 1 is for givenW andC. Thus, we can also write
f∗, τ∗, τl, ρ(f), f̄l and f̄ asf∗(W,C), τ∗(W,C), τl(W,Cl),
ρl(f,W,Cl), f̄l(W ) andf̄(W ), respectively. From (7), we can
easily observe thatρl(f,W,Cl) increases inCl and decreases
in W , when f ≤ f̄l(W ). Thus, the optimal caching adapts
to C, while the optimal association adapts toW andC, via
the optimal thresholdρl(f∗(W,C),W,Cl). In the following,
we study how the optimal performanceτ∗(W,C) changes
with system resourcesW and C. We consider continuous
relaxation ofCl ∈ {0, · · · , N} to Cl ∈ [0, N ]. DefineS(Cl) =
∑⌊Cl⌋

n=1 pn + (Cl − ⌊Cl⌋)p⌈Cl⌉. Note thatS(Cl) = SCl
when

Cl ∈ {0, · · · , N}. ReplaceSCl
with S(Cl) in the correspond-

ing expressions forCl ∈ {0, · · · , N} whenCl ∈ [0, N ]. First,
for all W > 0 andCl ∈ (0, N), we have the following result.

Lemma 3: Whenf ∈ (0, f̄l(W )), we have

∂τl(f,W,Cl)

∂W
= −

1

W
τl(Cl,W, f)−

1

W
ρl(f,W,Cl)f < 0

(11)

∂τl(f,W,Cl)

∂Cl

=p⌈Cl⌉

∫

Al(ρl(f,W,Cl),1)

(

ρl(f,W,Cl)

WRl(ξ)
−

1

WR0(ξ)

)

λ(dξ)

− p⌈Cl⌉

∫

Al(ρl(f,W,Cl),0)

(

ρl(f,W,Cl)

WRl(ξ)
−

1

WR0(ξ)

)

λ(dξ)

− p⌈Cl⌉

∫

Al(ρl(f,W,Cl),0)

1

WBl

λ(dξ) < 0. (12)

Whenf > f̄l(W ), we have

∂τl(f,W,Cl)

∂W
=−

1

W
τl(Cl,W, f) < 0 (13)

∂τl(f,W,Cl)

∂Cl

=− p⌈Cl⌉

∫

Kl

1

WBl

λ(dξ) < 0. (14)

Proof: Please refer to Appendix C.
Based on Lemma 3, we know that for allW > 0 andCl ∈
(0, N), l ∈ L, whenf > 0, we can obtain∂τ(f,W,C)

∂W
< 0 and

∂τ(f,W,C)
∂Cl

< 0, indicating how fastτ(f,W,C) decreases with
W andC for givenf > 0. Therefore, we can show that asW
or C increases, the minimum total time decreases.

Theorem 2: For all W,W ′ > 0 andCl, C
′
l ∈ (0, N), l ∈ L,

if W ≥ W ′ andC � C′, thenτ∗(W,C) ≤ τ∗(W ′,C′), where
the equality holds if and only ifW = W ′ andC = C′.

Proof: Please refer to Appendix D.

V. NUMERICAL RESULTS

In this section, we illustrate the analytical results via nu-
merical examples. Consider a circular macrocell, with three
pico BSs (L = 3), each of which is deployed at the centre

TABLE I . Simulation parameters.

Macro Tx. Power 46 dBm Pico Tx. Power 30dBm
Macro-MS Ant. Gain 14dBi Pico-MS Ant. Gain 5dBi
Macro-Pico Ant. Gain 17dBi Noise Power -104 dBm

Macro pathloss (in dB) = 128.1+37.6log
10

(d/1000),d > 35 m
Pico pathloss (in dB) = 140.7+36.7log

10
(d/1000),d > 10 m

of a circular hotspot. A hotspot is a region with higher
user density (explained further below). The macro cell has
radius 1 km, and each hotspot has radius 150 m. The macro
BS is located at the origin and the pico BSs are located
at (−339, 741), (218,−230), (561,−457) in the heterogenous
scenario and at(450, 0), (−225,−390), (−225, 390) in the
homogenous scenario. In our simulations, all users are assigned
to a pico BS, i.e., there are no macro only users (K0 = ∅). Pico
assignment is made according to the nearest (strongest) pico,
forming Voronoi regionsK1,K2,K3. The hotspot probabilities
for the three pico cells are given by 0.4, 0.25, 0.15 (heteroge-
nous scenario) and 0.8/3, 0.8/3, 0.8/3 (homogeneous scenario).
An arriving file is assigned to a given hotspot according to its
probability independently of other files. There is a chance of
0.2 that an arriving file falls outside any hotspot. In this case,
the corresponding file is assigned to the non-hotspot area. Once
the region of an arriving file is determined, the actual location is
chosen uniformly at random, with the exception that no mobile
is placed within 10 m of any pico BS or within 35 m from
the macro BS. We chooseN = 1000, file sizeD = 4 Mbits
and λs = 1 file/sec. We assume the file popularity follows
Zipf distribution, i.e.,pn = n−γ

∑
n∈N

n−γ , with Zipf exponent
γ = 0.8. We consider the wireless parameters and propagation
models in Table I, which are from the 3GPP release. Hence,
once the locationξ of a user has been given, the SNR of
the user from the macro BS SNR0(ξ) and from its pico BS
l SNRl(ξ) can be determined using the cell geometry. Given
these SNRs, we obtain the macro and pico rates (in file/sec/Hz)
using Shannon’s formula:R0(ξ) =

1
D
log2(1 + SNR0(ξ)) and

Rl(ξ) =
1
D
log2(1+SNRl(ξ)). Similarly, given the location of

pico BS l, the SNR of pico BSl from the macro BS SNR0l
can be determined, based on which we can obtain the backhaul
rateBl =

1
D
log2(1 + SNR0l).

We use Monte-Carlo simulation to estimate all relevant inte-
grals. Specifically, the whole macro coverage area is randomly
sampled with2 × 105 points using the hotspot probabilities.
The macro and pico rates for each sampling position are
then calculated accordingly. Then, the locations of the arrivals
are chosen independently and uniformly from these sampling
positions. All the integrals are estimated using corresponding
summations. To avoid superfluous computation, for any given
W and Cl, f is calculated using a fine grid ofρl values
according to (7), based on which we obtainρl(f).

Fig. 2 (a) and Fig. 3 (a) illustrate the thresholdρl(f) versus
pico time f for the heterogenous and homogenous scenarios,
respectively. We can see thatρl(f) is strictly monotonically
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Fig. 2. Heterogeneous scenario.W = 1 MHz andCl = 200, l ∈ L.

decreasing with maximum possible threshold achieved atf =
0, reaching 0 at some finite value of̄fl. In addition, in the
homogenous scenario, the three threshold curves coincide.
From Fig. 2 (a) (Fig. 3 (a)), we can immediately obtain
the first figure in Fig. 2 (b) (Fig. 3 (b)), which enables us
to determine the unique optimalf∗ using Lemma 2. The
second figure in Fig. 2 (b) (Fig. 3 (b)) also illustrates the
unique optimalf∗ at which the minimum ofτ(f) is achieved.
The two optimal values off∗ from the two figures coincide,
illustrating Lemma 2. In addition, from Fig. 3 (b), we can
see thatρl(f∗) = 1

L
= 1/3 in the homogenous scenario,

which illustrating Corollary 2. Fig. 4 illustrates the optimal
average timeτ∗(W,C) versusW andC. We can observe that
asW or C increases, the minimum total time decreases. This
illustrates Theorem 2. In addition, we can see that whenW = 1
MHz, caching the 200 most popular files leads to a minimum
total time reduction of(0.2786 − 0.2059)/0.2786 = 26.1%
compared toCl = 0; whenCl = 0, increasing bandwidth from
1MHz to 1.4 MHz leads to a minimum total time reduction
of (0.2786 − 0.1990)/0.2786 = 28.6%. Therefore, caching
200 files results in the performance improvement close to that
offered by using 0.4 MHz extra bandwidth. This demonstrates
the effectiveness of caching in Hetnets.
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APPENDIX A: PROOF OFLEMMA 1

We shall solve a relaxed version of Problem 3 where (3) is
replaced with

sl,n ∈ [0, 1], n ∈ N . (15)

We shall show that the optimal solution to the relaxed problem
satisfies (3), and hence is also the optimal solution to Prob-
lem 3.

Let ρl denote the Lagrangian multiplier w.r.t. (1). The
corresponding Lagrangian is given by

L({xl(ξ)}, sl, ρl)

=

N
∑

n=1

∫

Kl

1− xl,n(ξ)

WR0(ξ)
pnλ(dξ)

+

N
∑

n=1

∫

Kl

(1− sl,n)xl,n(ξ)

WBl

pnλ(dξ)

+ ρl

(

N
∑

n=1

∫

Kl

xl,n(ξ)

WRl(ξ)
pnλ(dξ) − f

)

=

N
∑

n=1

∫

Kl

(

ρl
WRl(ξ)

+
1− sl,n
WBl

−
1

WR0(ξ)

)

xl,n(ξ)pnλ(dξ)

+

N
∑

n=1

∫

Kl

1

WR0(ξ)
pnλ(dξ) − ρlf

where{xl(ξ)} andsl satisfy (2), (15), and (4). Minimizing the
Lagrangian w.r.t.{xl(ξ)} subject to (2), we have

xl,n(ξ, sl,n, ρl) =

{

1, ρl(ξ, sl,n) > ρl

0, otherwise
(16)

and

min
{xl(ξ):(2)}

L({xl(ξ)}, sl, ρl)

=

N
∑

n=1

pn

∫

Al(ρl,sl,n)

(

ρl
WRl(ξ)

+
1− sl,n
WBl

−
1

WR0(ξ)

)

λ(dξ)

+

N
∑

n=1

∫

Kl

1

WR0(ξ)
pnλ(dξ) − ρlf. (17)

Denote a(s) ,
∫

Al(ρl,s)

(

ρl

WRl(ξ)
+ 1−s

WBl
− 1

WR0(ξ)

)

λ(dξ).

Now we show thata(s) is decreasing ins. Supposes >
s′ ≥ 0. Then, we haveAl(ρl, s

′) ⊂ Al(ρl, s), implying
Al(ρl, s)−Al(ρl, s

′) ⊂ Al(ρl, s). Thus, we have

a(s)− a(s′)

=

∫

Al(ρl,s)−Al(ρl,s′)

(

ρl
WRl(ξ)

+
1− s

WBl

−
1

WR0(ξ)

)

λ(dξ)

−

∫

Al(ρl,s′)

(

s− s′

WBl

)

λ(dξ) < 0

as ρl

WRl(ξ)
+ 1−s

WBl
− 1

WR0(ξ)
< 0 for ξ ∈ Al(ρl, s) ands−s′ > 0.

In addition, sincepn is decreasing inn, further minimizing (17)
w.r.t. sl subject to (15) and (4), we can obtain (5) and the dual
function

gl(ρl, f)

= min
{xl(ξ):(2)},{sl:(15),(4)}

L({xl(ξ)}, sl, ρl)

=

Cl
∑

n=1

∫

Al(ρl,1)

(

ρl
WRl(ξ)

−
1

WR0(ξ)

)

pnλ(dξ)

+

N
∑

n=Cl+1

∫

Al(ρl,0)

(

ρl
WRl(ξ)

+
1

WBl

−
1

WR0(ξ)

)

pnλ(dξ)

+

N
∑

n=1

∫

Kl

1

WR0(ξ)
pnλ(dξ) − ρlf (18)

which is convex inρl. On differentiating w.r.t.ρl under the
integral sign, we have

g′l(ρl, f) =

Cl
∑

n=1

∫

Al(ρl,1)

1

WRl(ξ)
pnλ(dξ)

+

N
∑

n=Cl+1

∫

Al(ρl,0)

1

WRl(ξ)
pnλ(dξ) − f (19)

which is continuous inρl. Note thatg′l(ρl, f) ∈ [−f, f̄l − f ].
The dual problem is given by

τl(f) = max
ρl≥0

gl(ρl, f). (20)

Since the dual problem is convex, whenf ≤ f̄l, the optimal
dual variable satisfiesg′l(ρl, f) = 0. Whenf > f̄l, g′l(ρl, f) <
0, the optimal dual variable is 0. Thus, the optimal dual value
is given by

τl(f) =

∫

Kl

1

WR0(ξ)
λ(dξ) − SCl

∫

Al(ρl(f),1)

1

WR0(ξ)
λ(dξ)

− (1− SCl
)

∫

Al(ρl(f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

which is equal to (8). The corresponding{x∗
l (ξ)} given by (6)

(with sl given by (5)) is feasible. Therefore, by the Lagrange
Sufficiency Theorem, (6) and (5) are the optimal solution to
the relaxed version of Problem 3 for any givenf ≥ 0. Note
that s∗l given by (5) satisfies (3). Thus,(6) and (5) are also the
optimal solution to Problem 3 for any givenf ≥ 0. As x∗

l,n(ξ)
is a function off , we also write it asx∗

l,n(ξ, f).
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Given f ∈ (0, f̄l), for suitableδf > 0, we have

τl(f)− τl(f − δf)

=− SCl

∫

Al(ρl(f),1)
−Al(ρl(f−δf),1)

1

WR0(ξ)
λ(dξ)

− (1 − SCl
)

∫

Al(ρl(f),0)
−Al(ρl(f−δf),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

=− SCl

∫

{ξ∈Kl:ρ(ξ,1)∈[ρl(f),ρl(f−δf)]}

ρ(ξ, 1)

WRl(ξ)
λ(dξ)

− (1 − SCl
)

∫

{ξ∈Kl:ρ(ξ,0)∈[ρl(f),ρl(f−δf)]}

ρ(ξ, 0)

WRl(ξ)
λ(dξ)

(a)
= − ρ̃lSCl

∫

{ξ∈Kl:ρ(ξ,1)∈[ρl(f),ρl(f−δf)]}

1

WRl(ξ)
λ(dξ)

− ρ̂l(1− SCl
)

∫

{ξ∈Kl:ρ(ξ,0)∈[ρl(f),ρl(f−δf)]}

1

WRl(ξ)
λ(dξ)

=− ρ̃lSCl

(

∫

Al(ρl(f),1)

1

WRl(ξ)
λ(dξ)

−

∫

Al(ρl(f−δf),1)

1

WRl(ξ)
λ(dξ)

)

− ρ̃l(1− SCl
)

(

∫

Al(ρl(f),0)

1

WRl(ξ)
λ(dξ)

−

∫

Al(ρl(f−δf),0)

1

WRl(ξ)
λ(dξ)

)

+∆(δf)

=− ρ̃l

(

SCl

∫

Al(ρl(f),1)

1

WRl(ξ)
λ(dξ)

+ (1 − SCl
)

∫

Al(ρl(f),0)

1

WRl(ξ)
λ(dξ)

)

+ ρ̃l

(

SCl

∫

Al(ρl(f−δf),1)

1

WRl(ξ)
λ(dξ)

+ (1 − SCl
)

∫

Al(ρl(f−δf),0)

1

WR0(ξ)
λ(dξ)

)

+∆(δf)

=− ρ̃lf + ρ̃l(f − δf) + ∆(δf) = −ρ̃lδf +∆(δf) (21)

where (a) is due to mean value theorem andρ̃l, ρ̂l ∈
[ρl(f), ρl(f − δf)], and∆(δf) is defined as

∆(δf)

,(ρ̃l − ρ̂l)(1 − SCl
)

∫

Al(ρl(f),0)−Al(ρl(f−δf),0)

1

WRl(ξ)
λ(dξ)

(22)

Sinceρ̃l, ρ̂l ∈ [ρl(f), ρl(f − δf)], we have|ρ̃l − ρ̂l| ≤ ρl(f −
δf)− ρl(f). As ρl(f) has a finite unique derivative for almost
all f , we haveρl(f − δf) − ρl(f) ≤ Cδf for some finite

positiveC. Thus, we can show∆(δf)/δf → 0 as δf → 0.
Dividing δf on both sides of (21) and takingδf → 0, we
can showτ ′l (f) = −ρl(f) for all f ∈ (0, f̄l). On the other
hand, whenf ∈ (fl, f̄), we haveτ ′l (f) = 0 by Corollary 1 and
ρl(f) = 0 by Lemma 1. Thus, whenf ∈ (fl, f̄), we can show
τ ′l (f) = −ρl(f). Therefore, we haveτ ′(f) = 1 −

∑L
l=1 ρl(f)

for all f ∈ (0, f̄). If
∑L

l=1 ρ̄l ≤ 1, then
∑L

l=1 ρl(f) < 1 for
all f ∈ [0, f̄ ], as

∑L
l=1 ρl(f) <

∑L
l=1 ρ̄l for all f ∈ (0, f).

Thus, if
∑L

l=1 ρ̄l ≤ 1, we haveτ ′(f) > 0 for all f ∈ (0, f̄),
implying f∗ = 0. If

∑L
l=1 ρl(f̄) ≥ 1, then

∑L
l=1 ρl(f) ≥

1 for all f ∈ (0, f̄), as ρl(f) is non-increasing inf . Thus,
if
∑L

l=1 ρl(f̄) ≥ 1, we haveτ ′(f) < 0 for all f ∈ (0, f̄),
implying f∗ = f̄ . Otherwise,f∗ ∈ (0, f̄). As τ(f) is convex
in f , we know thatτ ′(f∗) = 0.
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Note thatρl(f,W, SCl
) increases inSCl

and decreases in
W . First, we show (11).

τl(SCl
,W + δW, f)− τl(SCl

,W, f)

=

∫

Kl

1

(W + δW )R0(ξ)
λ(dξ)

− SCl

∫

Al(ρl(SCl
,W+δW,f),1)

1

(W + δW )R0(ξ)
λ(dξ)

− (1− SCl
)

∫

Al(ρl(SCl
,W+δW,f),0)

(

1

(W + δW )R0(ξ)

−
1

(W + δW )Bl

)

λ(dξ)

−

∫

Kl

1

WR0(ξ)
λ(dξ) + SCl

∫

Al(ρl(SCl
,W,f),1)

1

WR0(ξ)
λ(dξ)

+ (1− SCl
)

∫

Al(ρl(SCl
,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

=−
δW

W

∫

Kl

1

(W + δW )R0(ξ)
λ(dξ)

+
δW

W
SCl

∫

Al(ρl(SCl
,W+δW,f),1)

1

(W + δW )R0(ξ)
λ(dξ)

+
δW

W
(1− SCl

)

∫

Al(ρl(SCl
,W+δW,f),0)

(

1

(W + δW )R0(ξ)

−
1

(W + δW )Bl

)

λ(dξ)

− SCl

∫

Al(ρl(SCl
,W+δW,f),1)

−Al(ρl(SCl
,W,f),1)

1

WR0(ξ)
λ(dξ)

− (1− SCl
)

∫

Al(ρl(SCl
,W+δW,f),0)

−Al(ρl(SCl
,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)



(a)
= −

δW

W
τl(SCl

,W + δW, f)

− SCl
ρ̃l

∫

Al(ρl(SCl
,W+δW,f),1)

−Al(ρl(SCl
,W,f),1)

1

WRl(ξ)
λ(dξ)

− (1− SCl
)ρ̂l

∫

Al(ρl(SCl
,W+δW,f),0)

−Al(ρl(SCl
,W,f),0)

1

WRl(ξ)
λ(dξ)

=−
δW

W
τl(SCl

,W + δW, f)− ρ̃l(f − f)−
δW

W
ρ̃lf

−∆(δW ) (23)

where (a) is due to mean value theorem andρ̃l, ρ̂l ∈
[ρl(SCl

,W + δW, f), ρl(SCl
,W, f)], and∆(δf) is defined as

∆(δW )

,(1− SCl
)(ρ̂l − ρ̃l)

∫

Al(ρl(SCl
,W+δW,f),0)

−Al(ρl(SCl
,W,f),0)

1

WRl(ξ)
λ(dξ)

Similarly, we can show∆(δW )/δW → 0 as δW → 0.
Dividing δW on both sides of (23) and takingδW → 0, we
can show (11).

Next, we show (12).

τl(SCl
+ δSCl

,W, f)− τl(f,W, SCl
)

=− (SCl
+ δSCl

)

∫

Al(ρl(SCl
+δSCl

,W,f),1)

1

WR0(ξ)
λ(dξ)

− (1− SCl
− δSCl

)

∫

Al(ρl(SCl
+δSCl

,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

+ SCl

∫

Al(ρl(f,W,SCl
),1)

1

WR0(ξ)
λ(dξ)

+ (1− SCl
)

∫

Al(ρl(f,W,SCl
),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

=SCl

∫

Al(ρl(f,W,SCl
),1)

−Al(ρl(SCl
+δSCl

,W,f),1)

1

WR0(ξ)
λ(dξ)

+ (1− SCl
)

∫

Al(ρl(f,W,SCl
),0)

−Al(ρl(SCl
+δSCl

,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

− δSCl

(

∫

Al(ρl(SCl
+δSCl

,W,f),1)

1

WR0(ξ)
λ(dξ)

−

∫

Al(ρl(SCl
+δSCl

,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

)

(a)
= ρ̃lSCl

∫

Al(ρl(f,W,SCl
),1)

−Al(ρl(SCl
+δSCl

,W,f),1)

1

WRl(ξ)
λ(dξ)

+ ρ̂l(1− SCl
)

∫

Al(ρl(f,W,SCl
),0)

−Al(ρl(SCl
+δSCl

,W,f),0)

1

WRl(ξ)
λ(dξ)

− δSCl

(

∫

Al(ρl(SCl
+δSCl

,W,f),1)

1

WR0(ξ)
λ(dξ)

−

∫

Al(ρl(SCl
+δSCl

,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

)

=ρ̃lSCl

∫

Al(ρl(f,W,SCl
),1)

1

WRl(ξ)
λ(dξ)

− ρ̃l(SCl
+ δSCl

)

∫

Al(ρl(SCl
+δSCl

,W,f),1)

1

WRl(ξ)
λ(dξ)

+ ρ̂l(1− SCl
)

∫

Al(ρl(f,W,SCl
),0)

1

WRl(ξ)
λ(dξ)

− ρ̂l(1− SCl
− δSSCl

)

∫

Al(ρl(SCl
+δSCl

,W,f),0)

1

WRl(ξ)
λ(dξ)

+ ∆1(δSCl
)

=ρ̃l(f − f) + ∆1(δSCl
) + ∆2(δSCl

)

=∆1(δSCl
) + ∆2(δSCl

)

where (a) is due to mean value theorem andρ̃l, ρ̂l ∈
[ρl(f,W, SCl

), ρl(SCl
+ δSCl

,W, f)], and ∆1(δSCl
) and

∆2(δSCl
) are defined as

∆1(δSCl
)

,ρ̃lδSCl

∫

Al(ρl(SCl
+δSCl

,W,f),1)

1

WRl(ξ)
λ(dξ)

− ρ̂lδSSCl

∫

Al(ρl(SCl
+δSCl

,W,f),0)

1

WRl(ξ)
λ(dξ)

− δSCl

(

∫

Al(ρl(SCl
+δSCl

,W,f),1)

1

WR0(ξ)
λ(dξ)

−

∫

Al(ρl(SCl
+δSCl

,W,f),0)

(

1

WR0(ξ)
−

1

WBl

)

λ(dξ)

)

∆2(δSCl
)

,(ρ̂l − ρ̃l)(1− SCl
)

∫

Al(ρl(f,W,SCl
),0)

−Al(ρl(SCl
+δSCl

,W,f),0)

1

WRl(ξ)
λ(dξ)

+ (ρ̂l − ρ̃l)δSSCl

∫

Al(ρl(SCl
+δSCl

,W,f),0)

1

WRl(ξ)
λ(dξ)

(24)

Similarly, we can show∆2(δSCl
)/δSCl

→ 0 asδSCl
→ 0. In



addition, we have

lim
δSCl

→0

∆1(δSCl
)

δSCl

=

∫

Al(ρl(f,W,SCl
),1)

(

ρl(f,W, SCl
)

WRl(ξ)
−

1

WR0(ξ)

)

λ(dξ)

−

∫

Al(ρl(f,W,SCl
),0)

(

ρl(f,W, SCl
)

WRl(ξ)
−

(

1

WR0(ξ)
−

1

WBl

))

λ(dξ)

=

∫

Al(ρl(f,W,SCl
),1)

−Al(ρl(f,W,SCl
),0)

(

ρl(f,W, SCl
)

WRl(ξ)
−

1

WR0(ξ)

)

λ(dξ)

−

∫

Al(ρl(f,W,SCl
),0)

1

WBl

λ(dξ)

<0 (25)

Thus, we can show (12).

APPENDIX D: PROOF OFTHEOREM 2

By Lemma 3, we haveτ(f,W,C) ≤ τ(f,W ′,C′).
Thus, we haveτ(f,W ′,C′) ≥ τ(f∗(W ′,C′),W ′,C′) ≥
τ(f∗(W ′,C′),W,C) ≥ τ(f∗(W,C),W,C). Note that
τ∗(W ′,C′) , τ(f∗(W ′,C′),W ′,C′) and τ∗(W,C) ,

τ(f∗(W,C),W,C). Therefore, we complete the proof.
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